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ABSTRACT:

Urban heat island (UHI) phenomenon is a significant challenge in urban planning, and accurate temperature predictions are crucial
for effective decision-making. The choice of material parameters is crucial to simulate a realistic temperature distribution and
identify potential UHIs. This paper introduces a framework for optimizing the material properties based on sensors boxes placed
upon surfaces made up by different materials. The methodology covers an optimization approach for the material properties to
achieve accurate surface temperature simulation. The results, which involved close-range validation and macro-scale validation,
show a significant improvement in the agreement between the simulated and measured temperature time series, especially for tiled
roofs and asphalt roads. However, the accuracy for grassland areas decreased, possibly due to differences in soil moisture. Overall,
the proposed framework shows promising results for future work in improving the accuracy of thermal simulation of urban areas.

1. INTRODUCTION

Digital twins are increasingly being applied in order to obtain
quantitative output from existing and not yet existing entities,
thus providing valuable help for a very broad spectrum of ap-
plications. Probably, Google maps can be considered the most
famous digital twin in the world, since it helps to assess the ar-
rival time. However, especially in recent years, due to the addi-
tional impulse generated by the Covid 19 pandemic towards the
digitalization, the concept of digital twin has been introduced
and considered as promising to portfolio managers (Miskinis,
2023), cardio-surgeons (Coorey et al., 2022), and of course,
urban planers (Lehtola et al., 2022). We are most interested
in supporting the latter group, since the challenges of ever-
increasing urbanization, global warming, and sustainability are
omni-present and expected to gain importance in the decades to
come. The term of Urban Heat Island (UHI), appearing more
and more often in this context, combines all these challenges.
Since UHIs also have negative repercussions on different areas
of everyday life (quality of life; energy consumption; productiv-
ity; biodiversity, and others), they deserve being treated on the
multi-disciplinary level by urban planners, meteorologists, ar-
chitects, and scientists.

In order to identify and to track UHIs in current and future city-
scapes and urban designs, a digital twin is supposed to produce
accurate – in spatial, temporal, and thermal resolution – output
for the urban temperatures. Compared to the two-dimensional
Google Maps, the particularity of the digital twin in the context
of UHI prevention is the requirement for a four dimensional
entity. Evolution in altitude is not only important for compu-
tation of shadows from buildings and trees, but also for tracing
of wind direction and speed, as is done in the case of Compu-
tational Fluid Dynamics (CFD) simulations like Palm-4U (Ma-
ronga et al., 2020). Time is important because of temporal shad-
ows, when some materials heat up quicker or cool down longer
than other or conduct heat more easily than others.

However, the question is how to retrieve the material parameters
for large scenes. In many previous works (Kottler et al., 2019,
Bulatov et al., 2020, Guo et al., 2018, Aguerre et al., 2019) ,

material parameters are usually manually or automatically as-
signed based on literature.This approach is sufficient given a
certain generalization: materials need to be globally general-
ized and no differentiation between local conditions, such as
building materials or building techniques, considered. The wide
range of urban materials is therefore not covered, to the dis-
advantage of simulation accuracy. Furthermore, this oversim-
plification comes with an additional challenge: the material
parameter choice from literature itself. For example, assuming
general metal roofs for simplification, actual roofing materials
might be, e.g., aluminium, zirconium, or copper. The densities
of copper varies from 2712 kg/m3 up to 8940 kg/m3 (Bulatov
et al., 2020). In the long term, metallic roofs depend in their
constitution more on atmosphere and environment than other
materials (corrosion). Further materials, such as asphalt, con-
crete, or brick, are being used in many different compositions
of their components depending on locality, operation purpose,
producer, and other factors, which increase their physical prop-
erties’ range. In summary, sufficiently accurate choice of ma-
terial properties from literature is a demanding task. It can be
assumed, however, that the construction of the city took place
during a few distinctive epochs. Then, calibrating the material
parameters using one to three close-range datasets with meas-
urements from each of these epochs could already improve the
simulation accuracy significantly.

