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ABSTRACT: 

Paid crowdsourcing is a popular approach for creating training data in machine learning, but output quality can suffer from various 

drawbacks, such as noisy data. One solution is to obtain multiple acquisitions of the same dataset and perform integration steps, which 

can be challenging for geometries such as polygons. In this paper, we propose a raster-based polygon integration approach for the use 

of crowdsourced data, providing a solution for integrating multiple geometric shapes into single geometries. We analyze the effects of 

the choice of the integration threshold parameter for different sample sizes on the quality measures intersection over union (IoU) and 

Hausdorff distance, and provide a recommendation for its optimal selection based on empirical analysis. Additionally, further 

possibilities to improve integration results are explored, i.e., methods of filtering data before integration by outlier detection. 

1. INTRODUCTION

1.1 Crowdsourcing 

Training data are essential for the performance of machine 

learning (ML) methods such as Convolution Neural Networks 

(CNNs). Since low-quality training data cannot be compensated 

by even the best ML algorithms (Whang and Lee, 2020), the 

demand of valid training data is enormous (Stonebraker and 

Rezig, 2019). One method to collect training data is paid 

crowdsourcing, which is becoming increasingly popular in the 

field of remote sensing (Saralioglu and Gungor, 2020). 

Crowdsourcing, a neologism of “crowd” and “outsourcing”, 

describes the practice of using collective intelligence in order to 

solve tasks (Howe, 2006), i.e., outsourcing a task to a (unknown) 

group of people, the crowdworkers. Crowdworkers are motivated 

by different factors, such as intrinsic motivations, often seen in 

voluntary crowdsourcing, or extrinsic motivations, such as 

monetary rewards (Hossain, 2012). Although offering payments 

may attract a large number of workers, it may also affect data 

quality and lead to inhomogeneous results due to the primarily 

extrinsic nature of motivation (Chandler et al., 2013). 

Zhang et al. (2016) recommend improving the quality of 

crowdsourced data through “quality control on task design” or 

“quality improvement after data collection”. A common idea for 

improvement when using the second method is to have the same 

data set processed by different crowdworkers (Zhang et al., 

2016). While coming at higher costs, this enables two methods: 

Firstly, it allows one to identify outliers without a necessary 

existence of ground truth data (Walter and Sörgel, 2018). 

Secondly, the multiple acquired data can be integrated, making it 

possible to eliminate or mitigate the influence of those outliers 

that were previously difficult to filter out (Zhang et al., 2016).  

A simple but effective method for integrating multiple collected 

data is majority voting, where in a binary case, as long as more 

than half of the annotators provide correct results, the integrated 

result will equal the correct value (Zhang et al., 2016).  

 

This follows the principle of “Wisdom of the Crowd”, which was 

already described in 1785 in Condorcet’s jury theorem: If the 

probability of a worker performing a task correctly is higher than 

50%, then the theorem states that as the number of workers n 

increases, the collective competence will gradually approach the 

maximum possible value (Condorcet, 1785). Or, in other words: 

“[…] the output of the crowd can be greater than the sum of its 

parts” (Chandler et al., 2013). 

1.2 Polygon integration 

While majority voting can be a reliable method for the integration 

of multiple collected labels, the application may only seem 

obvious for simple cases. For binary problems, which involve 

only two possible options, an integrated solution can be obtained 

by choosing the option with the absolute majority. In cases with 

more than two possible solutions, but with only a limited number 

of solutions to choose from, such as classifications, the same 

approach can be used. Here, a simple majority instead of an 

absolute majority is sufficient. 

When handling problems with an infinite or unknown number of 

solutions, an integration can no longer be performed by majority 

voting, and therefore other means like averaging through mean 

or median are resorted to. For more complicated data structures, 

such as multiple polygons with differing number of points, no 

possibility to apply a majority vote in the vector domain is known 

to the authors. Instead, (Walter 2018) provides a solution for the 

integration of multiple polygons using a conversion to raster data 

and a subsequent integration in raster domain. 

