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ABSTRACT:

Indoor change detection is important for building monitoring, building management and model-based localization and navigation
systems because the real building environment may not always be the same as the design model. This paper presents a novel indoor
building change detection method based on entropy. A sequence of real LiDAR scans is acquired with a static LiDAR scanner and
the pose of the LiDAR scanner for each scan is then estimated. Synthetic LiDAR scans are generated with the pose of the LiDAR
scanner using the 3D model. The real LiDAR scans and synthetic LiDAR scans are sliced horizontally with a certain angular
interval and the entropy of all slices of LiDAR scans is then calculated. Differenced entropy between two corresponding slices of
real LiDAR scans and synthetic LiDAR scans is calculated for the classification of the changes. Each slice of real LiDAR scans will
be classified into one of the four categories of changes: unchanged, moving objects, structural change and non-structural change.
Experimental results show that unchanged slices and slices containing moving objects can be accurately detected, achieving 100%
accuracy while non-structural and structural changes are detected with an accuracy of 98.5% and 86.3% respectively.

1. INTRODUCTION

Indoor building change detection plays an important role in
building monitoring and building management, and it enables
improvement of robustness and accuracy of model-based indoor
localization and navigation systems (Zhao et al., 2020, Meyer
et al., 2022, Iandola et al., 2016, Zhao et al., 2023). The differ-
ences between the real environment and the 3D model are inev-
itable because the real environment of buildings cannot be the
same as the design model and indoor environments can change
drastically due to building renovation and remodelling. Such
differences between the 3D model and the real environment
will introduce errors to model-based localization and naviga-
tion systems (Khoshelham, 2016, Caron et al., 2014).

LiDAR scanner can provide accurate distance measurements
in horizontal field of view, from which structural features can
be easily extracted (Tavasoli et al., 2023, Santos et al., 2022).
Detecting changes between the real environment and the 3D
model is the process of detecting differences between LiDAR
scans and the 3D model. Learning-based change detection ap-
proaches have been studied and developed recently (Czerni-
awski et al., 2021, Voelsen et al., 2021, Chen et al., 2022, Ma
et al., 2020). Such learning based methods rely on sufficient
annotated real LiDAR data or generated synthetic LiDAR data,
which require a prolonged labelling procedure and training stage.
The trained change detection networks can only perform well in
the environments which are sufficiently similar to the training
environments and will fail for change detection in unseen envir-
onments.

Geometry-based change detection methods have also been de-
veloped to perform change detection between LiDAR data and
3D models (Tamke et al., 2016, Marani et al., 2016, Tran and
Khoshelham, 2019, Koeva et al., 2019). The proposed approaches
detect changes by calculating differences between LiDAR data
and the 3D model, but they fail to detect moving objects or
small items.

Entropy is first proposed to measure the value of received in-
formation (Shannon, 1948) and then approximate entropy de-
veloped to measure regularity and complexity in scientific fields
(Pincus, 1991, Richman and Moorman, 2000, Ocak, 2009, Al-
tieri et al., 2018). The ability to describe randomness and dis-
order enables detecting changes in spatial data (Sun et al., 2010,
Particke et al., 2018, Dolenc et al., 2015). The observed spa-
tial data show a different entropy level where changes exist and
drastic changes can result in a larger entropy difference than
that of minor changes. We pose the research question: how to
identify sections of the view captured in a LiDAR scan with
changes, and how to classify the change?

Inspired by the ability of entropy to detect changes, this pa-
per presents a change detection method using entropy and gen-
erated synthetic LiDAR data. The pose of each acquired real
LiDAR scan is estimated and then used to generate a synthetic
LiDAR scan. The pair of the real LiDAR scan and the syn-
thetic LiDAR scan are sliced with a certain angular interval ho-
rizontally and then the entropy of each slice of both scans is
calculated. The differenced entropy between each slice of the
real LiDAR scan and the corresponding slice of the synthetic
LiDAR scan is then calculated and used to detect changes. To
detect moving objects, entropy changes of consecutive scans
acquired statically by a LiDAR scanner are used. The contribu-
tions of this paper are as follows:

(1) The problem of detecting changes of the real environment
with respect to the 3D model is formulated as detecting differ-
ences between real LiDAR scans and synthetic LiDAR scans;

(2) We show that the entropy of lidar slices enables detecting
moving objects and small items.

