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ABSTRACT: 

 

In recent years, the conservation research of historical buildings and cultural relics has received a lot of attention from the state and 

the people, which not only provides a deeper understanding of their historical value and cultural significance, but also promotes the 

expansion of conservation research to the three-dimensional level. In this context, the semantic segmentation of historical building 

components is particularly important, which can provide basic support for various historical building applications, such as research 

and study of historical buildings, repair and protection, and 3D fine reconstruction, etc. However, most of the current methods for 

semantic segmentation of point clouds of historical buildings suffer from the problems of not being able to fully exploit the local 

neighborhood information of point clouds and poor edge segmentation. Therefore, we propose a new deep learning semantic 

segmentation-based approach, which we call EEI-Net. It is an end-to-end deep neural network in which we designed an edge 

enhancement interpolation (EEI) module and an edge interaction classifier (EIC). The edge enhancement interpolation module 

performs edge enhancement interpolation by fusing multi-layer features between the encoder and decoder. The edge interaction 

classifier enables the interaction of edge information through information transfer between individual nodes. EEI-Net incorporates 

contextual features and better preserves and enhances the edge information of the point cloud. We conduct experiments on the 

constructed historical architecture dataset, and the results show that the proposed EEI-Net has better performance. 

 

 

1. INTRODUCTION  

Chinese culture has a long history, among which our historical 

architectural art style is exquisite and scientific, which not only 

shows the wisdom crystallization of our ancient working people, 

but also is a valuable heritage wealth. However, with the 

passage of time and the impact of the environment, only a few 

ancient wooden structures have been preserved today (Chun et 

al., 2015). This makes it particularly urgent to strengthen the 

research work on the conservation of historical buildings in 

China. 

 

With the rapid development of 3D sensors, the conservation of 

historical buildings is gradually evolving from the traditional 

way to the digital way. Using 3D point cloud technology, we 

can obtain more realistic dimensions and various architectural 

details of historical buildings and provide precise geometric 

coordinates (X, Y, Z) in the form of millions of points, which 

has become one of the most effective ways to document the 

shape of cultural heritage (Yang et al., 2020). Airborne laser 

scanners (ALS) (Elsner et al., 2018), mobile laser scanning 

(MLS) (Zhang et al., 2019), terrestrial laser scanning (TLS) 

(Zhu et al., 2021) and unmanned aerial vehicle (UAV) 

photogrammetry (Poli and Caravaggi, 2013) have become the 

most popular methods for collecting urban 3D point clouds, 

which can be applied to both indoor and outdoor scenes. In this 

paper, we construct a traditional historical building point cloud 

dataset by using MLS, which provides the real coordinates of 

historical buildings compared to images and is not affected by 

lighting conditions and image distortion. In addition, the dataset 

can show more clearly the spatial information between each 

component of historical buildings. 

 

In recent years, researchers have proposed many segmentation 

methods for 3D point clouds, and the irregular and disordered 

structure of 3D point clouds has become one of the biggest 

challenges for 3D feature extraction and further semantic 

segmentation (Xie et al., 2020; Bello et al., 2020; Cheng et al., 

2021; Chen et al., 2021a). Therefore, researchers are exploring 

and investigating more effective feature extraction methods. 

 

Traditional point cloud semantic segmentation methods are 

based on machine learning methods, such as support vector 

machines, random forests, etc. These methods use hand-

designed features to identify semantic information in the point 

cloud. While these methods perform well on specific tasks, 

traditional point cloud semantic segmentation methods have 

difficulty producing good results on larger and more complex 

datasets due to the limitations of hand-designed features. As a 

result, researchers have turned their attention to deep learning-

based approaches. Currently, most point cloud feature 

extraction methods and their corresponding semantic 

segmentation methods can be classified into three types: point 

cloud projection-based methods (Milioto et al., 2019; Lyu et al., 

2020), voxel-based methods (Le et al., 2018; Meng et al., 2019) 

and point-based methods (Triess et al., 2020). Since both 

projection-based and voxel-based methods may lose 

information during projection or voxelization, most researchers 
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have focused on point-based methods (Chen et al., 2021b; Qian 

et al., 2021; Qian et al., 2022). Among them, PointNet (Qi et al., 

2017a) as well as PointNet++ (Qi et al., 2017b) are considered 

as pioneer works. PointNet, the pioneering method, runs 

directly on the point cloud, but because its point-by-point 

features are learned individually from each point in PointNet, it 

ignores the local contextual information between points. Based 

on this, this work has been extended in various ways to enhance 

the acquisition of local information from point clouds. For 

example, DGCNN(Wang et al., 2019) proposes an edge 

convolution (EdgeConv) for learning edge features, which is 

used to extract features of centroids and edge vectors of 

centroids and K nearest neighbors (KNN) points. While these 

methods achieve better performance in semantic segmentation, 

most of them are limited to very small 3D point clouds input to 

the network and do not scale directly to larger point clouds. 

