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ABSTRACT: 

 

Addressing the challenge of quantitatively analyzing and presenting pedestrian elements within open community spaces is of significant 

importance. Focusing on the indoor scene spaces of open communities, this study introduces the TJ-Person pedestrian target recognition 

image dataset. Furthermore, we design a deep learning-based community pedestrian activity analysis network model and incorporate 

various attention mechanisms, such as SA, CA, CBAM, SE, and SK, into the YOLO v5s deep learning target recognition network 

framework for comparative evaluation of pedestrian target recognition in open communities. Utilizing the optimized YOLO Swin 

Transformer Person (YOLO-STP) network, precise identification of pedestrian targets across multiple scenarios was achieved. We 

conducted experimental verification using four typical scenarios within Shanghai's NICE2035 open community as case studies. The 

results demonstrated that the proposed YOLO-STP community pedestrian activity analysis network model achieved an optimal 

detection accuracy of up to 98.47%. In all four tested scenarios, the YOLO-STP method consistently exhibited competitive performance. 

Moreover, in the COCO-2017 open-source dataset testing, the YOLO-STP method outperformed other networks of the same type, 

showcasing its significant advantages. Overall, the research presented in this study provides a crucial technical foundation for the 

analysis and recognition of pedestrian targets in future community scenarios. 

 

1. INTRODUCTION 

As urbanization progresses rapidly, community spatial structures 

are becoming increasingly complex, with open communities 

emerging as the primary residential areas (Carmona et al., 2010). 

Within these communities, pedestrian target recognition 

technology holds significant application value in safety 

management, indoor navigation, and public activity organization 

(Dollár et al., 2012). Nevertheless, the complexity and diversity 

of indoor environments present numerous challenges for 

traditional pedestrian target recognition methods when applied to 

the multifaceted scene spaces of open communities. To address 

these challenges, researchers have begun exploring the use of 

deep learning networks for pedestrian target recognition (Zhao et 

al., 2005; Zhang et al., 2022). 

 

Deep learning networks have achieved substantial advancements 

in the field of computer vision, particularly in object detection 

and recognition (Liu et al., 2016). The YOLO series networks, 

for instance, have garnered widespread attention owing to their 

end-to-end real-time performance and high recognition accuracy 

(Redmon et al., 2016). Despite the YOLO networks' remarkable 

performance in various scenarios, there is still room for 

improvement concerning pedestrian target recognition in multi-

scene spaces of open communities (Diraco et al., 2015). 

Consequently, researchers have started exploring the integration 

of attention mechanisms to enhance the recognition accuracy of 

YOLO networks in such contexts (Woo et al., 2018). 

 

Analyzing the activity characteristics and patterns of pedestrians 

within a scene space holds immense significance for subsequent 

research on the vitality of community spaces. To achieve this 

objective, establishing a robust foundation for precise 

recognition and extraction of pedestrian targets becomes 

essential. Accordingly, this article aims to accurately identify 

pedestrian targets, which in turn will serve as a crucial technical 
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basis for subsequent analysis of community spatial vitality. The 

investigation and analysis of pedestrians play a crucial role in 

advancing the quantification of pedestrian elements within a 

scene, thereby establishing a solid research foundation for 

incorporating pedestrian attributes into a wider range of 

geographic information scene models. 

 

This study presents an improved YOLO-STP deep learning 

network method for pedestrian target recognition in multi-scene 

spaces of open communities. This method incorporates various 

attention mechanisms into the YOLO v5s network, such as SA, 

CA, CBAM, SE, and SK. The effectiveness of this approach is 

verified through experiments conducted in four typical 

scenarios—bar, kitchen, activity room, and dining area—within 

the NICE2035 open community in Shanghai. Our research 

demonstrates that the proposed YOLO-STP community 

pedestrian activity analysis network model achieves an optimal 

detection accuracy of up to 98.47%. In testing on the COCO-

2017 open-source dataset, the YOLO-STP method exhibits 

significant advantages compared to other networks of the same 

type. 

 

2. METHODOLOGY 

2.1 Basic Structure of YOLO v5 Deep Learning Network 

The fundamental network structure employed in this study is 

based on the YOLO v5 architecture, with the schematic diagram 

of the network structure illustrated in Figure 1. The network 

primarily comprises four components: Input, Backbone, Neck, 

and Head. 
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Figure 1. Schematic diagram of YOLO v5 network structure. 