This strategy appears to be a promising option for a large-scale 

generation of training data as needs to be performed for typical 

ML applications: Simple implementation, fast computation and 

results of high quality make this approach look attractive. 

However, the practical application of this integration approach 

has been tested with a rather small sample size, but not under 

crowdsourcing-typical circumstances, such as noisy input data 

due to factors like lack of motivation of crowdworkers 

(Chandler et al., 2013). Further processing steps such as 

smoothing operations are performed, meaning multiple input 

parameters are required.  
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Our goal is to adapt and modify this raster integration method for 

application in paid crowdsourcing, while minimizing the amount 

of input parameters and exploring different optimization methods 

to enhance the results. The optimization is performed by using a 

real-world dataset with a crowdsourcing-typical application: The 

acquisition of tree crown outlines in airborne images using 

polygons.  

 

The rest of the paper is organized as follows: In section 2, the 

used dataset is described. Section 3 presents the integration 

method in detail, while section 4 describes the optimization of 

the threshold parameter. Section 5 analyzes the influence of data 

filtering before the integration, section 6 draws a conclusion, 

before section 7 closes the publication with possible future work. 

 

 

2. DATASET 

The dataset used in this study is a large-area orthomosaic 

covering cherry orchards. We extracted 115 image sections, each 

containing a single tree, with the aim of obtaining their outlines. 

Each tree geometry was acquired by 150 different workers on the 

crowdsourcing platform “microWorkers.com” by means of 

polygons, resulting in a total of 17,250 polygons.  Figure 1 

displays one of the 115 image sections, including a total of 

150 crowd-sourced polygons. Crowdworkers were paid $0.10 for 

5 acquisitions, resulting in a cost of $0.02 per tree outline, $3 per 

image section or $345 in total. For quality evaluations, reference 

data collected by experts was used. 

 

 

 
 

Figure 1. Image section with crowd-sourced tree outlines 

shown in yellow, collected by 150 different crowdworkers. 

 

 

3. INTEGRATION METHOD 

The approach of (Walter, 2018) converts input vector data into 

raster data, processes and integrates them in the raster domain, 

and then converts the integrated results back to vector data. Our 

adaption is similar to this procedure: (vector) input data are first 

converted into the raster domain, followed by a pixel-wise 

binarization. The cell size is set to match the pixel size, which 

determines the output resolution, i.e., the pixel size of the 

integrated shape. We are focusing mainly on the binarization and 

the respective threshold value. In that case, the binarization 

threshold becomes the threshold for a binary vote on pixel-level, 

and thereby determines whether a pixel is included in the 

integrated polygon. This enables a data integration by majority 

voting.  

 

Figure 2 shows an exemplary pixel-level integration of 15 input 

polygons with a chosen threshold value 𝑡15=8, including every 

pixel with 8 or more votes in the integrated shape. The numbers 

in Figure 2a indicate the number of votes per pixel, i.e., the 

amount of polygon shapes which included those pixels. While 

Figure 2a visualizes the majority voting, Figure 2b shows the 

integrated polygon shape visualized as a skeleton line. 

 

(a) (b) 

  
  

Figure 2. Exemplary pixel-level integration for 15 input 

polygons. (a) Visualization of majority voting. (b) Integrated 

polygon shape as skeleton line. 

 

 

As can be seen from Figure 2, the choice of the threshold 

parameter has a direct influence on the shape and therefore the 

geometric accuracy of the integrated polygon. Increasing the 

threshold in Figure 2a would lead to some pixels being not 

included in the integrated polygon, while lowering the threshold 

would lead to the opposite, a larger polygon.  

 

Both these cases can be seen in Figure 3, which illustrates the 

importance of the correct choice of the threshold value on the 

example of tree outlines: In Figure 3a, a too low threshold was 

chosen, allowing noisy acquisitions to gain too much influence, 

and therefore resulting in a too large integrated polygon. In 

Figure 3c, the threshold was set too high, resulting in a decrease 

in the number of pixels that remained after integration, and 

therefore in a too small integrated polygon. Both cases, i.e., too 

small or too large thresholds, have a large impact on the resulting 

polygons and therefore on data quality and should be avoided. 