Thus, RandLA-Net (Hu et al., 2020) was proposed in order to 

adequately accommodate large-scale point cloud scenarios. It 

uses an efficient point cloud random sampling strategy and local 

spatial location encoding, which can achieve high segmentation 

accuracy and processing speed, but also leads to the possibility 

that he may lose critical contextual information during reduced 

sampling. Therefore, most researchers turn to new structures of 

backbone networks and work on different ways to improve the 

semantic segmentation accuracy of point clouds. 

 

In recent years, attention-based approaches have flourished 

(Feng et al., 2020), and most of the different backbones employ 

different types of attention mechanisms, which automatically 

learn important local features by assigning larger weights to key 

information. Existing attention mechanisms include include 

channel attention, spatial attention, self-attention and multi-

attention, etc. In particular, self-attention has shown excellent 

performance in image analysis (Hu et al., 2019) and point cloud 

processing (Guo et al., 2021). In point cloud processing (Guo et 

al., 2021), the self-attentive mechanism is used to establish the 

relationship between the centroid and all points in the global 

space. As for the historical architectural heritage, we want to 

completely divide the upper part of the windows, square and 

columns, especially their edges, from the walls, so we need to 

pay more attention to learning the local neighborhood features. 

 

More semantic segmentation methods based on deep learning 

have also been proposed in the field of historical architectural 

heritage. Dong et al. (Ji et al., 2021) modified DGCNN to 

segment MQDOA roofs. Francesca Matrone et al. (Matrone et 

al., 2020) compared machine learning methods with deep 

learning methods for large 3D artifact classification, synthesized 

the advantages of both methods, and proposed a cultural 

heritage point cloud semantic segmentation architecture, 

DGCNN-Mod+3Dfeat, that incorporates the advantages of both 

methods. Pierdicca et al. (Pierdicca et al., 2020) proposed an 

improvement by adding meaningful features to the DGCNN, 

such as normal vectors and colors, but the framework was 

unable to evaluate the accuracy performance of the acquisition 

technique and continued improvement is needed. Although all 

these improvements improve the segmentation accuracy of the 

point cloud of historical buildings, the accuracy of the column 

components is lower compared to the other components, and all 

of them have the problem of unsatisfactory acquisition of local 

features and edge information. 

 

Our major contributions to this work include: 

(1) In order to improve the performance of semantic 

segmentation of 3D point clouds, we propose a new semantic 

segmentation method that attempts to redesign the framework 

structure of semantic segmentation of 3D point clouds. EEI-Net 

manages to extract differentiated semantic features and predict 

smoother results. 

(2) We design an Edge Enhancement Interpolation Encoder-

Decoder (EEI-ED) for efficient feature extraction by reducing 

the semantic gap between the encoder and decoder through edge 

enhancement interpolation. With this design, multilayer features 

from the encoder and features in the decoder are edge-enhanced 

interpolated. The interaction capability of multi-layer features is 

enhanced. 

(3) We designed an Edge interactive classifier (EIC), which 

enhances the context-awareness of points through information 

transfer between nodes for better label prediction. 

 

2. METHODS  

In this paper, we propose an edges enhancement interaction 

network for semantic segmentation of 3D point clouds, which 

consists of Edge Enhancement Interpolation Encoder-Decoder 

(EEI-ED) and Edge interactive classifier (EIC). The model uses 

a U-shaped encoding-decoding structure, where the encoder 

reduces the number of points by a factor of ×4 through Random 

Sample (RS) and extends the dimensionality of each point 

feature in five consecutive layers through the Local feature 

Aggregate (LFA) (Hu et al., 2020) module, and the 

corresponding decoder increases the number of points through 

upsampling (US) and compresses the dimensionality of point 

features in five connected layers using mlp. To handle the 

semantic gap between encoder and decoder, we design an edge 

enhancement interpolation module in the decoder to obtain 

more discriminative features. Its structure diagram is shown in 

Figure 1: 

Figure 1. Network architecture of the EEI-Net. 
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2.1 Edge enhancement interpolation module 

The purpose of edge enhancement interpolation is to enhance 

the information exchange ability of multi-layer features between 

the encoder and decoder. For convenience, we denote the 

features of the decoder layer corresponding to  as . As 

shown in Figure 2, for   in the decoder, we augment it with  

and  from the encoder. 

Figure 2. Edge enhancement interpolation module. 