 

Compared to the traditional YOLO series network (Diwan et al., 

2023), the YOLO v5 network offers advantages across the four 

main components. Firstly, at the input stage, several optimization 

points are introduced: (1) Mosaic data augmentation is used for 

random scaling, cropping, and layout operations on small targets. 

(2) Adaptive anchor box calculation is incorporated, initially 

setting the length and width dimensions of the anchor box, 

outputting a prediction box, comparing it with the actual box, and 

updating and optimizing the parameters in reverse. (3) The 

minimal amount of black edges is added to the original image 

through adaptive image scaling, calculating the scaling ratio and 

scaled size, and further determining the value of black edge 

background filling. 

 

Secondly, in the Backbone section, two optimization points are 

introduced: (1) Slicing operations are conducted using the Focus 

structure, and the YOLO v5s network selected in this study 

employs 32 convolutional kernels. (2) Two CSP structures are 

defined, corresponding to (C3_1) and (C3_2) in Figure 3. The 

first CSP structure is applied to the Backbone section, while the 

second CSP structure is utilized in the Neck section. 

 

Lastly, at the output stage, CIOU_Loss is employed as a loss 

function, and DIOU_NMS non-maximum suppression is also 

used, significantly improving the detection of overlapping and 

occluded targets. 

 

2.2 Principles of Multiple Attention Mechanism Modules 

In order to optimize the traditional YOLO v5 network structure, 

this study incorporates the attention mechanism module. Here, 

we briefly introduce the basic principles of five attention 

mechanism modules: SA (Shuffle Attention), CA (Channel 

Attention), CBAM (Convolutional Block Attention Module), 

SEAttention (SENet Attention), and SKAttention (Selective 

Kernel Attention). 

2.2.1 ShuffleAttention Mechanism Module (SA) 

The design concept of the ShuffleAttention attention mechanism 

module integrates group convolution, spatial attention 

mechanism, and channel attention mechanism, utilizing Channel 

Shuffle to fuse information between different groups. The 

network structure of this module is depicted in Figure 2 (Zhang 

et al., 2021). 

 
Figure 2. Schematic diagram of SA attention mechanism 

module. 

 

As illustrated in Figure 3, the tensor is initially divided into g 

groups, with each group internally processed using the SA Unit. 

SA is further divided into spatial attention mechanisms, as 

demonstrated in the blue section. This specific implementation 

employs GroupNorm (GN) to obtain spatial dimension 

information. The channel attention mechanism utilized internally 

by SA is depicted in the green section, with its specific 

implementation resembling the SE attention mechanism module 

described below. The SA Unit integrates information within the 

group through Concate. Lastly, the Channel Shuffle operation is 

used to rearrange the groups, enabling information flow between 

different groups. 

 

2.2.2 Coordinate Attention Mechanism Module (CA) 

The CA attention mechanism module aims to enhance the 

expression ability of learning features in mobile networks. It can 

transform and change any intermediate feature tensor X =
[𝑥1, 𝑥2, … , 𝑥𝑐] ∈ 𝑅𝐻×𝑊×𝐶 in the network and output tensor Y =
[𝑦1, 𝑦2, … , 𝑦𝑐] ∈ 𝑅𝐻×𝑊×𝐶 of the same size. The implementation 

process of CA attention mechanism is shown in Figure 3 (Hou et 

al., 2021). 

 

 
Figure 3. Schematic diagram of CA attention mechanism 

module. 

 

To acquire attention on image width and height while encoding 

precise position information, CA initially divides the input 

feature map into two directions: width and height. Global average 

pooling is then performed to obtain feature maps in both 

directions, as illustrated in formulas (1) and (2). 

 

𝑍𝑐
ℎ(ℎ) =

1

𝑊
∑ |𝑥𝑐(ℎ, 𝑖)0≤𝑖≤𝑊           (1) 

 

𝑍𝑐
𝑤(𝑤) =

1

𝐻
∑ |𝑥𝑐(𝑗, 𝑤)0≤𝑗≤𝐻         (2) 

 

Then, the feature maps of the width and height of the global 

Receptive field are spliced together, and then they are sent to the 

shared convolution core as the convolution module of 1×1, 

whose dimension is reduced to the original C/r, and then the 

feature map F1 after batch normalization is sent to the sigmoid 

activation function to get the feature map f shaped like 1×(W+H)

×C/r, as shown in the formula (3). 

