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ABSTRACT:

To evaluate the quality of OSM data, similarities between OSM features and their homologous features represented in a reference
database are relevant metrics. However, reference databases do not exist everywhere or are not freely available. Thus, having data
quality assessment methods that rely only on intrinsic indicators (i.e. based on data itself without considering external information)
would be useful in these cases. This article specifically uses the radial distance as a target quality metric to measure the quality of
shapes. Its aim is to build a random-forest based classification method that reconstructs whether this distance is higher or lower
than a specified threshold, using only intrinsic indicators as inputs. The classification algorithm is evaluated on a first dataset by
computing the ROC (Receiver Operating Characteristic) curve and using the AUC (Area Under Curve) as an evaluation metric.
The transferability of the resulting algorithm is then evaluated by measuring its performance on a second, distinct dataset. The
experiments show that the algorithm performs reasonably well on both the initial and the second dataset, and that intrinsic indicators
give relevant information to infer comparison-based shape quality (i.e. the radial distance).

1. INTRODUCTION

The use of data produced voluntarily or involuntarily by citizens
or communities, also known as crowdsourced data, s (See et al.,
2016) to update or enrich authoritative databases (Liu et al.,
2015, Ivanovic et al., 2020), to make decisions (Westrope et
al., 2014), becomes a popular topics in the field of Geographic
Information Science (GIS).

More specifically, Volunteered Geographic Information (VGI)
has studied since 2007 (Goodchild, 2007), and VGI data and
projects have taken a prominent position since then, giving birth
to research works aiming at assessing the quality of VGI, or
their possible uses. Indeed, different challenges exist when
dealing with VGI. The last does not always follow strict sets
of specifications, and when specifications exist, their enforce-
ment may be looser to encourage contributor involvement. Be-
ing created or edited by contributors of varying expertise, VGI
also often has heterogeneous quality. On the other hand, data
quality is a crucial issue for both scientist and users of spatial
data. For example, incomplete or imprecise data can lead to
erroneous findings and inadequate decisions in diverse fields
where spatial data are involved, such as urban planning, route
optimization, or infrastructure sizing. Thus, VGI quality assess-
ment presents multiple challenges and opportunities becoming
a prominent research issue with various data quality assessment
research works (Zielstra and Zipf, 2010, Goodchild and Li,
2012, Ivanovic et al., 2019), reviews (Antoniou and Skopeliti,
2015, Senaratne et al., 2017), theoretic frameworks (Barron et
al., 2014) or taxonomies (Degrossi et al., 2018).

OpenStreetMap (OSM) is one of the most popular and wide-
ranging VGI project. The aim of the OSM project is to create
a world wide open geographic database, independent of institu-
tional and commercial databases, based on openness and flex-
ibility to encourage wide participation in the project. Since its
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creation in 2004, it has rallied a wide community of contribut-
ors that constantly edits and improves its database (e.g. adding
new features, modifying existing one, importing datasets from
open data). OSM has also developed activities of relief map-
ping after natural catastrophes (Kogan et al., 2016, Poiani et
al., 2016). As a consequence, OSM data quality assessment
is also a particularly important research subject, since they are
are often used and treated as reliable data in many applications.
In many countries VGI can be evaluated by comparing them
with reference data produced by national mapping agencies
(Antoniou and Skopeliti, 2015) using ISO (International Or-
ganization for Standardization) ISO 19157-2013 standard (e.g.
completeness, consistency, spatial accuracy, temporal accuracy,
and thematic accuracy). Data quality assessment becomes even
more crucial in the absence of reference data, as OSM data can
then be used as a guide for public, commercial or humanitarian
actions. In such cases, the usefulness of VGI increases and
quality-controlled VGI can be used as a substitute for deriving
reference data for specific applications.

Assessing the quality of VGI with only intrinsic characteristics,
is still largely an open challenge (Barron et al., 2014, Ivanovic
et al., 2019, Truong et al., 2019), and the extent to which quality
measurements can be inferred from intrinsic indicators is still an
open issue (Maidaneh Abdi et al., 2020, Xu et al., 2017).