The integrated results shown in Figure 3b seem to be a good fit 

and include most pixels containing the central tree. The choice of 

the threshold parameter for Figure 3b was not obvious for the 

authors and was set manually by “trial and error”.  

 

To overcome the issue of choosing a correct threshold parameter, 

we are aiming for a general approach that is independent of the 

exact number of annotations or acquisitions. We will study the 

behavior of the threshold parameter 𝑡𝑛 for different numbers of 

observations n. 
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4. INTEGRATION THRESHOLD  

4.1 Quality measures 

In order to determine the optimal threshold value 𝑡𝑛,  it is 

necessary to measure the quality of the integrated results for 

evaluation purposes. We are using the Jaccard index or 

intersection over union (IoU) parameter to evaluate the integrated 

results. The IoU calculates the similarity of two polygons on a 

scale from 0 to 1, which we use to compare the integrated 

polygons to our ground truth polygons. A score of 1 would be a 

perfect fit, while a score of 0 would denote that the polygons do 

not overlap (Jaccard, 1901). Minor local errors or single outliers 

may cause only slight changes in IoU, and may therefore be hard 

to detect. In order to be able to detect such inaccuracies, we add 

the Hausdorff distance as metric of quality. The Hausdorff 

distance can be used to measure the distance between two sets of 

points, or polygons, allowing to accurately detect local outliers 

(Hausdorff, 1914).  A Hausdorff distance of zero describes two 

equal sets, indicating a perfect match. The higher the Hausdorff 

distance value, the lower the similarity between the two sets. 

 

Therefore, both quality measures, namely intersection over union 

and Hausdorff distance, will be taken into consideration when 

trying to find an optimal threshold for the majority vote of the 

integration.  

 

 

 

 

4.2 Optimization & results 

By performing an integration for any number of observations n, 

the result will always be one single polygon. For the trivial case 

n=1, the input polygon equals the integrated polygon. For all 

other cases, the choice of 𝑡𝑛=1 describes the union of all input 

polygons, resulting in a large, inflated polygon shape. Setting 

𝑡𝑛=n equals the intersection of all input polygons, resulting in 

only a tiny fraction of the actual solution, or no solution at all (if 

no pixel was included in all n input polygons). 

 

The dataset consists of 115 image sections, resulting in 

115 integrated polygons. For each of those polygons, single IoU 

values and Hausdorff distances can be calculated. For easier 

comparison and simpler representation, both quality measures 

are substituted with their mean over all image sections, 

effectively reducing the 115 values per measure with a single 

value. 

 

As stated before, our interest lies in finding the optimal solution 

for 𝑡𝑛, independent of the number of observations n. Therefore, 

the steps described are performed for all possible values of n, 

resulting in n values per measure. The optimal threshold 𝑡𝑛 can 

then be determined by minimizing the mean Hausdorff distance 

(mHd) or maximizing the mean IoU (mIoU). Table 1 shows those 

results for selected n. 

 

 

 

(a) 

 

(b) 

 

(c) 

 

↓

 

↓

 

↓

 
 

Figure 3. Visualization of the results of a pixel-based integration of tree outlines using different threshold values (a) - (c), using 

increasingly higher thresholds. Top row: Binary masks. Bottom row: Derived integrated polygons. 