 

𝑓 = 𝛿(𝐹1([𝑧
ℎ , 𝑧𝑤]))                       (3) 

 

Then, the feature map f is convolved into 1×1 according to the 

original height and width to obtain the feature map 𝐹ℎ  and 𝐹𝑤 

with the same channel number as the original. After the sigmoid 
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activation function, the attention weight 𝑔ℎ  in the height and 

width of the feature map and the attention weight 𝑔𝑤 in the width 

direction are obtained respectively. As shown in formulas (4) and 

(5). 

 

𝑔ℎ = 𝜎(𝐹ℎ(𝑓
ℎ))                         (4) 

 

𝑔𝑤 = 𝜎(𝐹𝑤(𝑓
𝑤))                         (5) 

 

After the above calculation, the attention weight 𝑔ℎ in the height 

direction and the attention weight 𝑔𝑤 in the width direction of 

the input feature map will be obtained. Finally, by multiplying 

and weighting the original feature map, the final feature map with 

attention weights in the width and height directions will be 

obtained. The formula is shown in (6). 

 

𝑦𝑐(𝑖, 𝑗) = 𝑥𝑐(𝑖, 𝑗) × 𝑔𝑐
ℎ(𝑖) × 𝑔𝑐

𝑤(𝑗)             (6) 

 

2.2.3 CBAM Attention Mechanism Module (CBAM) 

CBAM (Woo et al., 2018) and BAM both employ channel 

attention modules and spatial attention modules. However, the 

distinction between them lies in the arrangement of these 

modules: BAM's channel attention and spatial attention modules 

are parallel, whereas CBAM connects them in series. CBAM first 

processes the input features using a channel attention module, 

followed by a spatial attention module. The overall structure is 

illustrated in Figure 4. 

 

 
 

Figure 4. Schematic diagram of CBAM attention mechanism 

module. 

 

From the overall structure of CBAM, it can be seen that if the 

input feature is F, the feature map of channel attention is M𝑐, the 

output feature of channel attention in CBAM is F’, the spatial 

attention feature map is M𝑠, and the output through the spatial 

attention module is F’’, the mathematical expression of CBAM 

is shown in formula (7) (8). 

 

𝐹′ = 𝑀𝐶(𝐹)                            (7) 

 

𝐹′′ = 𝑀𝑠(𝐹)                            (8) 

 

To extract more channel feature information, the channel 

attention module of CBAM incorporates maximum pooling and 

average pooling layers before the MLP (Multi-Layer Perceptron). 

Simultaneously, the use of two pooling layers enables the 

extraction of more refined feature information, enhancing the 

network's expressiveness. The channel attention module is 

depicted in Figure 5. 

 

 
Figure 5. Channel attention mechanism of CBAM. 

 

The mathematical expression of the channel attention module is 

shown in (9). 

 

𝑀𝑐(𝐹) = 𝜎(𝑀𝐿𝑃(𝐴𝑣𝑔𝑃𝑜𝑜𝑙(𝐹)) + 𝑀𝐿𝑃(𝑀𝑎𝑥𝑃𝑜𝑜𝑙(𝐹)))     (9) 

 

It can be seen from the mathematical expression and figure that 

the input feature F is input into a shared multi-layer perceptron 

after being maximally pooled and averagely pooled respectively, 

and then the two features output from the multi-layer perceptron 

network are superimposed and input into the activation function 

to finally obtain F′. 
 

The spatial attention module of CBAM also incorporates 

maximum pooling and average pooling, resulting in three fewer 

convolutions compared to BAM. The overall structure is 

illustrated in Figure 6. 

 

 
Figure 6. Spatial attention mechanism of CBAM. 

 

It can be seen from Figure 7 that after the input F has passed the 

maximum pooling and the average pooling, input a 7 × 7 

convolution, and finally input it into the activation function. The 

corresponding mathematical expression is shown in (10). 

