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ABSTRACT:

The article addresses the need for a dependable and efficient computer vision system to examine utility networks with minimal human
intervention, given the deteriorating state of these networks. To classify the dense and irregular point clouds obtained from the airborne
laser terrain mapping (ALTM) system, which is used for data collection, we suggest a deep learning network named Panoptic-Semantic
Utility Network (Pan-SUNet). The proposed network incorporates three networks to achieve voxel-based semantic segmentation and
3D object detection of the point clouds at various resolutions, including object categories in three dimensions, and predicts two-
dimensional regional labels to differentiate utility and corridor regions from non-corridor regions. The network also ensures spatial
layout consistency in the prediction of the voxel-based 3D network using regional segmentation. By testing the proposed approach on
67km? of utility corridor data with an average density of 5pts/m?, the paper demonstrates the effectiveness of the technique. The
proposed network outperforms the state-of-the-art baseline network, achieving an F1 score of 94% for the pylon class, 99% for the
ground class, 99% for the vegetation class, and 99% for the powerline class. It also shows high performance for 3D object detection
for pylon and span achieveing average precision of 99% and 92% respectively.

1. INTRODUCTION

To protect and enhance the economy, it is necessary to ensure the
durability and resilience of the utility grid. This requires con-
ducting safe, effective, and precise inspections of the utility net-
work. Traditionally, ground crews have been deployed to conduct
these inspections, which involve managing vegetation encroach-
ment and inspecting the physical condition of the infrastructure
(Kim and Sohn, 2010). In recent years, unmanned aerial vehi-
cles (UAVs) have emerged as a cost-effective alternative to tradi-
tional data acquisition methods, but there remain significant chal-
lenges in using UAVs to collect data across entire utility corri-
dors due to strict flying regulations, limited flight time, and con-
strained spatial coverage. As a result, Airborne Laser Terrain
Mapping (ALTM) is still used as the primary data collection plat-
form (Zhou et al., 2019, Pu et al., 2019). However, the process of
labeling semantic features in point clouds using visual perception
tasks is still challenging, expensive, and prone to errors (Kim and
Sohn, 2013). Therefore, there is a significant need to automate
post-data acquisition procedures to reduce user involvement and
improve efficiency (Jwa et al., 2009, Wang et al., 2017).

Recent advances in deep neural networks (DNNs) have shown
significant improvement in computer vision tasks. There have
been successful designs of DNNs for semantic segmentation us-
ing point clouds, such as PointNet (Qi et al., 2016), PointNet++
(Qi et al., 2017), and KPConv (Thomas et al., 2019), and object
detection using point cloud and 2D images. These vision tasks
have been integrated into a panoptic framework to better inter-
pret all visual features of the complete scene. However, these
networks have not fully exploited the spatial arrangement of in-
frastructure, especially for utility corridors, nor have they embed-
ded spatial layout consistency for global context. Previous work
have not modeled the 3D transmisson line network as span to py-
lon relationship. Therefore, this research proposes a network with
hierarchical spatial regularity that can be generalized for standard
layout panoptic segmentation problems and generate a network of
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Figure 1: Pan-SUNet is a multi-dimensional and multi-resolution
network that imposes the spatial layout consistency (a) through a
2D bird’s-eye view (BEV) of utility regions on the outcomes of
3D panoptic segementation via loss-based late fusion and panop-
tic fusion (b).

object to object relationship.

This research carefully examines utility corridors and unravels
spatial layout consistency, identifying hierarchies of regions (util-
ity, corridor and non-corridor) and object classes such as ground,
towers, power lines, and vegetation, as shown in figure 1.

The proposed Pan-SUNet extends SUNet (Jameela and Sohn,
2023), which dealt with only two regions, by dividing the task
of extracting three regions into a 2D pipeline. This pipeline seg-
ments the 2D bird’s-eye view (BEV) into two regions (corridor
and non-corridor) and detects the pylons and span for the utility
region. Three regions are generated by fusing the outputs from
segmentation and object detection heads. Three regions fusion
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facilitates 3D segmentation through a loss-based late fusion mod-
ule. The work also uses 2D object detection of pylons and spans
to project into the third dimension using segmentation results and
refine segmentation results based on the detected 3D objects (py-
lons and spans) and assign them instance id as well.

In the upcoming section, we will delve into the related work on
spatial layout consistency, utility corridors, and computer vision
tasks. The methodology will provide a detailed explanation of
the proposed system, while the experiments will showcase the
novelty and effectiveness of the concept.