The goal of this paper is to propose an approach to assess the
shape accuracy of OSM building using only intrinsic indicat-
ors. To reach this goal, we propose a machine learning method
based on Random Forest approach which uses intrinsic indicat-
ors to classify the shape building into two classes: high and low
shape accuracy with respect to a threshold. Specifically, we use
the radial distance to measure shape accuracy of an OSM build-
ing with respect to the shape of its homologous feature issued
from authoritative building datasets.

Our proposed approach is based on a twofold process:
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1. We first train and evaluate our classification method on an
initial dataset, and identify the most useful intrinsic indic-
ators.

2. We then use a second dataset to evaluate the transferability
of the method. We train distinct classifiers on the first and
on the second dataset, and evaluate both of them on the
first and on the second dataset separately. We compare
the classifiers’ performances in these four experiences to
determine whether a classifier trained with a given dataset
remains efficient on another dataset.

2. STATE OF THE ART AND METHOD CHOICES

To evaluate the quality of VGI , and specifically OSM data, a
traditional approach is to compare VGI with data from a refer-
ence database, in areas where such a reference database exists.
It consists in first matching VGI and reference datasets to define
homologous features (i.e. features belonging to different data-
bases but representing the same entities from the real world)
and then to compute extrinsic indicators between homologous
features (Girres and Touya, 2010, Haklay, 2010, Zielstra and
Zipf, 2010, Van Damme and Olteanu-Raimond, 2022). Among
the many research works on OSM data quality, several have fo-
cused on positional accuracy (Haklay, 2010, Kounadi, 2009,
Fan et al., 2014, Van Damme and Olteanu-Raimond, 2022),
but some of them also tackled other components of spatial
data quality, like semantic accuracy (Girres and Touya, 2010,
Van Damme and Olteanu-Raimond, 2022), completeness (Ziel-
stra and Zipf, 2010, Fan et al., 2014, Van Damme and Olteanu-
Raimond, 2022, Minaei, 2020), or temporality (Minaei, 2020,
Schmidl et al., 2021). To go forward from an application point
of view and help users to make decision about the usability
of VGI, Siebritz (Siebritz, 2014) uses comparison with refer-
ence data and proposed to define a threshold of acceptability
to select OSM data, and (Van Damme and Olteanu-Raimond,
2022) compute ISO 19157-2013 quality metrics for VGI and
described them through machine readable metadata. The ex-
trinsic indicators consists in computing distances between ho-
mologous features (e.g. euclidean distance, Hausdorff distance,
shape distances) to measure position accuracy or to define con-
fusion matrix to semantic and thematic quality metrics (Anto-
niou and Skopeliti, 2015). Two limits can be noticed for these
comparison approaches. The first is the impossibility to as-
sess the quality of VGI, if reference data are not available. The
second is that the metrics are highly dependent on the models of
the geographic databases being compared and assumes that the
reference database is the perfect representation of the reality.

Other research proposed data quality assessment methods rely-
ing on intrinsic characteristics of the data (Barron et al., 2014).
These intrinsic characteristics can be of several types (e.g. his-
tory, topology, internal consistency), and can be about the data
themselves, or about the process of how these data were created.
In (Hashemi and Ali Abbaspour, 2015), the authors use the edit-
ing history to identify topological inconsistencies. Among ap-
proaches using only the data themselves, some use spatial con-
text to analyze the spatial consistency of data (see (Touya and
Brando-Escobar, 2013), where the author specifically identify
level of detail inconsistencies), while others rely on the geomet-
ries of individual objects (Maidaneh Abdi et al., 2020). Some
studies concentrate on the history of edition of an object to
evaluate its quality (Barron et al., 2014). Several studies ana-
lyze quality through the contributors who created and edited the
data, and evaluate characteristics of these contributors such as

experience, local knowledge, credibility (Flanagin and Metzger,
2008, Van Exel et al., 2010, Bégin et al., 2018). In (Truong
et al., 2019), the authors analyze contributor interactions and
identify different contributor profiles to refine this knowledge
about contributors.

Finally, another category of data quality assessment approaches
concerns the mixed approaches combining extrinsic and in-
trinsic metrics. It is about inferring an extrinsic indicator by
using intrinsic indicators based on the research hypothesis that
the discrepancies between VGI and reference data can be re-
constructed from intrinsic indicators. Machine learning meth-
ods are used to establish the relationships between intrinsic
features and the target extrinsic indicator (Mohammadi and
Malek, 2015, Xu et al., 2017, Maidaneh Abdi et al., 2020). The
last showed that individual intrinsic indicators gave relevant in-
formation about shape accuracy, but that they did not capture
absolute accuracy very well.