 

 

 

 

(a) 

 

(b) 

 

(c) 

 

↓ ↓ ↓ 
 (a) Small threshold. (b) Fitting threshold. (c) Large Threshold. 
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n 𝑡𝑛 by IoU mIoU [%] 𝑡𝑛 by Hd mHd [px] 

10 5 50% 81.31 6 60% 37.93 

15 8 53% 82.36 8 53% 36.62 

20 10 50% 82.96 11 55% 36.04 

25 12 48% 83.07 14 56% 35.37 

50 24 48% 83.97 25 50% 34.57 

75 36 48% 84.12 40 53% 34.31 

100 49 49% 84.30 51 51% 34.07 

125 60 48% 84.32 64 53% 33.79 

150 72 48% 84.36 78 52% 33.78 

 

Table 1. Mean intersection over union values (mIoU), mean 

Hausdorff distances (mHd) and optimal majority vote thresholds 

(𝑡𝑛) after integration for selected n. 

 

In Table 1, n describes the number of observations per image 

section taken as input for each integration. 𝑡𝑛 by IoU and 𝑡𝑛 by 

Hd specify the optimal choice of the threshold parameter 𝑡𝑛, if 

the mean intersection over union is maximized or the mean 

Hausdorff distances are minimized. The columns mIoU and mHd 

show the maximum and minimum values, respectively. 

Interestingly, an increase in n does result in better mIoU and mHd 

values for all considered n. While the improvements are more 

notable for small n, the impact of increasing n appears to 

significantly reduce for larger n. Apparently, both the mIoU and 

the mHd values seem to be converging to a saturation point, 

which is around 84% for mIoU and 33.8 px for mHd.  

 

Figure 4 shows a visualization of the saturation effect: The 

distances between the curves become smaller for larger n, with 

only very slight differences for n=150. The saturation effect is 

more noticeable in the case of mIoU, as the distance of lines 

decreases rapidly with increasing n, as can be observed in 

Figure 4a. In the case of mHd however, while not being as 

apparent for smaller n values, the lines of n=125 and n=150 are 

nearly identical at their minimum (Figure 4b). Therefore, our 

results indicate that the saturation point has been reached, which 

can be seen as a convergence limit for increasing n. 

 

Another point that might be noteworthy is that a choice of n=10 

already delivers very good results with a mIoU of 81% and a mHd 

of around 38 pixels as can be seen in Table 1, both of which are 

already close to the apparent saturation point. These observations 

might seem surprising, but are consistent with previous research 

findings: (Walter et al., 2021) suggest that data acquired via paid 

crowdsourcing can achieve optimal solutions even with a small 

sample size. Small n do not only deliver good results according 

to our chosen evaluation metrics but also seem to reliably 

approximate the optimal threshold 𝑡𝑛, as is indicated by Table 1 

and Figure 4. 

 

Refocusing on the original question, i.e., the selection of the 

optimal threshold parameter independent of the number of 

observations n: All results listed in Table 1 suggest the choice of 

𝑡𝑛 to be chosen at around 50 percent of n. When going by IoU, 

the ideal threshold appears to be slightly below 0.5n, whereas the 

Hausdorff distance implies an optimal threshold slightly above 

0.5n. This similarity of results, measured by the two evaluation 

parameters intersection over union and Hausdorff distances, 

reinforces the validity of our results and supports the theory of 

“Wisdom of the Crowd”. The optimal threshold varies depending 

on the task and the significance of outliers or minor inaccuracies 

in the dataset, making it impossible to provide a universal answer. 

Still, the authors suggest a threshold of 50% as a general 

guideline, which is the middle ground between the results of 

mIoU and mHd. The processing in the following sections will be 

performed using this recommended threshold of 0.5n. 

 

 

5. FILTERING 

5.1 General Methodology 

In the previous section, it was shown that opting for a small value 

of n can already produce results with good IoU values and small 

Hausdorff distances. Still, increasing the number of observations 

n seems to produce better outputs until reaching a saturation 

point, where the results seem to converge and no further 

improvement can be reached by increasing the sample size. It is 

also not possible to further optimize the integration by adjusting 

parameters, since the threshold is the only parameter that can be 

optimized. However, it is possible to optimize the input data used 

for the integration, e.g. through prior filtering. A common 

approach is filtering input data for outliers. Since the existence of 

 

(a) 

 
 

 

(b) 

 
 

 

Figure 4. Visualization of quality evaluation parameters for selected n in relation to chosen majority vote thresholds.  