 

𝑀𝑠(𝐹) = 𝜎(𝑓7×7([𝐴𝑣𝑔𝑃𝑜𝑜𝑙(𝐹);𝑀𝑎𝑥𝑃𝑜𝑜𝑙(𝐹)]))          (10) 

 

2.2.4 SENet Attention Mechanism Module (SE) 

SENet (Hu et al., 2019) is a plug-and-play attention module 

proposed by Hu et al. in 2017, designed to learn specific 

information in deep networks and generally used after 

convolutional modules. The overall structure of the SENet 

module is depicted in the figure. The module primarily performs 

three operations on the convolutional feature maps: Squeeze, 

Excitation, and Scale. The overall structure is illustrated in Figure 

7. 

 

 
 

Figure 7. SE module schematic diagram. 

 

In the Squeeze operation, the feature maps are primarily 

converted into 1×1×C vectors through global pooling, where C 

represents the number of channels. Through this method, we 

achieve spatial compression, where the number of bold channels 

represents the evaluation scores on the corresponding channels. 

The operation is demonstrated in equation (11). 

 

𝑧𝑐 = 𝐹𝑠𝑞(𝑢𝑐) =
1

𝐻×𝑊
∑ ∑ 𝑢𝑐(𝑖, 𝑗)

𝑊
𝑗=1

𝐻
𝑖=1              (11) 

 

In the Excitation operation, to establish a correlation model 

between channels, two fully connected layers are employed, 

along with a ReLU activation function to perform nonlinear 

transformation between channel features. After learning, weights 

are generated for each feature channel. The formula is illustrated 

in equation (12). 

 

s = 𝐹𝑒𝑥(𝑍,𝑊) = 𝜎(𝑔(𝑍,𝑊)) = 𝜎(𝑊2𝛿(𝑊1𝑍))      (12) 
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In the Scale operation, the goal is to multiply the channel weights 

obtained after the Excitation operation with the two-dimensional 

matrix of the corresponding channel in the original feature map. 

In other words, weighting the original spatial graph in the channel 

direction. The formula is illustrated in equation (13). 

 

�̃�𝑐 = 𝐹𝑠𝑐𝑎𝑙𝑒(𝑢𝑐 , 𝑠𝑐) = 𝑠𝑐𝑢𝑐                   (13) 

 

2.2.5 Selective Kernel Attention Mechanism Module (SK) 

In standard convolutional neural networks (CNNs), the receptive 

field of each layer of artificial neurons is designed to share the 

same size. It is well known in the field of neuroscience that the 

size of the receptive field of neurons in the visual cortex is 

regulated by stimulation; however, stimulation is seldom 

considered when constructing CNNs. This paper introduces a 

dynamic selection mechanism in CNNs, allowing each neuron to 

adjust its receptive field size adaptively according to the multi-

scale input information. A building block called Selective Kernel 

(SK) unit is designed, wherein multiple branches of different 

kernel sizes are fused using softmax attention guided by the 

information in these branches. Different attention to these 

branches leads to different sizes of effective receptive fields for 

neurons in the fusion layer. Multiple SK units are stacked in a 

deep network called Selective Kernel Networks (SKNets), 

forming the SKAttention attention mechanism module (Li et al., 

2019). The structural diagram of the SKAttention attention 

mechanism module is shown in Figure 8. 

 

 
Figure 8. SKAttention module structure diagram. 

 

The main processing process of this module is divided into the 

following three parts: 

 

(1) Split: Perform complete convolution operations (group 

convolution) on the input vector X with different kernel sizes. 

Specifically, in order to further improve efficiency, replace the 

traditional convolution of 5x5 with a hollow convolution with 

dimension=2 and a convolution kernel of 3 × 3; 

 

(2) Fuse: After adding two feature maps, perform a global 

average pooling operation. The fully connected layer that first 

reduces dimensionality and then increases dimensionality is a 

two-layer fully connected layer. The output two attention 

coefficient vectors a and b, where a+b=1; 

 

(3) Select: Select uses two weight matrices, a and b, to weight the 

previous two feature maps, and there is an operation similar to 

feature selection between them. 

 

2.3 Construction of YOLO-STP Pedestrian Target 

Detection Network 

In this study, based on the architecture of YOLO v5s, we 

introduced a multi-channel SKAttention mechanism to optimize 

the Neck part of the network, a TransformerV2 structure to 

optimize the Backbone part (Liu et al., 2022), and a Decoupled 

structure to improve the Head part (Liu et al., 2018). Overall, we 

formed a YOLO-STP network suitable for multi-scene pedestrian 

target recognition in open communities. The network structure 

diagram is shown in Figure 9. 