2. LITERATURE REVIEW

This section discusses the spatial layout consistency in utility cor-
ridors and reviews the techniques of semantic segmentation, ob-
ject detection and panoptic semantic segmentation.

2.1 Spatial Layout

In a number of disciplines, including cognitive science, architec-
ture, and civil engineering, the idea of how items are arranged in a
scene and their interrelationship has been investigated. Decision-
making is aided by the relationship between items, which gives
contextual information. In order to learn global context, it is es-
sential to include spatial recurring patterns. The performance of
tasks like railway lane extractions, road lane recognition, and 3D
building modelling has been enhanced by the use of spatial ar-
rangement (Jeon and Kim, 2019). Spatial interactions are crucial
for identifying small items that can be overlooked, according to
previous studies(Rosman and Ramamoorthy, 2011). This serves
as the foundation for our investigation, in which we use the net-
work to highlight the significance of embedding spatial consis-
tency.

2.2 Utility Corridor Layout

Electric hydro companies around the world follow guidelines
for setting utility transmission zones, which are designed to ad-
dress safety concerns related to infrastructure, residential areas,
and vegetation (National Grid Transco UK, Wales, and USA, 11
12 2022). These zones consist of the utility zone, the corridor
zone, and the non-corridor zone, each with specific regulations
on the size and type of vegetation allowed (Electric Power Re-
search Institute (EPRI), 2012). Existing literature on hierarchi-
cal relationships in visual perception, such as detecting human
motion(Toshev and Szegedy, 2014), was examined to establish a
baseline for the neural network.

2.3 Semantic Segmentation

In recent years, deep learning has played a significant role in
semantic segmentation for 3D point clouds, with research fo-
cusing on intrinsic, extrinsic, and deep features to classify each
point with an enclosing object (Liu et al., 2009). Traditional ap-
proaches for utility corridor segmentation have been purely geo-
metric, but they have limitations such as the need for extensive
preprocessing and domain expertise (Jung et al., 2020, Jwa et
al., 2009). Machine learning algorithms such as support vec-
tor machines and decision trees have been used to classify util-
ity objects, but they have limitations when applied to large-scale
datasets (Jwa and Sohn, 2010, Wang et al., 2017, Kim and Sohn,
2010, Kim and Sohn, 2013, Pu et al., 2019).

Deep learning, on the other hand, offers the ability to learn fea-
tures automatically, which has allowed the development of gener-
alizable solutions. Various deep learning-based segmentation net-
works have been proposed, including PointNet (Qi et al., 2016),

PointNet++ (Qi et al., 2017), KPConv (Thomas et al., 2019), and
RandLA(Hu et al., 2019). However, none of these methods have
taken advantage of the spatial regularity found in utility infras-
tructure. Pan-SUNet, an extension of SUNet, has been proposed
to address this limitation by fusing regions from the regional net-
works providing spatial guidelines to improve performance.

2.4 2D Object Detection

Object detection is a process of classifying and locating objects in
a given scene. Traditional techniques have been replaced by deep
learning-based neural networks, with two main types of archi-
tectures: single-stage(Redmon and Farhadi, 2018) and two-stage
detectors. While single-stage detectors are computationally effi-
cient, they can be less accurate than two-stage detectors due to the
coarse-to-fine process. Most object detection networks can only
handle horizontal bounding boxes, which is problematic for real-
world scenes with non-horizontal objects. To address this, rotated
object detection methods(Lang et al., 2021), such as Oriented R-
CNN (Xie et al., 2021) and Rotated Faster R-CNN (Yang et al.,
2020), have been developed to use oriented bounding boxes, and
have shown comparable performance to horizontal bounding box
detectors while reducing background errors.

2.5 Panoptic Segmentation

Our work is based on panoptic segmentation, which separates
scenes into stuff” (e.g. ground, sky, vegetation) and “things”
(e.g. objects like cars, pylons, and spans) using a combina-
tion of semantic and object detection. EfficientLPS (Sirohi et
al., 2021), is an extension of a 2D panoptic segmentation net-
work that fuses instance and semantic segmentation across the
entire scene. However, there is a lack of fusion from different
dimensions in this method, specifically for airborne LiDAR point
clouds.

Our research proposes a 2D panoptic segmentation approach that
focuses on detecting pylons and spans, as well as segmenting re-
gions, tailored to utility cases. Additionally, it projects the predic-
tions into a 3D pipeline to obtain pylon instance and segmentation
labels to model utility corridor.