 

We first reapply to a shared MLP on , compress its 

dimension to D1, weighted interpolation of the points of the 

intermediate features, then obtain the output features using the 

convolution operation, fuse and enhance the features of 

different layers by point-by-point multiplication, then calculate 

the difference between the fused features and the output features 

of the jth-1st layer encoder using the absolute difference, and 

finally multiply the high-resolution features with the above 

feature fusion differences element-by-element to enhance the 

expressiveness of . We introduce more high-frequency 

information while keeping the feature space consistent, and then 

add the enhanced features f_enhance and the original features 

f_encoder_list[-j-2] to form the final enhanced feature 

representation. In general, it utilizes the edge-aware upsampling 

module and edge enhancement module of the deep neural 

network, thus allowing better preservation and enhancement of 

the edge information of the point cloud and improving the 

segmentation quality. The full operation can be expressed as 

follows: 

 

        (1) 

 

where  is the modulation feature between the lth layer 

encoder and the lth layer decoder, and since this method uses 

multiple layers of features from the encoder and features in the 

decoder for edge-enhanced interpolation, the process is called 

edge-enhanced interpolation (EEI).Edge-enhanced interpolation 

captures the interaction information of edge multilayer features 

and achieves local contrast enhancement of the features using 

convolution, weighted interpolation and residual concatenation. 

To further attenuate the effect of spatial indistinguishability, we 

process the intermediate features using a Feature Enhancement 

(FE) module, which is implemented with a simple shared MLP. 

Finally, we fuse the modulated encoder features with the 

decoder features. This edge enhancement interpolation 

mechanism can be expressed as： 

 

    (2) 

 

2.2 Edge interactive classifier  

In previous work, the classifier generates point-by-point 

semantic labels individually through mlp implemented by a 

fully connected layer. A fully connected layer consists of a 

linear exchange and a nonlinear activation function, however, 

the nonlinear activation function leads to inconsistent neighbors 

in the prediction. For this purpose we introduce the edge 

interaction module, which uses the neighboring node 

information of each node, based on the information transfer 

from the current node to each neighboring node, thus enabling 

edge-to-edge interaction. Edge interactive classifier module is 

illustrated in Figure 3: 

 

Figure 3. The schematic diagram of the edge enhancement interpolation module.
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The point cloud is denoted as , where 

 denote the coordinates of the nth point and  

represents its features as the output of the previous layer of the 

local aggregation module, from which the feature maps of 

neighboring nodes are aggregated. For vertex , obtain its k 

nearest vertex features , obtain edge features by 

matching them with feature maps, and edge features as: 

 

                            (3) 

 

where W is the learnable weight and ReLU denotes the ReLU 

activation function.  is the edge feature between the i-th point 

and its j-th neighboring point. The attention matrix is then 

computed for each node by computing its attention matrix over 

the original features and edge features to calculate the 

relationship between each node and its neighboring nodes: 

 

                                  (4) 

 

Further calculate its attention weight matrix. The edge-to-edge 

interaction is achieved by multiplying it by f_neigh to calculate 

the neighbor representation of each node and obtain the 

information transfer from the current node to each neighboring 

node, and this process is: 

 

                                (5) 

 

where  denotes the aggregated features of node i,  denotes 

the feature matrix of neighbor node j, and  denotes the 

attention coefficient between node i and neighbor node j. 

Finally, we perform maximum pooling, select the most 

important features among them, and add them with the results 

of the previous convolutional layers to form fused features. This 

module is embedded in the last two mlps to capture edge-to-

edge interaction features, improve contextual information, and 

employ the cross-entropy loss between predicted and true values 

as the loss function of EIC. 

 

3. EXPERIMENTS  

3.1 Experiment details  

Our experiments were conducted on a single NVIDIA GeForce 

RTX 3060 TI GPU and an Intel® Core^TMi7-10700K CPU @ 

3.80GHz *16 and implemented in TensorFlow on a server 

configured with CUDA11.3 and CUDNN8.2.1. We use the 

Adam algorithm with default parameters as the optimizer. The 

initial learning rate is set as 0.01 and decreases by 10% after 

each epoch. We trained 100 epochs on our own dataset, with 

batch size set to 2 and the number of nearest points K set to 16, 

and sampled a fixed number of points (40960) from each point 

cloud to feed into the network during training, while feeding the 

entire point cloud data during testing. 

 

3.2 Dataset 

This study relies on the actual historical architectural heritage, 

using mature UAV tilt photography and 3D laser scanning and 

other technical means to obtain the complete internal and 

external mapping data of historical buildings. We reviewed 

relevant information to master the basic composition of 

historical building structures, and used a variety of software to 

process and label the data to establish the historical building 

point cloud datasets. 

 

In this study, two measurement areas were selected. 