 

 
Figure 9. Schematic diagram of YOLO-STP network structure. 

 

The channel attention mechanism used in Figure 9 is the 

SKAttention module, which was discussed in the previous 

section and also uses the Decoupled structure. The schematic 

diagram of this structure is shown in Figure 10. 

 

 
Figure 10. Decoupled structure diagram. 

 

The improvement of the Head section using this structure mainly 

takes into account the different focuses of classification and 

localization; therefore, using different branches for operations is 

beneficial for improving effectiveness. For instance, to avoid a 

significant increase in computational complexity when using the 

Decoupled Head structure in Figure 10, for each level of FPN 

features, we first employ a transformation layer to reduce the 

feature channel to 256. Subsequently, we add two parallel 

branches, each with two sets of three transformation layers for 

classification and regression tasks. Compared to the traditional 

Head structure of the YOLO network, this approach further 

enhances the detection effect and speed. 

 

In this study, we innovatively introduce the structural layer of the 

new version of Transformer V2 to address the issues faced by the 

traditional Transformer V1 structural layer (Liu et al., 2022). The 

main improvement is reflected in the red marked part in Figure 

11. The traditional Transformer V1 structural layer encounters 

three main problems: (1) significant training instability may 

occur when increasing the size of the visual model; (2) in many 

downstream tasks that require high resolution, there has not been 

a well-explored method for migrating models trained at low 

resolution to larger scale models; and (3) in complex background 

environments, a small number of pixels can cause significant 

overall interference. 
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Figure 11. Improvement of V2 relative to V1 version. 

 

To address the first issue, the problem of unstable training, the 

post-norm approach is adopted, which moves the Layer Norm 

layer in the Transformer block from the front to the back of the 

Attention layer. The advantage of doing so is that after 

calculating the Attention, the output will be normalized, 

stabilizing the output value. This modification helps to improve 

the training stability of the model, especially when increasing the 

size of the visual model. 

 

To address the second issue, this module employs log-space 

continuous position bias technology to transfer low-resolution 

pre-trained models to high-resolution models. Instead of using 

the traditional method, the continuous position offset method is 

adopted. The principle of this method is shown in equation (14), 

where a meta-network is used for relative coordinates. This 

technique enables the smooth migration of models trained at low 

resolutions to larger-scale models, improving their performance 

in downstream tasks that require high resolution. 

 

𝐵(∆𝑥, ∆𝑦) = 𝐺(∆𝑥, ∆𝑦)                     (14) 

 

In equation (14), G represents a small network that generates bias 

parameters for any relative coordinate, enabling the migration of 

any variable window size. To address the issue of having a large 

proportion of relative coordinate ranges that require extrapolation 

when migrating across large windows, the log space continuous 

position bias technology is introduced here. Further details 

regarding this technology are presented in (15). 

 

{
∆�̂� = 𝑠𝑖𝑔𝑛(𝑥) ∙ log (1 + |∆𝑥|)

∆�̂� = 𝑠𝑖𝑔𝑛(𝑦) ∙ log (1 + |∆𝑦|)
                    (15) 

 

The logarithmic operation is used here because it reduces the 

extrapolation ratio required for block resolution transfer. This can 

help in the migration of low-resolution pre-trained models to 

high-resolution models, making it easier to transfer information 

across larger window sizes. 

 

To address the third issue, we observed that in the V1 version of 

self-attention calculation, the dot product of query and key is 

used to calculate the similarity of pixel pairs. However, in 

scenarios with a large amount of data, certain modules and heads 

may be dominated by a small number of pixel pairs in the 

attention maps. To alleviate this problem, we adopt the Scaled 

Cosine Attention (SCA) method (Liu et al., 2022), which is 

shown in formula (16). 

 

𝑆𝑖𝑚(𝑞𝑖 , 𝑘𝑖) = 𝑐𝑜𝑠(𝑞𝑖 , 𝑘𝑖) /𝜏 + 𝐵𝑖𝑗                  (16) 

 

3. EXPERIMENT AND RESULTS 

3.1 Data collection and preprocessing 

The experiment was conducted at the NICE2035 open 

community space located near Tongji University in Yangpu 

District, Shanghai ( Lou et al., 2018; Wang et al., 2022; Wang et 

al., 2021). For this study, we selected four typical scenarios, 

namely the kitchen, activity room, dining area, and bar scene, to 

construct and deploy visual sensor networks. These areas were 

all located in the same spatial and temporal environment, and a 

unified visual sensor network was used for data collection and 

time synchronization to ensure that data processing was carried 

out under a unified time benchmark. Figure 12 (a) shows the four 

data collection areas, while Figure 13 (b) shows the unified visual 

sensor network. 