3. METHODOLOGY

Pan-SUNet is unique novel network which takes multi-
dimensional input uses multi-resolution deep learning neural net-
works that embeds spatial regularities between the regions and
objects of interest. It comprises of three different classifiers. A
two-dimensional regional prediction network (Ronneberger et al.,
2015) and a two-dimensional object detection (Xie et al., 2021)
network which collaborate together to generate utility region
based segmentation masks and detects objects that constrains and
refine the predictions of a three-dimensional network through re-
gional fusion, loss-based late fusion and panoptic fusion.

3.1 3D Pipeline

3D semantic segmentation pipeline is major component of our
system design. It can use any existing deep learning semantic
segmentation networks as baseline. For our network we have
utilized 3D convolution based multi-resolution encoder-decoder
network with skip-connections and additive attention module in
decoder. It facilities learning process incrementally on different
feature maps 2% X QKZ X 2% X 32l on resolution level [ and aggre-
gate features to output the probability of semantic labels for 3D
object classes. Segmentation head generates the confidence score

against each class which is then passed through a loss-based late
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Figure 2: Pan-SUNet generates 3D voxel grids and 2D BEVs from point clouds, combining multi-resolution 3D semantic segmentation
and shared encoders for corridor/non-corridor detection, spatial consistency, and label adjustment onto 3D objects.

fusion module to refine and constrain the predictions using spa-
tial layout consistency and back-propagate the loss to better learn
deep features.

3.1.1 Panoptic Segmentation The 3D semantic segmenta-
tion network’s output and object detection in 2D pipeline for py-
lons and spans are combined by this module that leverages se-
mantic spatial layout consistency. Our work focuses on utility
regions and key objects like pylons and spans, which are detected
in 2D BEV and projected onto 3D voxel space using a simple
process. The Panoptic segmentation module estimates the height
of pylons and spans based on the 3D semantic segmentation pre-
diction, enabling the conversion of 2D bounding boxes to 3D by
adding the z-axis. While our work emphasizes semantic segmen-
tation, panoptic segmentation generates instance IDs for pylons
and spans and fine-tunes segmentation results by adjusting mis-
classifications within 3D bounding boxes. In the figure 2, pylon
and span instances are color-coded according to their instance
IDs.

3.2 2D BEV Pipeline

Making spatially accurate predictions requires integrating a
broader receptive field and global context into a semantic seg-
mentation network, which is a considerable problem. Human
scene semantic perception strongly depends on our capacity for
understanding the larger context. Our three-dimensional segmen-
tation network is only capable of encoding the local context and
does not have the coarser scene information required to encode
the spatial layout and item global association. In order to solve
this problem, we employ a 2D BEV pipeline that fuses the miss-
ing data using a loss-based late fusion module. 2D Pipeline con-
sists of two classifiers; a regional semantic segmentation and a
two-dimensional object detection.

3.2.1 Regional Semantic Segmentation We can use any
simple 2D segmentation network for regional segmentation. In
our specific design we are using a U-shaped encoder-decoder
which generate regional class probability of shape W x H x C)
and takes Bird’s Eye View (BEV) representation of a complete
3D point cloud. Regional segmentation and object detection
share an encoder to learn shared features.

X X
w pl w
2
' & i 1 a
p4
j2
(a) Polygon (b) Segmentation Mask

Figure 3: Regional fusion generation of segmentation shows a)
polygon generated from step 1 and b) segmentation mask gener-
ated from polygon.

3.2.2 Object Detection To take advantage of the regional se-
mantic layout of utility corridors, we added a separate module for
2D object detection with a shared encoder. The utility commu-
nity divides layouts into three regions: a utility region with pylons
and wires, a corridor region with a buffer around the utility region
that can contain 3-5 meters tall trees, and a non-corridor region
that can have tall trees and buildings. To differentiate between
the corridor and non-corridor region can be difficult when non-
corridor regions don’t have extremely tall trees. Therefore, we
merged the corridor and utility regions and performed regional
segmentation to generate segmentation masks. We detected span
and pylon objects using a shared encoder, which were used to
update the regional segmentation mask with the utility corridor
class. These regionally fused segmentation masks can improve
the prediction of 3D objects of interest. Our orientated object de-
tection network is used to detect span and pylon objects. It con-
sists of a two-stage object detection network that uses a shared en-
coder and consists of an oriented regional proposal network and
aregional classifier and regressor. The regional proposal network
takes an encoded feature and generates a regional proposal vector
(z,y, h,w, da, §3) with a rotated Rol that is passed to stage II
where the R-CNN produces a classification label and spatial loca-
tion of the object or rotated bounding box. The network is shown
in figure 2.
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3.3 Fusion

Fusion Module have four key modules, a) regional fusion, b) log-
its interpolation, c¢) hierarchical layout consistency loss function,
and d) panoptic fusion.