Random forests (Breiman, 2001) is a machine learning method
that is both flexible and relatively resistant to over-fitting. It
can be used in different context both for classification and re-
gression (Criminisi et al., 2012). Thus, we presume that quality
assessment of OSM data can be conducted with either a regres-
sion or a classification method. Since, one of the uses of quality
assessment in an operational context could be to identify data
that one can consider as reliable, and data that are too uncer-
tain and warrant additional control, it makes sense to consider
the quality assessment such a classification issue by imposing a
threshold on the target metric. Moreover, classification also has
the merit to be more robust to outliers than regression (Ivanovic
et al., 2019).

In this paper, the goal is to study whether or not machine learn-
ing classification approaches are able to assess the shape quality
of VGI. We focus here on OSM building footprints. Thus, we
aim to use a random forest classifier to reconstruct an extrinsic
metric capturing the spatial shape accuracy of objects, using in-
trinsic indicators of the object as inputs. As the extrinsic metric,
we choose the radial distance which is computed between an
OSM building and its homologous object in a reference data-
base. We make the hypothesis that the radial distance is a
satisfactory proxy for the shape accuracy of an OSM building
footprint. There is no unique way to define a distance between
two polygonal shapes ; several metrics can be used to charac-
terize shape (Basaraner and Cetinkaya, 2017, Zhang and Lu,
2004), and many of these metrics are not very discriminatory.
In these cases, two polygon with similar metrics can be very
different nonetheless. The radial distance is a pseudo-distance
between polygonal shapes. It has been introduced by (Cohen
and Guibas, 1997), and used and studied in the context of poly-
gon matching (Vauglin and Bel Hadj Ali, 1998). Contrary to
simpler metrics characterizing the shape, it separates polygons
relatively well. Being defined as an integral, it is sensitive to
perturbations of any point in a polygon. As a result, pertubed or
generalized versions of a polygon generally have a low radial
distance to the initial polygon (Méneroux et al., 2022). These
properties make raidal distance a good indicator of shape accur-
acy.

3. METHODS

In this section, we describe the three steps of our proposed ap-
proach that allow to classify a polygon into high and low shape
accuracy.
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3.1 Target extrinsic measure and intrinsic indicators

According to (Méneroux et al., 2022), the radial distance is
defined based on the radial signature of a polygon. The last
is a function that associates to each value of the linear abscissa
the distance between the centre of mass of the polygon and the
point of the boundary at this linear abscissa. For the computa-
tion of the radial distance, we consider the doubly normalized
radial signature, which is normalized with respect to both the
perimeter of the polygon and the L2 norm. The radial distance
is then defined as the L2 norm of the difference of the radial
signature of the two objects.

Our goal is to build a classifier that distinguishes objects de-
pending on whether their radial distance is higher or lower than
a specified threshold, that would separate the more reliable data
(for which the inferred radial distance is low enough) and the
more imprecise data. It is difficult to find a natural threshold
for the radial distance to separate reliable and imprecise data,
so we chose to set the radial distance threshold as the median
value of the radial distance on our first dataset. This choice
has the advantage of testing the discriminating power of the al-
gorithm and avoids balance issues in the training dataset, but it
does not enable to capture how the algorithm fares in a setting
where objects of dubious quality are rare and can be considered
as anomalies. The binary algorithm then labels objects whose
inferred radial distance is higher than the threshold as positives,
and the other as negatives.

For the input indicators, we use a set of fourteen intrinsic in-
dicators, described in (Maidaneh Abdi et al., 2020). We chose
to test a wide range of indicators , because we had little pre-
conceived notion of which indicators would be the most useful,
and because random forests methods are robust to the addition
of indicators that carry little information. Some of these in-
dicators (such as granularity or compactness) are cited in the
literature as relevant indicators for quality (Girres and Touya,
2010), others can be considered as being possible signals of an
imprecise or incorrect input of the data. We give a quick textual
or mathematical definition for each of them. In the following,
for a polygon P we will note A the area of P , p its perimeter,
n its number of vertices, v ∈ V its vertices and l ∈ L its edges.