(a) Mean intersection over union (mIoU). (b) Mean Hausdorff distance (mHd). 
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ground truth data cannot always be assumed, we will highlight 

filtering methods not relying on the existence of a ground truth. 

We therefore try to apply the central limit theorem, which states 

that for a sufficiently large sample size, random variables will 

follow a normal distribution if certain criteria are met.  

 

Assuming the input data are normally distributed, the geometric 

properties of normal distributions can be used for simple filtering. 

This can be done by calculating shape features such as area or 

circumference of the polygons, and subsequently omitting those 

polygons, which are the furthest from the center of the 

distributions. It is worth mentioning that a skew might be added 

to the normal distributions, depending on which shape features 

are observed. However, this still allows filtering in a practical 

way.  

 

Figure 5 visualizes an example for such a skew normal 

distribution, containing all 150 polygon areas calculated for one 

of the image sections. The histograms for all other image sections 

followed similar distributions, validating our assumptions.  

 

 
 

Figure 5. Histogram of 150 calculated polygon areas for one 

image section and derived skew normal distribution. 

 

Prior to performing filtering, specific shape features must be 

selected to serve as the basis for the filtering process. There is a 

wide range of features to describe two-dimensional shapes such 

as the crowd-acquired polygons. One possibility are moments, 

which provide a way to measure the spatial distribution of a shape 

in relation to an axis. They enable the determination of physical 

properties such as object orientation, eccentricity, area, and 

centroid, or can be important shape features themselves 

(Steger, 1996). An example application is in automatic text 

recognition, where moments can be used to distinguish between 

similar letters such as I and T, by analyzing the mass distribution 

of the individual pixels.  

 

Each moment can be calculated for every acquisition and result 

in a single value, allowing for effective outlier detection. We are 

using the central moments up to the 4th order for our filtering 

process, making the following adjustments: The central moment 

of 0th order, 𝜇00, is equal to the raw moment of 0th order, 𝑀00, 

which describes the surface area of a shape. The central moments 

of 1st order, 𝜇10 and 𝜇01, are 0 per definition for all input data, 

making filtering impossible. Therefore, the center of gravity can 

be used instead, which effectively combines the raw moments 

𝑀10 and 𝑀01. The three central moments of 2nd order, the four of 

3rd order and the five central moments of 4th order can be used as 

they are. 

 

5.2 Simple filtering 

We calculated the central moments 𝜇𝑖𝑗  up to the 4th order for 

100 acquisitions per image section, using the explicit method 

proposed by (Steger, 1996). Only n=100 acquisitions are used 

since we assume that the saturation point has been reached 

around this number, as Figure 4 indicates. Furthermore, we want 

do draw comparisons between the filtered results and those with 

a larger sample size, namely the results for n=150. We therefore 

performed an outlier filtering on the polygons acquired by the 

crowd for each of those moments. For the filtering, we used a 

quantile value p∈[0,1], which describes the relative number of 

observations to keep, e.g., p=0.9 will keep 90% of observations 

and sort out the 10% being the furthest from the distribution’s 

center. After filtering, the integration described in the previous 

sections was performed, taking the observations that survived the 

filtering process as input data, and using a majority vote threshold 

of 0.5⋅p⋅n, following our recommendation of the previous section 

to use a threshold value of 50%.  

 

Figure 6 shows the quality evaluation parameters mIoU 

(Figure 6a) and mHd (Figure 6c) of the integrated results after 

filtering in relation to p, in form of mean values per order over 

all acquisitions and images. The unfiltered results are visualized 

as dotted lines for comparison, both for n=100 and n=150, using 

the recommended thresholds of 0.5n. Figure 6b adds the mIoU 

ranges of all central moments per 2nd, 3rd and 4th order, depicting 

the mean value per order as a dashed line, while Figure 6d shows 

those for mHd, respectively.  