3.3.1 Regional Fusion As discussed in above section we
have two classifiers: segmentation classifier outputs a 2D masks
with two regional classes of corridor and non-corridor regions.
Corridor region also have utility region merged into it. This
fusion performs following steps to generate three classes based
segmentation mask using predicted oriented bounding boxes and
predicted regional segmentation.

e Step 1: Convert oriented bounding boxes to polygons us-
ing following equations 1,2,3, and 4 which generates four
vertices pl, p2, p3, p4.

pL= (@, = )+ (60,0) m
p2=(z+ ,y) +(0,08) @3]
p3= (2,y+ 2) + (~50,0) @
pd=(z = 5.y)+ (0, -98) )

e Step 2: Estimate the segmentation masks from polygons as
shown in figure 3.

e Step 3: Fuse the labels from regional segmentation and util-
ity region label generated in previous step as shown in figure
4

3.3.2 Logits Interpolation Module It is a simple module
that takes the projection matrix between 3D voxels and 2D
BEV and converts the 2D logits for regional network into a 3D
H x W x D x Cp by exploring the one-to-many relationship
between the two representations.

3.3.3 Loss-based Late Fusion It uses the hierarchical layout
consistency loss function as used in SUNet as shown in equation
5 to impose the spatial layout consistency on outcome. This loss
function now uses three classes instead of two to impose better
spatial regularities.

LYY

p=1 c=1 m=1

M
(wpwe) x (ype % (log(he(m, c,p))))

®

3.3.4 Panoptic Fusion The module takes input from 2D Ob-
ject detection of pylon and span W x H x C'and W x H X 6
and use the 3D semantic segemntation results W x H x D x C
and adjust the z-axis for 3D object detection of pylon and spans.
The semantic segementation results of pylon and powerline help
in estimating the minimum and maximum height of pylon points
and powerline points to adjust the 2D bounding boxes. There
are four corners pl, p2, p3, p4 and height information z,,;, and
Zmaz to estimate the 3D bounding boxes. These 3D bounding
boxes then help in adjust the prediction and misclassification with
in 3D box for refining semantic segmentation results as scene ta-
ble 4.2.

Semantically Segmented

Regions WxHx2
Fuse

Semantically Segmented
Regions WxHx3

Utility Segmentation Masks

Figure 4: Regional fusion from 2D regional segmentation and
utility segmentation mask.

3.4 Voxelization and BEV Projection

A voxel grid is produced by pre-processing the raw point cloud
and determining a mean value for all the points that lie within
each 3D voxel as the input representation for our segmentation
network. Depending on the chosen voxel size, this voxel grid
strikes a compromise between efficiency and effectiveness. To
make label projection simple, the network also keeps a projec-
tion matrix from the voxel grid to the unprocessed point cloud. A
bird’s eye view (BEV), on the other hand, is a 2D depiction of a
3D point cloud. Our 2D BEV pipeline makes use of a 3D scene’s
XY-projection, in which each pixel corresponds to a location’s
points. The best BEV for obtaining global context for regional
and item prediction is produced by the XY-projection.Our pro-
jection matrix between the 3D voxel grid and the BEV allows
for projection compatibility between feature spaces to combine
the 2D and 3D predictions, improving the use of spatial layout
consistency.

4. EXPERIMENTS AND RESULTS

In our study, we performed a comparative analysis to highlight
the importance of the hierarchical layout consistency. We con-
ducted experiments on a test set that assessed the performance of
our proposed method on four important classes for the utility in-
dustry: ground, pylon, powerline, and vegetation. These classes
are crucial for predictive maintenance of utility networks.

4.1 Dataset

We used a Riegl Q560 laser scanner to gather data across a
67km? region in Steamboat Springs, Colorado, in the United
States. The acquired data were later split into train and test sets
in order to conduct experiments. The first 8km? of the dataset
served as testing, and the remaining data served as network train-
ing. The collection consisted of 67 non-covering scenes in to-
tal, each having millions of focuses and an average thickness
of 5pts/m?. Using Terrasolid’s point cloud handling software
(Team, 2023b), we manually labelled the data to produce our
groundtruth which require technical and industry experience. The
training dataset contained five classes: powerline, low vegetation,
pylon, and medium-high vegetation. We combined the low veg-
etation class with the ground class since low vegetation covered
the most of the ground. Also, we named our regional classes
based on the literature of utility communities.