We wish to establish the mathematical framework for compu-
tation of the unknown material parameters aiming a better ad-
aption to the actual local conditions of the targeted area to be
simulated. To do this, we will establish the correspondence
between the measured and simulated temperatures. The un-
known parameters are coded in a five-to-seven-dimensional vec-
tor and the surface temperature is the function of these paramet-
ers. The starting values are taken from (Bulatov et al., 2020)
and literature sources mentioned therein. The error minimiz-
ation takes place using the trust region method. The thus de-
veloped framework is clearly based on close range validation,
and we will eventually discuss some quantitative and qualitat-
ive results on the large scale simulation of the urban area under
consideration.
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2. PREVIOUS WORKS

The review paper of (Weng, 2009) represents a good starting
point for a literature review as it acts as contradistinction of two
main tools of assessing urban thermal behavior, namely in-situ
measurements and remote sensing methodologies. Knowledge
of urban surface heat balance is fundamental to understanding
of UHIs and urban thermal behavior. To quantify the urban sur-
face heat balance, in-situ measurements (largely tower-based)
can be obtained. A fundamental problem with the in-situ meas-
urements of heat fluxes lies in the great difficulty of selecting
a representative site for a larger surrounding region, due to the
complexity of urban material composition (Weng, 2009). The
authors of (Grimmond and Souch, 1994) outlined the method to
extract surface cover information for the Multi-City Urban Hy-
drometeorological Database (MUHD). Still, it is challenging to
investigate the detailed spatial pattern of heat fluxes in a city, if
cost, time, instrument and data calibrations are considered all
together. One way out is provided by simulations from the air-
borne remote sensing data, as was proposed e.g. in (Bulatov et
al., 2020), and allowing to cover larger scenes. Unfortunately,
one cannot do this without certain generalization of materials,
which brings about the difficulty to assign the source to the
deviation between the measured and simulation temperatures
(Strauß and Bulatov, 2022). The deviation are brought about
by a coarse error of the thermal remote sensing, which are com-
monplace in urban environments (Piringer et al., 2002). Surface
parameters can be estimated incorrectly due to land cover mis-
classification. Finally, sometimes the model does not consider
a certain natural phenomenon or there is an anomaly (such as a
recently irrigated lawn). Therefore, it is an ongoing efforts to
utilize quantitative surface descriptors for assessing the inter-
play between urban material fabric and urban thermal behavior.

In addition, these considerations have been made previously for
2D only (Zhibin et al., 2015). However, with a increasingly
available computational resources, in particular, graphical en-
gines, simulation of 3D models is becoming increasingly pop-
ular. The heat equation is extended by more complex terms
which are characteristic for the meshes: convection heat flux,
three-dimensional conduction and solar radiation that can be
computed via occlusion analysis.

Important contributions for real-time-oriented evolution of the
surface temperature distribution have been made by (Peet, 2019,
Kottler et al., 2019, Bulatov et al., 2020, Xiong et al., 2016, Guo
et al., 2018). Other approaches are based on combined heat and
computational fluid dynamics numerical simulation methods,
which means that surface temperatures are computed together
with air temperatures and airflow on a volumetric grid, and have
the advantage that UHIs can be retrieved with a higher confid-
ence. Due to being highly computational, only small and re-
stricted areas on the macro-level can be simulated (Ashie and
Kono, 2011, Huo and Chen, 2022).

Remote sensing can help define and estimate parameters for
urban surface characteristics and apply them to urban atmo-
spheric models (Voogt and Oke, 2003). The critical parameters
for describing the heat balance and land surface temperature
are surface characteristics such as albedo, surface roughness,
soil thermal inertia, and soil moisture. A mathematical frame-
work for parameter estimation, presented by (Bartos and Stein,
2015), minimizes the difference between predicted and meas-
ured temperature time series. On contrary, (Yang et al., 2020)
aims to search for the relevant information in the internet, using

python interfaces. Yet, other authors have used commercially
available software, such as the ENVI-met model, which was
first published in 1998 by (Bruse and Fleer, 1998) and further
developed since then (Ouyang et al., 2022). These authors rely
on the proposed material parameters or perform in-situ meas-
urements to get the needed material properties.

Based on the literature review, it can concluded that there is a
need for more accurate methods to estimate surface paramet-
ers from remote sensing and an understanding of the interplay
between urban materials and thermal behavior.