 

Filtering by higher order moments seems to have a rather mild 

effect. While still outperforming the unfiltered results for many p 

values, the improvements seem rather moderate, especially in the 

case of mIoU. The impact of the lower-order moments on the 

other hand is significant: Even when 50% of acquisitions are 

filtered out, both mIoU and mHd improve substantially compared 

to no filtering. Although the choice of moment to filter obviously 

has a large impact on the results, filtering by any moment still 

outperforms no filtering for most cases: Indicated by the lower 

dotted line in Figure 6a, a choice of p between 75% and 90% 

leads to an improvement in average mIoU compared to an 

integration without previous filtering, no matter which moment 

order was chosen for filtering. For mHd, the improvements are 

even more evident, as can be seen in Figure 6c: A choice of p 

between 60% and 95% leads to improved results, no matter 

which filtering method is picked. In general, the best results can 

be achieved for a value of p around 70% to 75%, depending on 

the evaluation parameter and moments considered. A value of p 

greater than 95% is not recommended, as this leads to very few 

observations to be filtered out, making the differences to a non-

filtering approach marginally small. 

 

While it could be expected that filtering input data outperforms 

an unfiltered approach for the same sample size, it is interesting 

to see that filtering pre-integration can even outperform a much 

larger sample size: The dotted lines in Figure 6a and Figure 6c 

also show the integrated results for a sample size of n=150, which 

is outperformed by most filtering approaches. Again, a threshold 

of 0.5⋅n⋅p was used for the integrations. Thus, it can be concluded 

that simple filtering by moments not only enhances both mIoU 

and mHd, but also outperforms an increased number of 

observations. As a result, this delivers a simple method to surpass 

the previously observed saturation point. This allows for 

integrations of higher quality while reducing the sample size, 

therefore saving cost and time. 
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                         (a)                                               (b) 

 

                         (c)                                               (d) 

 
Figure 6. Quality evaluation parameters for integrated results after filtering by quantile parameter p with 𝑡𝑛=0.5⋅p⋅n.  

(a) Mean mIoU values for each order. (b) Range of mIoU for higher order moments, mean values from (a) as dashed line. 

(c) Mean mHd values for each order. (d) Range of mHd for higher order moments, mean values from (c) as dashed line. 

 

Dotted lines in (a) and (c) depict mIoU or mHd values without filtering for n=100 with 𝑡100=50 and for n=150 with 𝑡150=75.  
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5.3 Combined filtering 

Filtering by different moments before integration appears to have 

different impacts on the integrated results, as Figure 6 highlights. 

Still, Figure 6 only visualizes the results of filtering by single 

moments. What was not considered in the previous section is 

combined filtering based on multiple filter parameters 

(i.e., moments), which raises the question, if the results can be 

improved further by combining the moments with the highest 

impact. The parameters providing the highest impact are the raw 

moment 𝑀00, i.e., the surface area, the center of gravity (CoG), 

i.e., a combination of the first order moments, and the central 

moments of second order. One of those moments of second order, 

𝜇20 , appeared to have the largest influence on the quality of 

results, not only for the central moments of 2nd order, but for all 

filtering parameters considered. 

 

Therefore, we performed a combined filtering of 𝑀00, CoG and 

𝜇20 by connecting the results using a logical AND. This means 

only acquisitions within the boundaries specified by p for all 

three parameters remain, i.e., those acquisitions, that are amongst 

the best p percent for 𝑀00, CoG and 𝜇20. If a single acquisition 

fulfills the constraint for only one or two of the parameters, but 

not for all three of them, the acquisition is omitted. This leads to 

a generally smaller pool of acquisitions for the filtering, which 

can no longer be calculated by n⋅p, as was the case for the simple 

filtering. Still, further improvements can be reached, as 

illustrated by Figure 7.  
 