• rec (rectangularity): rec =
A

ASBR
, where ASSR is the

area of the smallest bounding reactangle of P .

• lme (mean length): lme =

∑
|l|

|L| =
p

n
.

• lmx (max length): lmx =
maxL |l|
lme

.

• lmn (min length): lmn =
minL |l|
lme

• out (outlier):

out =
1

lme
max
v∈V

1

|V | − 1

∑
v′∈V \{v}

∥v − v′∥.

• cpc (compactness): cpc =
4πA
p2

.

• cvx (convexity): cvx =
A

Acvx
, where Acvx is the area of

the convex envelope of P .

• elg (elongation): elg =
lSBR

LSBR
, where lSBR and LSBR are

respectively the width and length of the smallest bounding
rectangle of P .

• qrc (q-reconstruct) is the proportion of vertices needed to
reconstruct 80% of P (for the intersection over union met-
ric).

• ragl (right-angle) is the number of right angles in the poly-
gon (with a small tolerance).

• per (perimeter) is the perimeter of the polygon.

• ori (orientation) is the overall orientation of the SBR of
the polygon.

• grn (granularity): grn =
n

p
.

3.2 Settings for the initial classification and the study of
area transferability

For our study, we use two datasets in two distinct study areas,
to study the transferability of our algorithm. To do that, we first
train and evaluate a random-forest classifier on the first dataset,
and then study transferability using both datasets.

For the initial classification on the first area, the random-forest
algorithm is trained and validated through a three-fold cross val-
idation approach, where buildings of the dataset are separated
in three subsets of roughly equal sizes with a uniformly random
procedure.

When studying the transferability of the algorithm on a second
distinct study area, we conduct three new experiments: (1)
the classifier is trained on the initial area and validated on the
second area; (2) the classifier is trained on the second area and
validated on the initial area; (3) the classifier is both trained and
tested on the second area. We want all versions of the classifier
to be trained with the same number of examples, and as we do
cross-validation for the classifiers trained and validated on the
same area, we set the number of examples in every training sets
a two thirds of the smallest dataset. In our study, the initial data-
set has less examples than the second, so we fix T, the size of
the training sets, as two thirds of the size of the initial dataset.

Then, for experiments where the classifier is trained and valid-
ated on the same area, we perform three-fold cross validation,
with folds constituted randomly. When the union of the two
training folds is of size bigger than T , we only keep T ele-
ments at random to constitute the training set. For experiments
where the classifier is trained and validated on different areas,
no cross-validation is needed and we randomly pick T examples
in the training area to constitute the training set. The classifier
is then validated on all examples of the validation area.

For the construction of the random forest classifiers, our imple-
mentation uses 500 trees, with a maximum depth of 10, and for
each split, 4 ≈

√
13 indicators are considered.

3.3 Evaluation of the classifiers

The performances of the different classifiers are computed us-
ing the ROC (Receiver Operating Characteristic) curve. For
each example in the validation set, the output of the Random
forest is the mean of the outputs of the trees of the forest ; it is
a real number between 0 and 1, and can be understood as the
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inferred probability (for the Random forest classifier) that the
example is actually positive. Examples with the output value
1 are certainly positive (i.e., with a radial distance threshold
higher than the radial distance threshold chosen), examples with
output value 0 are certainly negative, and values between these
extremes express the probability for the classifier that the object
belongs to the positive class. To label examples as positive or
negative, a probability threshold is chosen, and examples with
a higher inferred probability are labelled as positive, and the
others as negative. For an algorithm trained on a fixed train-
ing set, one can chose several probability thresholds and ob-
tain different classifiers. A default setting is to choose 0, 5 for
the threshold, taking a higher value leads to a smaller number
of examples labelled as positive, leading to less false positive
examples (thus enhancing the sensitivity of the classifier) but
also less true positive examples (which lowers the recall). The
ROC curve gives a synthetic view of the performances of the
algorithm for all possible thresholds, mapping the true positive
rate (TPR) (i.e. the ratio of the number of objects correctly la-
belled as positive, over the total number of objects who really
belong to the positive class) as a function of the false positive
rate (FPR) (i.e. the ratio of the number of objects really belong-
ing to the negative class, and incorrectly labelled as positive,
over the total number of objects really belonging to the negat-
ive class) as the probability threshold spans the range [0, 1].