3. METHODOLOGY

In this section, details about the simulation, optimization method,
and implementation details are covered in three subsections (3.1
to 3.3, respectively.

3.1 Simulation

In the context of this work, the digital twin of an urban area
is considered to comprise its 3D reconstruction, given as a tri-
angular mesh, semantic class labels per triangle, environmental
data including air temperature and wind speed amongst others,
and the triangle-wise simulated surface temperature. To achieve
this digital twin, we formally follow the procedure proposed in
(Bulatov et al., 2020) from raw sensor data to the digital twin
defined as above. Therein, a classification map is generated
at first from raw sensor data involving multispectral imagery
and LiDAR data, with classes building, terrain, and tree region.
Second, class refinement is performed yielding roof, ground
and tree types. Thereon based, surface tesselation is carried out
yielding a 3D mesh with class labels per triangle, cp. Figure 1.
These class labels are further needed to allow the physics-based
simulation of surface temperatures, which will be outlined in
the following.

Figure 1. Cut-out of an semantic 3D city mesh created from raw
sensor data following (Bulatov et al., 2020). Colors indicate the
triangle-wise numeric semantic class label which is associated

with its material.

Generally, the temporal and spatial distribution of temperature
is determined by the so-called heat equation. In (Kottler et al.,
2019), the authors employ a finite volume approach to analyze
a 3D triangular mesh. They achieve this by virtually extending
each triangle into a series of prismatic layers, with a relative
depth denoted as d. Among these layers, the outermost one is
referred to as the surface layer, while the rest are called the inner
layers. Then, the heat equation is given by

ρcV d
∂T

∂t
= I +D +A+R+ S (1)
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for each layer with material properties ρ (density) and cV (spe-
cific heat capacity), and heat fluxes I (conduction), A (convec-
tion), R (radiative heat exchange with the sky) and S (solar
heating). Since convection and heat radiation only contribute at
the surface, it is A = R = S = 0 for all sub-surface layers, and

A = h(Tair − Ts), (2)

R = σϵγsky(T
4
total − T 4

s ), (3)

S = (1− a)Esuncos(φs)γsun, (4)

I = κd−1(T1 − Ts) (5)

at the surface with its temperature Ts = T0, temperature T1

of the first inner layer, the convective heat transfer coefficient
h, the Stefan-Boltzmann constant σ, the thermal emissivity ε,
exposure factors to the sky γsky and to the sun γsun, the solar
abledo a, total sky temperature Ttotal, solar irradiance at ground
Esun, the surface triangles’ orientation φs relative to incoming
sunlight, and the heat conductivity κ. The convection para-
meter h is given by h = h1 + h2vwind with constant (for a
given material) parameters h1,2. For the inner layers, denoted
by i ∈ [1, .., δ − 1], I is expanded to

I = κd−1(Ti−1 − 2Ti + Ti+1), (6)

whereby Tδ is constant, following the Dirichlet condition. The
lateral heat conduction for each layer u ∈ {0, 1, . . . , δ−1} with
the number of layers is given by

Du =
κ

As

∑
j′∈Nj

Ljj′(∇Tu)
T
jj′ · njj′ (7)

with the area As of the surface triangle, its neighboring triangles
Nj , length Ljj′ of the edge between the triangle at its respective
neighbor, and the corresponding temperature gradient (∇T )jj′
along the edge normal njj′ . For details, we refer to references
(Kottler et al., 2019, Bulatov et al., 2020)

We store the material-dependent parameters into a vector x,

x = x(C) = [ρ cV κ ϵ a]T , (8)

where C denotes the unique semantic class label given by the
previously introduced procedure of the 3D mesh generation.
Since C is assigned to each triangle, the collective structure of
the 3D mesh with material properties x is referred to as the
parameter mesh M(x).

Another important macro-factor influencing the temperatures
of the surface is the environment. There are several environ-
mental variables explicitly (Tair) or implicitly mentioned in (2)
to (5). To the latter, we can count, for example, the wind speed,
important for computation of h in (2), or the time at the loca-
tion in question, which allows computation of Esun and ϕs in
(4). Usually, this parameters are provided by weather servers
or, in the case of close-range simulation, by some measurement
equipment.