(3) We show that entropy is effective for detecting unchanged
slices and moving objects and that structural changes have a
larger entropy than non-structural changes.
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The remainder of the this paper is organised as follows: Section
2 provides a review of related works. The methodology is intro-
duced in Section 3. Section 4 presents the dataset, experiments
and results. Section 5 discusses limitations of the presented
method. Conclusion of this paper is presented in Section 6.

2. RELATED WORK

Indoor change detection approaches can be classified into two
categories: learning-based approach and geometry-based ap-
proach.

2.1 Learning-based change detection

Learning-based change detection methods are inspired by LiDAR
segmentation networks (Czerniawski et al., 2021, Voelsen et al.,
2021, Chen et al., 2022, Ma et al., 2020) and satellite image-
based change detection methods (Xu et al., 2021, Meshkini et
al., 2022, Bai et al., 2022). LiDAR segmentation techniques
can be modified to have two inputs for two LiDAR point clouds
taken from different epoches respectively to perform change de-
tection between these two LiDAR point clouds. In Czerniawsk
et al.’s work, synthetic LiDAR scans were generated in a com-
plete BIM and an incomplete Building Information Modeling
(BIM) and the generated pairs of LiDAR scans were used to
train a LiDAR segmentation network to perform change detec-
tion (Czerniawski et al., 2021). The changes can be accurately
detected but moving objects were not taken into consideration.
Compared with real LiDAR scans, synthetic LiDAR scans gen-
erated from a BIM are neat and clean due to the lack of details.
To apply advantage of matured 2D convolutional neural net-
works (CNN) (Szegedy et al., 2017, Zhu and Newsam, 2017,
Chollet, 2017), LiDAR scans are converted into range images,
where the intensity of each pixel represents a distance meas-
urement (Milioto et al., 2019, Yadav et al., 2022). A UNet-
based change detection was presented to perform change detec-
tion using LiDAR data collected from different epoches. The
buildings were classified into one of four categories: new, de-
molished, tall and short (Yadav et al., 2022). To improve clas-
sification accuracy, self-attention mechanisms are introduced to
the change detection network (Chen et al., 2022), which enables
change detection from subtle features. The Learning-based ap-
proaches can perform change detection accurately but they re-
quire sufficient training data with exact labels. Labeling data is
a slow and laborious process and the trained change detection
network will fail in detecting changes on unseen objects.

2.2 Geometry-based change detection

Geometry-based change detection methods have been widely
studied in recent years (Gu et al., 2019, Radanovic et al., 2021,
Huang et al., 2022). A change detection method by calculat-
ing the difference between the LiDAR data and the BIM but the
system ignored small items such as furniture has been proposed
(Tamke et al., 2016). Calculating differences between two re-
gistered 3D LiDAR point clouds to detect changes were presen-
ted by Nikoohemat et al. (2018). The changes were classified
into permanent change and dynamic changes (Nikoohemat et
al., 2018). Three ways are defined to detect changes by compar-
ing two 3D models, comparing a 3D model and a LiDAR data-
set, and comparing two LiDAR dataset, and changes are clas-
sified into structural change and insignificant change (Koeva
et al., 2019). A change detection method has been proposed,
where LiDAR point cloud was compared with the BIM model
to detect the redundant and new building structures (Tran and

Khoshelham, 2019). The coverage ratio of points on the sur-
faces of the 3D model indicate the redundant or missing struc-
tures of the 3D model.

Entropy stems from information theory to measure the inform-
ational value (Shannon, 1948) and following his work, entropy
is also used to measure randomness and disorder in many field
(Pincus, 1991, Richman and Moorman, 2000). Entropy are
widely used for image change detection (Sun et al., 2010, Sun
et al., 2010). Entropy of two images were calculated and com-
pared to find the different parts. Entropy-based LiDAR com-
plexity detection appraoch has been recently developed (Chen
et al., 2017, Botteghi et al., 2020, Liu et al., 2022). An entropy-
based LiDAR scanner initialization approach has been proposed,
which initialized the LiDAR pose coarsely by calculating co-
herence between two scans and finding optimal transformation
parameters (Chen et al., 2017). The minimum entropy between
two scans is used to determine the final output. The forest can-
opy entropy can be used to detect forest changes in terms of
canopy density and vertical canopy layering (Liu et al., 2022).

In summary, learning-based change detection methods require
sufficient training data, the generation of which is a challenge,
and hardly attain generalizability for unseen objects and in un-
seen environments. Geometry-based change detection meth-
ods aim to detect changes by deterministic rules but such rules
are specific to the shape and pose of a limited set of objects.
Entropy is a suitable indicator to detect changes without needs
of deterministic rules and training data. Therefore, this paper
presents an entropy-based indoor change detection method us-
ing synthetic LiDAR data generated in a 3D model to detect
changes between the real environment and the 3D model.