The area under the ROC curve is a real number between 0 and
1 ; it is abbreviated as AUC, and it measures the performance
of the classifier over the whole range of possible probability
thresholds, instead of focusing on a unique functioning point.
A perfect classifier would have an AUC of 1, and a classifier as-
signing labels completely at random would have an AUC of 0.5
; high values (near 1) indicate that the classifier has a good dis-
criminating power, while low values (near 0.5 or lower) indicate
a poor discriminating power. It is useful to evaluate methods for
which the functioning point is not known in advance, and for
which users of the classifier may want to penalize false posit-
ives and false negatives in a manner specific to the application.

4. RESULTS AND DISCUSSION

4.1 Study areas

The first study area is a rectangular zone in the Val-de-Marne
department in France, represented on Figure 1. The Val-de-
Marne is a merely urban department south-east of Paris.The
length of the study area is 6.83 km, its width is 4.63 km, for
an area of 32.84 km2. North and west of the area are two big
cities (Créteil has a population of 92, 000, and Saint-Maur-des-
Fossés a population of 75,000), with a high population density.
Figure 2 shows the dense repartition of building footprints in
the north part of the area, in the city of Créteil. There, build-
ings follow strict alignments along streets, and there is little
space between buildings, even inside building blocs. The east
and south parts of the area are occupied by smaller, less densely
populated cities. Figure 3 shows building footprints in the smal-
ler town of Sucy-en-Brie. There, buildings do not follow the
strict structures of more densely populated areas, and one ob-
serves other kinds of dispositions, with more space between
buildings and generally looser alignments.

In this area, we found 29, 152 buildings in the OSM database,
among which 22, 989 were successfully matched with an ho-
mologous object in the BDTOPO® (the French reference data-
base). We constitute a dataset with 10, 530 buildings, picked
randomly among the successfully matched OSM buildings.

Figure 1. Localization of the ’94’ study area

Figure 2. Building footprints in the North of the ’94’ study area

Figure 3. Building footprints in the South-West of the ’94 study
area

The second study area is the Gers department, which is situated
in the South-West of France. It is a rectangle of length 72.4 km
and width 42.8 km, with an area of 3, 138 km2. Figure 4 shows
the second study area and the distribution of buildings in this
area. There, one observes large areas with very sparse density,
and concentrations of buildings in small or middle-sized towns
isolated from each other, the largest of them being Auch (with
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a population of 22, 000).

Figure 4. Building footprints in the ’GERS’ study area

In this study area, we constitute our second dataset by pick-
ing 19, 068 OSM buildings among those that were successfully
matched with a BDTOPO® counterpart.

4.2 Initial classification

Figure 5 shows the ROC curve for the initial classification ex-
periment. The value of the AUC is 75.88%.

Figure 5. ROC curve for classification on the first dataset. TPR
is the true positive rate, FPR the false positive rate, defined in

subsection 3.3.

In Figure 5, confidence intervals are obtained by applying ten
three-fold splits of the dataset and training and evaluating ten
random forests with three-fold cross-validation. Confidence in-
tervals correspond to plus or minus one standard deviation over
these ten realizations.

According to (Hosmer Jr et al., 2013), a classifier with an AUC
in the range [0.7, 0.8] can be considered as providing acceptable
discrimination. The value of the AUC could be considered as
reasonably good for a classifier that only has access to intrinsic
indicators. This result indicate that intrinsic indicators of OSM
features truly contain relevant information about data quality (a

classifier labelling completely at random would have an AUC
of 50 %), and that these indicators can help reconstruct a signi-
ficant proportion of the precision measure we used. Conversely,
the value of the AUC and the regular shape of the ROC curve
indicate that such a classifier would hardly be useful in an op-
erational context, where one would need to find a functioning
point with either a combination of excellent recall and mediocre
sensitivity, or excellent sensitivity and mediocre recall, or relat-
ively high values for both. Here, the ROC curve does not stays
near its tangents, which means that no meaningful information
can be gained if one wants quasi-perfect recall or sensitivity,
and there is no functioning point where both recall and sensit-
ivity are reasonably high (recall and sensitivity reach both 70 %
for the most balanced functioning point).