3.2 Optimization

At the beginning of the optimization procedure, an initial value
is chosen for the parameter vector x to be optimized. As ex-
plained in the previous section, the parameter mesh object M
is created with the current parameter vector. The environment

object E contains the important parameters such as air temper-
ature, wind speed, relative humidity, cloud coverage as well as
the time and location of the simulation. Due to potential mis-
matches between the time points of the measured data and the
simulation, missing intermediate values are linearly interpol-
ated. Then, M and E are passed to the simulation object T to
perform the simulation of the surface temperature over the train-
ing period according to Section 3.1. For the rest of this paper,
we will use the notation T (x) = T (M(x), E). The simulated
surface temperatures are compared to the measured values to
assess the goodness of the current parameters. In our case, the
objective function that is minimized is the mean square error
between simulated and measured surface temperatures:

f(x) =
1

N

N∑
n=1

(
Tn(x)− T̂n

)2

, (9)

where Tn, T̂n are the measured and the simulated surface tem-
peratures at the n-th time point, respectively, and N is the num-
ber of time points.

For parameter optimization, the trust-region method (Byrd et
al., 1999) is used. It is an iterative method based on interior
point techniques and expects as input the objective function de-
pending on the unknown parameter vector.

The optimization problem is bounded by constraints in the form
of lower and upper bounds. These bounds are given by the un-
derlying physics of the assumed materials and their empirical
values from the literature. For each xi holds:

li ≤ xi ≤ ui, (10)

where li and ui are the lower and upper bounds for the i-th ele-
ment of x from (8). This ensures that the optimized parameter
values are within realistic and reasonable bounds.

3.3 Implementation details

While placing temperature boxes to retrieve T̂ , we always paid
attention to choose sunlit locations in the middle of the surface
occupied by a certain material. This approach eliminates the
need for the occlusion analysis step from (4), and the lateral
conduction term from (7) is unnecessary as well. As a con-
sequence, we reduce the whole workflow to one triangle per
measurement unity. Since the weather conditions are the same
for each iteration step, the environment E is created once for
all before the optimization. All this allows for a faster simula-
tion since only the parameter mesh M(x) is recreated with the
corresponding parameters at each iteration.

The upper and lower bounds of these parameters were obtained
from extensive literature research conducted by (Bulatov et al.,
2020). One additional parameter, which indeed should be chosen
with care is the number of layers, referred to as depth discretiz-
ation δ, i.e. spatial step size, while time discretization t refers to
the time step used in the simulation, which is inversely propor-
tional to the number of measurements N . A higher value of δ
can produce more accurate results, but there is a threshold value
beyond which increasing it does not significantly improve the
results. Contrarily, a lower value of δ requires a higher value of
N to prevent the simulation from getting unstable, resulting in
a higher computational cost. Unfortunately, the optimal choice
of δ depends strongly on material being simulated. We thus
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determined appropriate value of δ using exhaustive search with
exponentially varying ranges.

Another important contribution concerns the metal roofs. Metal
has a high thermal conductivity, which results in a strong coup-
ling with the core temperature. This would not make much
sense; Rather the model from Section 3.1 should be changed
to take into account the specifics of these roofs. We now allow
for a very low thermal conductivity inside the insulation and
roof mix, while retaining the surface properties of metal. This
is where the advantage of the layer model is obvious: we take
the metal properties of the exterior layer and the values for con-
ductivity κ, density ρ and specific heat capacity cv for tile in all
other layers.

To improve the performance of Box4 on a grass area, it has
been recognized that the parameters used in equation (8) do not
yield satisfactory results. This is because grass, being a living
organism, possesses different thermal properties compared to
non-living materials such as stone or metal. For instance, grass
can absorb water from the ground and undergo transpiration.

In light of this, the heat transfer coefficient within the convec-
tion term is set to h = h1 + h2vwind. Therefore, the parameter
vector x is now extended by h1andh2

x̃(C) = [ρ cV κ ϵ a h1 h2]
T , (11)

while for other boxes, not measuring wind speed, empirical val-
ues of h have been used.