3. METHODOLOGY

3.1 Framework

Figure 1 shows the framework of the change detection method.
As show in Figure 1, the pose of acquired continuous LiDAR
scans is estimated using a plane-based LiDAR registration method
(Zhao et al., 2022) and the estimated poses are then used to gen-
erate synthetic LiDAR scans in a 3D model of the environment.
The real LiDAR scan and the synthetic LiDAR scan are sliced
by a LiDAR scan slicer at a regular horizontal angular inter-
val. Figure 2 shows an example of a sliced LiDAR scan with
30 degree horizontal angular interval. The entire LiDAR scan
is sliced into 12 slices horizontally. The entropy of each slice of
the real LiDAR scan and the synthetic LiDAR scan is calculated
and the differenced entropy of slices of the real LiDAR scan and
the corresponding slices of synthetic LiDAR scans is calculated
and then used to perform change detection. Each slice of the
real LiDAR scan is classified into one of the four categories of
changes: unchanged, structural change, non-structural change
and moving object. In this paper, the structural change refers to
the changes of main structures such as walls and stairs. Tempor-
ary changes are the objects that are easily movable or have fre-
quently changeable states such as tables, chairs, bins and doors.

3.2 Entropy calculation

The LiDAR scan is sliced horizontally using an angle θ and
the entire LiDAR scan is then sliced into k parts, where k =
360/θ. The total number of points of the m − th slice is Nm.
For each slice of the LiDAR scan, entropy is calculated using
the distribution of LiDAR points pim in a certain distance range
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Figure 1. The framework of the proposed change detection
method.

Figure 2. An example of a sliced LiDAR point cloud. The point
cloud is sliced horizontally with the 30-degree interval. The red

and blue colors are used to show adjacent slices.

ri = [distimin, dist
i
max] with a distance interval l, where l =

distimax − distimin. For each distance range ri, the number of
points within the specified distance range is counted as N i

m and
then the probability of points locating in ri for the m− th slice
can be calculated by pim = N i

m/Nm. The entropy can then be
calculated by the following formula:

Hm = −
∑
i

(pim) ∗ log(pim) (1)

Where Hi
m denotes the entropy value of the m− th slice. After

the entropy of all slices of the real LiDAR scan and the cor-
responding synthetic LiDAR scan is calculated, the differenced
entropy of each corresponding slice can be calculated by dmN =
Hreal

m −Hsynt
m .

3.3 Change simulation

The proposed change detection method classifies each slice of
the real LiDAR scan into one of the four categories of changes:
unchanged, structural change, non-structural change and mov-
ing object. The structural change refers to the changes of main
structural changes such as walls and stairs. Non-structural changes
refer to minor changes and easily movable items such as fur-
niture boxes and bins. Moving objects are humans moving
through the environment. Structural and non-structural changes
consist of new objects and redundant objects. New objects refer
to the objects present in the real environment but not present
in the 3D model while redundant objects refer to the objects
present in the 3D model but not present in the real environment.
In this paper, moving objects can only be present in real envir-
onments and not present in the 3D model.

To simulate such changes, items such as tables, bins, extin-
guishers and rubbish bins were added to the 3D model as non-
structural changes. Walls were also added and removed in the
3D model to simulate structural changes because in the real en-
vironment, structural changes can hardly be simulated. New
structural objects refer to a wall removed from the 3D model
but present in the real environment. In real environment, small
items such as chairs, tables and boxes were placed into the
environment to simulate non-structural changes. People were
walking and running in the environment while LiDAR scanner
was working to simulate moving objects.

3.4 Classification of changes

The movement of objects will cause entropy increase and de-
crease in different slices because the differences caused by the
moving object between the synthetic LiDAR scans and the real
LiDAR scan are different. For static objects, the differenced en-
tropy remains unchanged among the consecutive scans acquired
by a static LiDAR scanner.

The classification process therefore is divided into two stages:
classification of moving objects and classification of static ob-
jects. Moving objects result in entropy changes across consec-
utive scans whereas the other changes result in the same entropy
difference across consecutive scans. The first step is to detect
moving objects by the differenced entropy between real LiDAR
scan and synthetic LiDAR scan. Consecutive LiDAR scans are
acquired when the LiDAR scanner is working statically.