4.3 Area transfer results

Figure 6 shows the four ROC curves corresponding to the four
experiments decribed in Section 3.

Figure 6. ROC curves for the transferability experiment.
Train i / Valid j is the experiment with the ith dataset used for
training and the jth dataset used for validation, i, j ∈ {1, 2}

All four ROC curves are visually similar, and the four values
of the AUC are near each other. The values of the AUC are
75.88 % for the classifier trained and validated on the first data-
set (which we note Train 1 / Valid 1), 79.51 % for Train 1 / Valid
2, 75.91 % for Train 2 / Valid 1, 78.98 % for Train 2 / Valid
2. If we consider the pairs of algorithms that used the same
validation set, we observe that their performances are similar
between the algorithm trained on the same dataset and the al-
gorithm trained on the other dataset. This results shows that
the information captured by the algorithm for one dataset is
still mostly valid for the other dataset, and thus that the results
found in subsection 4.2 can be transferred to new areas. This
good transferability could be explained by the fact that the two
study areas are not completely different from each other ; both
are in the same country, and, more importantly, both span sev-
eral cities, providing relatively diverse building distributions,
which gives algorithms trained on these areas tools to classify
buildings in other areas with good performance. The drop in
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performance could be more important if the algorithms were
tested on a more radically different area, that would be situated
in another country, or in with a distinct spatial context, like a
seashore or a mountainous area. Yet, there are still meaningful
differences between our study areas, the initial area does not
feature sparsely populated country areas, and the second one
does not feature densely populated and regular suburbs like the
initial area. This tends to indicate that area transfer is possible
even when the spatial context changes.

We also observe that he AUC is slightly higher for algorithms
validated on the second dataset, which could be explained by
the fact that this dataset could be slightly easier than the first,
in the sense that the link between intrinsic indicators and shape
precision is stronger for this dataset.

5. CONCLUSION

The aim of this paper is to assess the quality of polygons fea-
tures representing building from OSM with respect to their
shape. To reach this goal, we considered two matched data-
sets linking OSM and authoritative homologous buildings and
we compute radial distances between homologous buildings to
measure the similarity of their shapes. Based on these consider-
ations, we have proposed a random-forest based classifier that
distinguish OSM buildings with low shape quality (i.e. with a
high radial distance) and OSM buildings with a low radial dis-
tance. Although the results, are promising, there are still not
sufficient to be used without human intervention in operational
context such as deriving a building reference dataset from OSM
for countries where the reference data does not exist (e.g. Dji-
bouti). Further research can be considered.

First, in this study, the intrinsic indicators we considered were
all related to individual buildings. The performance of the clas-
sification model could be improved by adding context indic-
ators that take into account the neighbourhoods of the build-
ings, either by computing aggregate indicators or by comput-
ing indicators that capture how much a building differs from
its neighbours. Information on the editing history of buildings
and the contributors who edited them could also be added to
improve the assessment of the quality of OSM building data.
Other measures than shape accuracy should also be investigated
to get a more complete picture of data quality

Second, area transfer could also be tested in areas with more
distinct spatial context : either mountainous, or seashore areas,
or areas in other countries, or anther continent. If the first
expansion proposed could be conducted with only OSM and
BDTOPO® data, working on other countries could pose more
significant problems : many countries do not have freely ac-
cessible reference building footprint data created by a national
mapping agency, and even when such data exist, the specific-
ations on how buildings are integrated and represented in the
database can be very different from those of OSM. When it is
the case, it is difficult to assess how much a computed discrep-
ancy is due to data quality and how much is caused by specific-
ation differences.

Finally, in the context of deriving a building reference dataset
from OSM for countries where authoritative data does not exist,
it is necessary to combine both positional accuracy and shape
accuracy, knowing that positional accuracy is a relevant trigger,
to measure the geometric accuracy of the building. Positional
accuracy could be calculated following the same approach, i.e.

using high quality matched datasets and computing similarity
measures reflecting the positional accuracy (e.g. overlapping
rate, Haussdorf distance). One direction of research to com-
bine positional and shape accuracies could be to analyse the
performance of the pre and post-merged classifications. (Joshi
et al., 2016).
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