4. RESULTS

In this section, the results of the parameter optimization for the
thermal simulation of an urban area are reported. Five boxes
with located on the surface of different roof materials and col-
ors are used to measure temperatures and compute them with
the simulated results. The boxes are described in Section 4.1
and our main findings on close range validation of our method
in Section 4.2. In Section 4.3 our macro-scale validation will
prove that the assumption of similar materials within a consid-
erable urban area thus confirming the sensibility of parameter
optimization.

4.1 Experimental setup

The temperature boxes considered in this work and visualized
in Figure 2 have an approximate dimension of 15×7.5×7.4 cm
for length, width, and height, respectively, and consist of the
following five Arduino modules: The DS1307 real-time clock,
veml7700 light sensor, si7021 air temperature and humidity
sensor, ds18b20 temperature sensor and the sen0170 wind speed
sensor next to a SD card reader. The light sensor was included
to determine if the box was shaded at a given time (e.g. cloud
coverage or shaded by a tree or a building). The power is
provided by a power bank. The Arduino can be programmed
to specify the time interval in which the sensor data should be
read. Larger time intervals allow for a longer overall recording.
The box is sealed so that no rain or moisture can destroy the
electronics. After connecting the power bank to the Arduino,
the device runs a routine and beginns recording data. This in-
volves initializing the sensors, resetting the clock, and creating
a text file on the SD card where the data will be saved. The re-
cording continues until the power bank is depleted. All sensor
readings are stored on the SD card. Compared to the box shown

Box 0 The temperature sensor was
attached to white/grey-ish
paving

Box 1 Placed on an orange/red tile
roof.

Box 2 Placed on a metal garage
roof (silver-ish colour).

Box 3 Placed on a metal shed roof
(silver-ish colour).

Box 4 Placed on grass

Table 1. Boxes placed upon different materials

in the Figure 2, the boxes placed in the field were painted white
to reduce the risk of overheating when placed in the sun.

The sensors record time, air temperature, solar exposure, hu-
midity, and wind speed in 2.5-minute intervals over a three-day
period. The experiments took place in a suburb of the Aus-
tralian city of Perth in December 2021. This was a dry sum-
mer day, on which issue of overheating has been very acute.
In Table 1, an overview of the installation location and mater-
ial of the five measurement boxes together with the underlying
surface materials is presented. In order to avoid overfitting, cer-
tainly a danger in close-range validation scenarios, the meas-
ured values are divided into two parts. The measurements from
the first two days are used to optimize the material parameters
while the last day will be our validation set.

Figure 2. Overview of the components of the temperature box

4.2 Close Range Validation using in-field measurements

We utilized an existing implementation of the interior-point al-
gorithm, namely, the MATLAB function of fmincon, and set
the tolerance of the first-order optimality to ε = 10−6. The op-
timization stopped for Box0 and Box4 after 30 iterations and
for Box4 after 20 iterations. In view of the high computing
time, the optimization for Box2 and Box3 was terminated after
15 steps. The computing time needed for optimization to com-
plete varies depending on the material being used. Box0, po-
sitioned on the pavement, and Box1, positioned on a tile roof,
both took around 15 minutes to complete, but Box1 was faster
because it went through 30 iterations while Box0 only had 20.
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While these boxes were relatively fast, the metal roof boxes
Box2 and Box3 posed a problem as they took multiple hours
(around 12h) to complete 15 iterations. The fourth box, placed
on grass, was faster than the metal roof boxes but not as fast
as Box0 and Box1, with optimization using 20 iterations com-
pleted in about 25 minutes. One factor that influenced the com-
puting time was the time discretization. For stability reasons,
the higher the depth discretization, the smaller the time incre-
ments had to be chosen.