While 𝜇20 appears to be the better filtering method for lower p, 

i.e., for a stricter filtering, the center of gravity appears to perform 

best for larger p, i.e., a less strict filtering. Additionally, 𝑀00 

seems to provide a compromise between both filtering 

approaches. Although the three parameters all have strengths of 

their own, a combined filtering using those parameters appears to 

combine their strengths, resulting in the best method and peaking 

with a choice of p around 75% (mIoU) or 80% (mHd). Also, the 

approach using combined filtering appears to be superior for all 

p equal or greater than 55% in comparison to the non-combined 

parameters. Figure 7 further visualizes the magnitude of 

improvements compared to the results obtained by performing no 

previous filtering, i.e., the results for the same sample size 

(no filtering, 𝑡100=50), and those for a larger sample size after the 

saturation point is reached (no filtering, 𝑡150=75).  

 

There are several implications to this: Using this filtering 

approach can enhance the integrated data beyond a saturation 

point, where further increases in sample size provide no 

additional benefits, or when increasing the sample size is not 

feasible. Furthermore, even minor improvements achieved 

through filtering can equal a substantial increase in sample size n. 

This can allow for the same output quality with a smaller sample 

size, saving cost and time. Further, this demonstrates that an 

improvement of quality of integrated data can be accomplished 

through simple methods, and a combination of filtering 

parameters can result in an additive effect.  

 

(a) (b) 

 
Figure 7. Quality evaluation parameters for integrated results after filtering by 𝑀00, CoG and 𝜇20 individually and combined. 

(a) Mean intersection over union (mIoU). (b) Mean Hausdorff distance (mHd). 

 

 

Figure 6. Quality evaluation parameters for integrated results after filtering by 𝑀00, CoG and 𝜇20 individually and combined. 

(a) Mean intersection over union (mIoU). (b) Mean Hausdorff distance (mHd). 
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6. CONCLUSIONS 

We presented the possibility to integrate multiple collected 

crowdsourced polygons by using a raster-based integration. In a 

first step, we analyzed and optimized the threshold value for 

different sample sizes. We gave a general recommendation for 

the choice of this parameter in the context of crowdsourced data, 

which allows to boost integration performance with simple 

means.  

 

Increasing the sample size can lead to improvements in data 

quality, which can be measured by mean intersection over union 

and mean Hausdorff distance. However, improvements can only 

be seen until a saturation point is reached. In a second step, we 

investigated ways to surpass this saturation point. We were able 

to show that this limitation can be overcome by filtering the input 

data by shape features such as their central moments before the 

integration, resulting in integrated data of higher quality, 

outperforming larger sample sizes. This allows for smaller 

sample sizes, saving time and resources on one hand, and can also 

be used in cases, where an increase of sample size is not feasible. 

When using a combined filtering approach by filtering multiple 

shape features at once, their beneficial effects can combine, 

resulting in even better data after integration.  

 

Both filtering approaches, simple and combined filtering, were 

processed by performing outlier detections without the need for 

reference data. This makes our proposed strategy attractive for 

real-world applications where no ground truth is provided, such 

as the generation of training data for use in machine learning.  

 

 

7. FUTURE WORK 

While it was shown that filtering datasets before integration 

provides a benefit, our analysis centered on polygon moments 

and features derived from those moments. It seems likely that 

filtering by other parameters can also lead to a certain 

improvement, however more testing and verification are 

necessary to determine the different effects. Also, we only 

focused on a single combination of parameters in the step of 

combined filtering. It is plausible, that different combinations can 

lead to even further improvement. Furthermore, only simple and 

combined filtering were examined. Another possibility would be 

subsequent filtering, i.e., applying a secondary filtering step to 

the data once a first filtering has been performed. 

 

We focused on intersection over union (IoU) and Hausdorff 

distance as measures of quality. Since these cannot be compared 

directly to each other, both measures had to be evaluated 

separately. An integrated quality measure could prove to be of 

high importance for future research, simplifying the evaluation 

process. Furthermore, this integrated measure could be combined 

with other quality measures, providing a more comprehensive 

and precise description of every aspect of a polygon. 
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