The second step is to classify static objects into one of three cat-
egories: unchanged, structural change and non-structural change.
A set of LiDAR scans were used to determine the confidence in-
terval for classification. The interquartile range of differenced
entropy is calculated to find the boundary of the confidence in-
terval for each category and the mahalanobis distance between
the entropy value and the distribution of each category is used
for classification purpose. If the calculated entropy value of a
slice locates in a confidence interval for a certain class, the slice
will be classified into the corresponding category. If the calcu-
lated entropy value fails to locate in a certain interquartile range,
mahalanobis distance is then calculated to find the closest cat-
egory. The mahalanobis distance in this paper is calculated as
follows:
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D(x,Q) =
√

(x− u)TS−1(x− u) (2)

Where D denotes the distance between the calculated entropy x
and the distribution of a category Q, and u represents the mean
of the entropy values in Q. S is the positive-definite covariance
matrix.

For unchanged slices, the differenced entropy value is expected
to be close to zeros because the synthetic LiDAR scan and real
LiDAR scan have the same level of entropy. Structural changes
are expected to result in a larger entropy difference because they
cause differences in more points than non-structural changes.

4. EXPERIMENTAL RESULTS

4.1 Experiment dataset

The experiment was conducted in a university corridor environ-
ment where a 32-channel Velodyne LiDAR scanner was used
to acquire real LiDAR scans. The velodyne lidar scanner ac-
quires distance measurements in 32 certain vertical angles from
-30.67 degree to 10.67 degree at a 1.33-degree angular resol-
ution. Each real LiDAR scan contains approximately 69000
points and synthetic LiDAR scans were generated using Blensor
software (Blender, 2018), which can simulate Velodyne LiDAR
scanner in a 3D model.

A total of 150 real LiDAR scans were collected in the real en-
vironment and the poses of these scans are estimated (Zhao et
al., 2022) to generate 150 synthetic LiDAR scans using Blensor
(Blender, 2018). The 150 pairs of LiDAR scans are used to de-
termine the confidence interval for classification purpose. The
horizontal angle interval to slice LiDAR scans is set to 30 de-
gree in this experiment, resulting in 12 slices for each LiDAR
scan and the distance interval to calculate distribution and en-
tropy is set to 0.2 meter. The 150 real LiDAR scan were collec-
ted at 30 locations, with 5 consecutive scans at each location.
At each location, the LiDAR was scanning statically to avoid in-
troducing changes to entropy of static objects. The differenced
entropy values of 30 pairs of LiDAR scans were calculated and
analyzed to determine the confidence interval to differentiate
unchanged, structural change and non-structural change.

A total of 100 real LiDAR scans were collected at 20 locations
in real environment to evaluate the accuracy of the change de-
tection method. With respect to the 100 real LiDAR scans, 100
synthetic LiDAR scans are generated using the 3D model. The
determined confidence interval is used to classify the slices of
real LiDAR scans into four categories: unchanged, structural
change, non-structural change and moving object according to
the differenced entropy.

4.2 Classification of moving objects

The proposed change detection method calculated the entropy
of the 5 consecutive scans at each location, with 1 second time
interval and observe if entropy increase or decrease was shown
in the calculated entropy. If the entropy increases or decreases
among the 5 observations, the change indicates moving objects
presenting in the slice. Figure 3 shows a comparison between
a slice containing moving objects and a slice without moving
objects, demonstrating differenced entropy values and entropy
changes among the 5 consecutive scans. As shown in Figure
3, The moving object causes entropy increase and decrease in

5 consecutive scans while for slices only containing static ob-
jects, the entropy change is close to zero, with very tiny level
entropy change caused by noises. Figure 4 shows the compar-
ison of multiple slices, across which an object moved, and a
slice without moving objects. The moving object causes en-
tropy increase and decrease in multiple slices while the entropy
change for the slice with moving objects is close to zero.

The experimental results show that the change of differenced
entropy of consecutive LiDAR scans with a static LiDAR can
accurately detect moving objects because the movement will
cause changes in in the differenced entropy while without mov-
ing objects, the differenced entropy of each slice remains the
same.

(a) Entropy of different change categories

(b) Entropy change of different change categories

Figure 3. An example of entropy change caused by human
movement in the first slice.