4.2 2D Object Detection Groundtruth

To produce object detection labels for pylons and spans as hor-
izontal bounding boxes, the matlab image tool is used; for ori-
entated bounding boxes, Labelme (Wada, 2021) is utilised. Our
experiments are conducted on two different types of bounding
boxes. The horizontal bounding boxes usually in oriented object
cases include alot of background hence we compared the perfor-
mance using both systems as shown in figure 5.
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Methods Categories Bounding Box AP AR AP Pylon | AP Span
Faster RCNN 2D Two-stage Horizontal 97.60 | 88.40 | 100.0 96.12
Yolo v3 2D Single stage Horizontal 97.30 | 79.21 | 96.14 92.15
DAFNe 2D Anchor-free Single-stage Horizontal 95.45 | 9225 | 94.14 92.95
Oriented RCNN 2D Oriented Two-stage Oriented 9540 | 9691 | 100.0 90.8
Rotated Faster RCNN 2D Oriented Two-stage Oriented 9540 | 96.91 | 100.0 91.0

Table 1: Comparative study for 2D object detection for pylon and span objects for average precision (AP), average recall (AR), pylon
average precision (AP) and span average precision (AP) over IoU=0.5.

Methods Categories Bounding Box AP AR AP Pylon | AP Span
Pan-SUNet (ours) 2D Object Detection Oriented 95.40 | 9691 100.0 90.8
Pan-SUNet (ours) 3D Object Detection Oriented 97.40 | 9591 99.0 92.0

Table 2: The performance of Pan-SUNet for detecting 2D pylon and span objects, as well as projecting them into 3D, was evaluated
using average precision (AP), average recall (AR), pylon AP, and span AP at IoU=0.5.

(a) Horizontal BBox

(b) Oriented BBox

Figure 5: Visualizing the bounding boxes of span and pylon a)
horizontal bounding boxes with greater background and b) ori-
ented bounding boxes with polygons.

4.3 Experimental Configuration

4.3.1 2D Object Detection To prepare for our experiments,
we pre-trained various 2D object detection network and com-
pared the performance. We generated the 2D XY- Projection of
point cloud using 640m? grid where each pixel is of 1m?. Net-
work’s input have three feature channels that represented the nor-
malized standard deviation of elevation between [0-1], normal-
ized standard deviation of elevation values between 0 and 255,
and binarized standard deviation of elevation values per pixel. We
conducted a detailed comparative study for 2D object detection.
We selected state-of-the-art networks to compare performance on
horizontal and oriented bounding boxes along two-stage and one
stage systems such as faster rcnn, rotated faster rcnn, oriented
renn, dafne, and yolov3 and selected orieneted rcnn as our base-
line due to smoothness and effectiveness of results.

4.3.2 2D Regional Semantic Segmentation We pre-trained
our 2D regional prediction network on half of the scenes for
global regional prediction of spatial layout in order to prepare for
our trials. According to the GPS time of flight line, each scene
was separated into four smaller scenes, each of which was then
projected onto a 640x640 2D BEV grid with pixels measuring
1m? and three feature channels that represented the normalized
standard deviation of elevation between [0-1], normalized stan-
dard deviation of elevation values between 0 and 255, and bi-
narized standard deviation of elevation values per pixel. The 2D
network’s input size was 640 x 640 x 640 x 3, while the output,
which represented the confidence ratings for regional classes, was
640 x 640 x 3. In order to prevent overfitting, we pre-trained the
network using K-cross validation with a batch size of 1 and a to-
tal of 100 epochs. Random rotation, horizontal flip, and vertical
flip were all used to augment the data. Training was done on
two GPU RTX 6000 and took between 4-5 hours with inference
taking about 30 seconds.

4.3.3 3D Semantic Segmentation We constructed a voxel
grid with a size of 640 x 640 x 448 and a voxel size of 1m?
over each subscene. Each batch 32 x 32 x 448 x 4 contained
the highest elevation of the entire picture to give the network a
comprehensive look and help it cope with vertical context more
effectively. The number of returns, the number of occupancy
points, and the absolute and relative elevation were all included
in the feature channels. To choose these features, we used the
feature engineering study that was presented by SUNet. A con-
fidence score against 3D classes is produced by Pan-SUNet as
32 x 32 x 448 x 5 (background, pylon, powerline, vegetation,
and ground). The final prediction provides a true label based
on the greatest confidence score and projects voxel labels on
points using the projection matrix. Using two GPU RTX 6000,
Pan-SUNet was trained for 100 epochs over the course of 48-60
hours, with inference requiring only a few minutes.