The Table 2 shows an overview of the parameters for five dif-
ferent boxes (Box0 to Box4) as well as the function values at
the beginning and at the end of the simulation. Encouraging
decays of the square root of the objective function f for the
training data have been achieved, ranging from 2.2K in Box0
to 16.7K in Box2. We can see that the temperatures from the
first two boxes have been modeled quite well before optimiza-
tion. The proves the soundness of the simulation framework for
these two classes and that the parameter values are rather close
to default. For metallic roofs, this was not the case. On the con-
trary, the model had to be revised in order to adjust the output
to the measurements. After this modifications, Box2 and Box3,
which previously showed the largest deviations, achieve tem-
perature deviation close to those of the other boxes after para-
meter optimization. Currently Box4, which was placed upon
grass, has the largest deviation from T̂ ; this could be because
some the model is incomplete since it does not include latent
heat fluxes. This problem was addressed by optimizing the con-
vective heat parameters additionally. However, this approach
led to non-realistic parameters. The difference between train-
ing and testing measurements has been slightly larger in Box1
than in Box0. Since the temperatures are measured in K during
optimization, these differences are, however, have a low impact
on the results. It can also be observed in Figure 3 that the meas-
ured temperatures on the third day exhibit more fluctuations (for
all boxes) which may be due to the dying battery.

The left column of Figure 3 shows the non-optimized temper-
ature characteristic curve of the simulation with the parameter
set from the database in red and the measured temperature time
series from the measurement boxes in black. The optimized
temperatures are shown in green on the right, while the grey
boxes show the measurements not used for computation of x.

The temperature curves for Box0 and Box1 exhibit qualitative
similarities, with the exception of a drop in temperature just
before sunrise, possibly due to morning dew, which is not yet
taken into account in the model sufficiently. In contrast, the old
model yields poor results for Box2 and Box3 (metal roof), while
the new model’s optimized daytime temperatures well. How-
ever, the model does not reflect well the distinctive temperature
variation in the second half of the second night, indicating un-
accounted environmental factors, such as clouds or dust, which
have an insulating effect and are not captured by sensors. A
possible solution is to incorporate additional weather data, such
as cloud radar, which can detect cloud cover even at night.

For the old model of Box4, i.e., without the optimization of the
convection parameters, the optimized temperature curve roughly
follows the measured data in the morning. However, the tem-
perature exceeds the expected values in the afternoon, and the
cooling during the night takes longer. One possible explanation
for this deviation is that grass, being a living organism, has the
ability to draw water from the ground and undergo transpira-
tion, which allows it to cool itself.

x0 l, δ u, t x̂
Box0 ρ 2243 1500 3000 1500

cV 920 750 1550 750
κ 0.75 0.1 2 0.54415
ϵ 0.94 0.54 0.94 0.94
a 0.15 0.05 0.9 0.37754√
f 4.6 150 20 2.4/2.6

Box1 ρ 720 720 2400 720
cV 920 750 1550 750
κ 0.34 0.1 1.8 0.42816
ϵ 0.93 0.54 0.97 0.55779
a 0.2574 0.1 0.7 0.66471√
f 6.7 5 30 1.8/2.2

Box2 ρ 7850 2712 11300 3722
cV 470 130 880 130
κ 50 14.4 413 0.1
ϵ 0.08 0.023 0.96 0.92
a 0.8 0.1 0.7 0.1√
f 19.4 50 10 2.7/5.3

Box3 ρ 7850 2712 11300 7690
cV 470 130 880 307.4
κ 50 14.4 413 0.77
ϵ 0.08 0.023 0.96 0.96
a 0.8 0.1 0.7 0.421√
f 13.7 50 10 1.4/3.1

Box4 ρ 1400 1200 2200 1200
cV 1000 800 2500 800
κ 1 0.15 2.2 0.71745
ϵ 0.98 0.59 0.98 0.98
a 0.18 0.07 0.3 0.3
h1 10.45 0 100 100
h2 18 0 100 5.8 · 10−9
√
f 12.0 150 20 2.4/3.6

Table 2. Overview of the parameters, considering the initial
value x0, the lower bound case l, the upper bound case u, and

the optimized case x̂. The measure units for the parameters are:
Density ρ in kg/m3; Specific heat capacity cv in J/kg/K;
Conductivity κ in W/m/K; Emissivity ϵ ∈ [0; 1]; Albedo

a ∈ [0; 1]; The square root of the objective function f (9) in K.
For optimized boxes two values for training and validation cases
are shown. In the grey cells, we specified the number of layers δ

and time discretization t in seconds, which were determined
empirically.