4.3 Classification of structural and non-structural changes

The proposed change detection method determines the confid-
ence interval for the classification of unchanged, structural change
and non-structural change by the interquartile range of the en-
tropy distribution of 30 pairs of LiDAR scans at 30 locations.
Figure 5 shows the box plot of differenced entropy of unchanged,
structural change and non-structural change categories for the
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(a) Entropy of different change
categories in slice 6 and slice 10

(b) Entropy of different change
categories in slice 7 and slice 10

(c) Entropy of different change
categories in slice 8 and slice 10

(d) Entropy of different change
categories in slice 9 and slice 10

(e) Entropy change of different
change categories in slice 6 and

slice 10

(f) Entropy change of different
change categories in slice 7 and

slice 10

(g) Entropy change of different
change categories in slice 8 and

slice 10

(h) Entropy change of different
change categories in slice 9 and

slice 10

Figure 4. An example of differenced entropy change caused by
human movement in multiple slices.

30 pairs of LiDAR scans. As shown in Figure 5, the entropy of
different categories is able to be separated using the interquart-
ile range and the distribution of three categories of most changes
can be clearly separated apart from some extreme situations,
which will be discussed in the discussion section.

We conducted experiments with 20 pairs of LiDAR scans to
perform change detection using the confidence interval. Table
1 shows the classification accuracy for the three categories. The
accuracy is defined as the percentage of correct classification.
If the predict label equals to the ground truth label, the clas-
sification is considered as correct. As shown in Table 1, the
proposed method can accurately detect moving objects and the
unchanged slice, achieving 100% classification accuracy. The

accuracy of detecting non-structural changes is slightly lower
than that of unchanged and moving objects, achieving 98.5%
classification accuracy. The accuracy drops to 86.3% accuracy
for detecting structural changes because of the wide range of
the distribution of structural changes.

Figure 5. Box plot of the entropy for unchanged, non-structural
change and structural change categories of the 30 pairs of

LiDAR scans.

Change category Classification accuracy
Moving object 100 %
Structural change 98.5 %
Non-structural change 86.3 %
Unchanged 100 %

Table 1. Classification accuracy of the proposed change
detection method.

5. DISCUSSION

This paper presents a novel change detection approach using
entropy, which does not require a training dataset compared
with learning-based change detection method, and does not re-
quire a deterministic rules compared with existing geometry-
based change detection methods. The proposed method can
achieve 100% accuracy in detecting moving objects and un-
changed slices of real LiDAR scans. However, there is a main
limitation of the proposed change detection method. If the LiDAR
is distant from changes or changes are blocked by other objects,
resulting in a scanty amount of acquired LiDAR points, the en-
tropy value cannot reflect changes correctly. Figure 6 shows
an example of a simulation, where limited number of LiDAR
points reflected by the structural change can be acquired due
to the location of the LiDAR scanner. In such situation, the
limited number of points representing structural changes can
hardly cause entropy differences between two LiDAR scans.
This explains the differenced entropy values representing struc-
tural changes but are smaller than 0.02 and therefore, these val-
ues introduce errors to classification accuracy.

However, the error of change detection on structural changes
can be easily addressed by moving the LiDAR scanner to differ-
ent places to cover the entire environments. When the LiDAR
scanner is able to observe the most of the structural changes,
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the structural changes can be correctly detected. We will test
the proposed method in different environments and outdoor en-
vironments in the future. Large non-structural changes such as
book shelf and cupboard will be added to the experiments in
the future test. Different angular interval and distance interval
will also be tested to find a relatively good value for different
environments.

Figure 6. Limited points reflected by structural changes by the
blockage due to the LiDAR position. The wall in the red
rectangle added to the 3D model, not present in the real

environment, is the structural change. The generated synthetic
LiDAR scan captures limited number of point representing the

wall due to the position of the LiDAR scanner.

6. CONCLUSION

This paper presents an entropy-based change detection method.
A set of consecutive LiDAR scans are acquired and the pose of
LiDAR scans are estimated to generate synthetic LiDAR scans
in a modified 3D model. The pair of real LiDAR scan and syn-
thetic LiDAR scan is sliced horizontally using a certain angle.
The entropy of each slice of LiDAR is calculated and the differ-
enced entropy is then calculated using entropy of the slices of
real LiDAR scans and corresponding slices of synthetic LiDAR
scans. Experimental results show that moving objects can be
accurately detected by observing the change in entropy among
5 consecutive LiDAR scans. Entropy of 30 pairs of LiDAR
scans calculated to determine the confidence interval for clas-
sification purposes. 20 pairs of LiDAR scans are used to test
the proposed change detection with the determined confidence
interval and the mahalanobis distance. Results show that the ac-
curacy of detecting unchanged slices is 100% accuracy and the
accuracy of detecting non-structural change is slightly lower
at 98.5%. The classification accuracy of detecting structural
changes is only 86.3% but it can be addressed by moving the
LiDAR scanner to different places.
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