Experimental Data 1 was built in the Ming Dynasty, it is located 

in Tucheng outside Deshengmen, Chaoyang District, and is not 

only a landmark on the northern extension of the central axis of 

Beijing city, but also a Beijing-level cultural relics protection 

unit. Experimental Data 2 was built in early 1908 and is located 

in the southwest of the Qing agricultural test site, a typical 

Chinese classical building. 

 

We use UAV tilt photography and 3D laser scanning to obtain 

the interior and exterior point cloud data and roof data to obtain 

the complete historical building scene, and use CloudCompare 

software to align the generated roof point cloud with the 

scanned point cloud to fuse into a complete historical building 

point cloud data including the interior and exterior structures of 

historical buildings. To control the amount of point cloud data, 

we use 0.01m spatial subsampling to streamline the point cloud 

data by referring to a study related to European architectural 

heritage, which is sufficient to enable the neural network to 

learn effective structural features from the point cloud. The final 

number of points obtained for our dataset is 20182330 points, 

each with coordinates and colors. Finally, the data of the 

required experimental range is cropped for subsequent 

annotation work, and the complete point cloud after fusion is 

shown in Figure 4. 

 
Figure 4. The experimental data 1 (left) and experimental data 2 (right). 
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The manual annotation of the point cloud of historical buildings 

is shown in Figure 5 and Figure 6. In order to scientifically 

evaluate the generalization ability of the segmentation network 

on historical building data, we cut both historical buildings 

along the central axis of the scene into a left part point cloud 

and a right part point cloud, a total of four parts, in order to 

carry out a four-fold cross-validation experiment. The point 

cloud scene is a complete point cloud containing both external 

and internal structures, with six semantic categories labelled: 

roof, column, square, door, window, and wall. 

 
Figure 5. Experimental data 1 labeling results (left and right). 

 
Figure 6. Experimental data 2 labeling results (left and right). 

 

3.3 Semantic Segmentation Results  

In this paper, we choose RandLA-Net and our network to 

validate the present and past point cloud semantic segmentation 

experiments on the historical architecture dataset using a four-

fold crossover. To fully evaluate the semantic segmentation 

effect of the EEI-Net network model on the historical 

architecture dataset. We used two models: (a) region one for 

testing, regions 2 to 4 for training, and again, each region in turn 

for testing and the other regions for training. (b) k-fold cross-

validation (k=4). We used overall accuracy(OA), mean class 

accuracy(mAcc), the mean intersection over union(mIoU) as 

standard metrics. As shown below： 

 

                                                      (6) 

 

                             (7) 

 

      (8) 

 

There, k is the number of categories, is the number of 

correctly classified positive samples,  is the number of 

incorrectly classified positive samples,   is the number of 

incorrectly classified negative samples, and   is the total 

number of points. 

 

We adopted a four-fold cross validation method to evaluate our 

method, and the experimental results are shown in Table 1 and 

Figure 7. It is obvious from Table 1 that the performance of our 

proposed EEI-Net network in OA, mAcc and mIoU is better 

than that of the original RandLA-Net. As shown in Fig 7, the 

part shown in red box can clearly indicate that our method can 

segment the scene more smoothly, especially for the object 

boundaries. 
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OA（%） mACC(%) mIOU(%) column door ef wall roof window 

RandLA-Net 94.5 91.1 84.6 80.0 88.1 83.7 85.8 98.1 71.9 

our 94.8 91.3 85.1 81.0 88.8 93.7 86.1 98.1 72.8 

Table 1. Comparison of edge contour feature extraction methods. 

 
Figure 7. Qualitative results of this method on historical architecture data set. 

 

4. CONCLUSIONS 

Nowadays, historical building point clouds have complex 

geometry, but the point cloud dataset of historical building 

scenes is very limited, which is a key problem we need to solve. 

Therefore, a dataset of historical buildings is constructed in this 

paper. In this study, we propose EEI-Net in order to investigate 

semantic segmentation for the special nature of point clouds of 

historical buildings. The network consists of an edge-enhanced 

interpolation codec and an edge interaction classifier designed 

to fully explore the local neighborhood and edge features. The 

edge enhancement interpolation module performs edge 

enhancement interpolation by fusing multi-layer features 

between the encoder and decoder. The edge interaction 

classifier enables the interaction of edge information through 

information transfer between individual nodes. EEI-Net 

incorporates contextual features and better preserves and 

enhances the edge information of point clouds. The whole 

framework exhibits significant feature representation capability, 

which makes the features more discriminative and achieves 

excellent performance on the historical architecture dataset. 

However it still has some problems to overcome, such as 

incomplete and imbalanced categories. In addition to this, the 

work is performed under full tagging, and large point cloud 

datasets are becoming more and more common, resulting in 

high costs. Therefore, in future work, we will continue to 

improve the accuracy while reducing the annotation point cloud 

share to achieve better performance with reduced annotation 

cost and effort. 
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