4.3 Validation using remote sensed thermal images (city
scale)

The simulation has been carried out twice for a district in the
City of Melville covering an area of 2 × 1 km2. The district
data was provided by the City of Melville and was previously
discussed in the publication by Bulatov et al. (2020) [refer-
ence: (Bulatov et al., 2020)]. The local conditions in terms
of weather, construction, and materials in this district are quite
similar to the location where the measurement boxes were util-
ized for optimization. The first run of the simulation was carried
out with the original material parameters while the second run
involved the newly optimized values. Figure 4 shows a part of
the 3D city model with the color-coded temperature differences
per triangle which results from the simulation with the original
and optimized material parameters. Note that only three classes
had been optimized in their physical values, i.e. tiled roofs,
grass, and street, while the full simulated thermal digital twin
contains eight semantic classes. In particular, we excluded the
metal roofs from the validation because of three reasons: first,
they exhibit high variety of color, and with it, albedo values.
Second, their inner model, rethought and revisited in Section
3.3, may not be applicable to the multitude of roofs. In order to
estimate the most suitable inner model, some statistics over the
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Figure 3. Temperature differences in the 3D thermal digital twin between the simulation results based on the original and optimized
material parameters. In the grey rectangles we show that measurements that were not used for computation of the optimized

parameters x and where the simulated values of T were computed using x and plotted into the graph.
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region of interest would have been required. Third, the thermal
signatures for metal roofs are falsified because of multiple re-
flections (Burkard et al., 2020).

RSME [K] MAD [K]
original optimized original optimized

tiled roofs 1.62 1.19 0.68 0.46
grass 2.43 2.92 0.82 1.00
street 1.36 1.12 0.49 0.32

Table 3. Root-mean-squared errors (RMSE) of the simulated
city scene with the original and optimized material parameters

respectively.

We compare the surface temperatures resulting from original
and optimized material parameters against an aerial thermal im-
age of the area, which was recorded at around 8pm on a summer
night several years ago. Thus, the environmental conditions in
the simulation had to be chosen to be comparable to the condi-
tions of the thermal image, and not identical to the data from the
measurement boxes. We validated the root-mean-square error
(RMSE) and mean average deviation (MAD) for those classes
on which we performed the material parameter optimization.

Table 3 summarizes our findings and shows the positive effect
of parameter optimization. Tiled roofs and streets profit clearly
from our proposed parameter optimization framework. Yet for
grass areas, both error measures degrade. This might be caused
due to differences in soil moisture. The applied simulation
framework is not yet able to take into account the soil mois-
ture variations. Hence, differences between the environmental
conditions at thermal image and measurement box recordings
might yield another decrease in simulation precision. However,
given the limitation of measurement box recordings and the im-
provement in the areas of roofs and streets, the proposed op-
timization framework is proved in its principle and represents a
promising tool to be applied to further datasets.

5. CONCLUSION

We presented a mathematical framework for recovering the un-
known material parameters using the thermal simulation, whose
output was compared to the temperature measurements. In total,
very different materials were investigated and the temperature
curves after parameter optimization fit the measurements much
better for all materials, which demonstrates the soundness of
the proposed approach. It is worth to note that for most materi-
als with exception of the metallic surfaces, also the initial para-
meters do match quite well with the simulation output, which
implies that the assumptions made in our simulation are, for
the most part, justified. Metallic surfaces represented a chal-
lenge since the model assumptions of constant material along
the layer does not hold. To cope with this, we adjusted the
range of the inner model parameter to address the lower thermal
conductivity inside the insulation and roof mix and account for
insulating air layers, leading to improved results.

For the large scale comparison, we used the thermal image re-
corded several years ago, but to our satisfaction, the result for
tiled roofs and roads has slightly improved with respect to the
default parameters. For grass, this was not the case. Probably,
the soil moisture and evapotranspiration of natural surfaces and
vegetation must be taken into account in the future.

It has still to be verified if the simplified simulator model can
be used for identification of Urban Heat Islands where the sim-
ulation may have to be carried out for many consecutive days.

In this regard, we consider the most encouraging finding of our
contribution that once calibration of parameters is carried out
for a couple of days, the accuracy of simulation of previously
unknown data remains quite high.
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