4.4 Evaluation Matrices

4.4.1 Object Detection: Two metrics, Average Precision
(AP) and Average Recall (AR), are used to assess how efficiently
object detection networks locate and identify items in an image.
The area under a precision-recall or recall-precision curve, which
accounts for the IoU threshold to separate true positives from
false positives, is computed for both metrics.

4.4.2 Pan-SUNet In the paper, the performance of the seman-
tic segmentation model is evaluated using F1 scores for four dif-
ferent classes: vegetation, powerline, pylon, and ground. The F1
score is calculated by taking the harmonic mean of the precision
and recall for each class. Recall measures the number of true pos-
itives that are correctly identified, while precision measures the
proportion of predicted positives that are actually true positives.
By considering both precision and recall, the F1 score provides
an overall measure of the model’s performance that accounts for
both accuracy and completeness.

4.5 Results

We conducted compartive study of 2D object detection as shown
in table 1 for selecting baseline for 2D object detectuon. Our
object detection results in table 2 shows the promising results
for 2D and projecting those results onto third dimension. Re-
sults indicate comparable performance in 2D and 3D facilitating
the modeling of utility corridor through pylon to span relation-
ship. We also evaluated Pan-SUNet’s performance for semantic
segmentation against various SUNet versions, Attention 3D, and
pre-trained RandLA. Our results demonstrated that the regional

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-X-1-W1-2023-129-2023 | © Author(s) 2023. CC BY 4.0 License. 133



ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences,

ISPRS Geospatial Week 2023, 2-7 September 2023, Cairo, Egypt

Volume X-1/W1-2023

Methods Pylon Ground Veg Powerline
Rec Prec Fl Rec Prec Fl1 Rec Prec Fl Rec Prec Fl

3D AUNet (baseline) 720 840 77.0| 93.0 94.0 93.0 97.0 970 97.0| 84.0 98.0 91.0
RandLA 75.0 920 835|950 96.0 955 76.0 87.0 81.5| 865 98.0 913
SUNet+MFA+FS 780 97.0 87.0 | 100.0 99.0 100.0 | 99.0 99.0 99.0| 99.0 97.0 98.0
SUNet+MFA 82.0 96.0 89.0| 99.0 99.0 99.0 99.0 99.0 99.0| 98.0 99.0 99.0
Pan-SUNet-vanilla (ours) 86.0 93.0 90.0| 99.0 99.0 99.0 99.0 99.0 99.0| 98.0 99.0 99.0
Pan-SUNet + Panoptic Fusion | 90.0 99.0 94.0 | 99.0 99.0 99.0 99.0 99.0 99.0 | 98.0 100.0 99.0
(ours)

Table 3: Comparative study of Pan-SUNet to SUNet + MFA (multi feature aggregation) module, SUNet + MFA + FS (feature smooth-
ing), Atention UNet and RandL A on recall (Rec), precision (Prec) and F1 score (F1).

fusion module in Pan-SUNet offers significant benefits in terms
of higher recall and F1 score for the pylon class in table 3, high-
lighting the advantages of including spatial arrangement context
on a global scale. We used a voxel-based network, which de-
livers comparable quality performance to point-based networks
but with faster inference times (10x faster). Our network outper-
forms currently available commercial software tools that depend
on network maps for predictive analysis or human labeling of
powerlines and pylons. Visualization in figure 7 shows the con-
tribution of each stage in the Pan-SUNet framework to model the
3D utility transmission lines infrastructure.

5. CONCLUSION

Our research has shown that ambiguous regions can be given
global context by using pre-tasks like object detection. We have
also demonstrated that pylon and span objects can be identified
using a basic 2D BEV map. This information can then be utilised
to extract a utility zone for segmentation, 2D powerline mod-
elling, and investigation of vegetation encroachment. By trans-
forming utility items into utility zones and employing them to
impose a hierarchy on the 3D semantic segmentation of objects
of interest, our Pan-SUNet network makes use of this module.
Our work have made major contribution in convertin 2D object
detection into 3D objects and adjusted the misclassification. We
intend to concentrate on real-time semantic segmentation of the
utility corridor in the future.
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Zone, and Pan-SUNet semantic segmentation and Pan-SUNet panoptic segmentation (ours). Blue: pylon, red: powerline, green: high
vegetation and orange: ground
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