 

 
Figure 12. Schematic diagram of experimental scenario 

selection and data collection. 

 

To analyze pedestrian data in the four scenarios, we recorded 

video data over a 5-day period from December 6 to 10, 2021, 

corresponding to Monday to Friday, for each scenario. This 

allowed for an analysis of pedestrian activities in open 

communities. To train a pedestrian target recognition dataset 

applicable to multiple scenarios in open communities, we 

extracted 7002 images with pedestrian targets at a time interval 

of 100 seconds from the video data collected during the 

experimental period. The pedestrian targets were labeled through 

human marking, and we created the TJ-Person dataset for further 

research, consisting of 6301 images in the training set and 701 

images in the validation set. The VPIMT Software was used for 

data labeling, which can process video data and label pedestrian 

targets, and can be obtained through the following link:  

https://github.com/17863958533/VPlabelImg_LYY. The TJ-

Person dataset is developed to analyze the activity patterns of 

individuals in open community spaces by considering the 

functionality of individuals in space, the continuity of time, and 

the distinct characteristics of different scenarios. Unlike 

traditional datasets like ETH Pedestrian, CityPersons, and KITTI, 

which solely focus on personnel identification and testing, video 

datasets centered on open community spaces provide an 

opportunity to delve deeper into the activity patterns of 

individuals across various scenarios. This expanded scope of data 

analysis moves beyond mere model effectiveness comparison 

and holds practical research value. 

 

3.2 Comparison of Multiple Attention Mechanism 

Improvement Methods 

To select the optimal attention mechanism module from the 

available options, this study conducted experiments by 
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introducing the five attention modules mentioned earlier to the 

traditional YOLO v5s network architecture for comparison. The 

initial parameters for comparison were set to epoch=10, 

batchsize=16, and imagesize=640. After comparison, the best-

performing attention mechanism network structure was selected 

and adopted. The TJ-Person dataset, as mentioned earlier in this 

article, was used in this section for the experiments. 

 

As presented in Figure 13, this study compares the effects of 

introducing different attention mechanisms to the YOLO v5 deep 

learning model. Five attention mechanisms, namely CA, CBAM, 

SE, SA, and SK, are compared to demonstrate the effectiveness 

of the YOLO STP method proposed in this study. Figure 13 (a) 

shows that the introduction of the SK attention mechanism 

effectively improves the performance of the model on the train 

loss and object loss indicators, and the proposed method performs 

the best among these indicators. Figure 13 (b) indicates that the 

introduction of the SK attention mechanism improves the F1 

Score index of the model in community pedestrian recognition 

compared to other attention mechanisms during early training. 

Similarly, the model performance proposed in this study is the 

best. Figure 13 (c) shows that the introduction of the SK attention 

mechanism improves the mAP50 and mAP50:90 indicators 

during early training compared to other attention mechanisms. 

Although the mAP50 index of the model in this study is slightly 

lower than that of the SK attention mechanism during early 

training, it reaches its optimal level after later training. For the 

mAP50:90 index, the model proposed in this study performs the 

best. Figure 13 (d) reveals that although the model proposed in 

this study has an average accuracy in the early stage compared to 

other models that introduce attention mechanisms, it still 

achieves highly competitive performance after 10 rounds of 

training. 

 

In summary, it is evident that the introduction of the SKAttention 

attention mechanism has a positive effect on the model testing in 

this study, as indicated by the evaluation of multiple indicators. 

Moreover, the YOLO-STP model proposed in this paper has 

achieved the best performance in the evaluation of multiple 

indicators. 

 

 
(a)                                  (b) 

 
(c)                                  (d) 

Figure 13. Comparison of Model Improvement Methods for Multiple Attention Mechanisms, (a) Comparison of Precision Loss; (b) 

F1 Score curve comparison chart; (c) MAP curve comparison chart; (d) Comparison of detection accuracy curves. 

 

3.3 Comparative testing of pedestrian recognition testing 

effectiveness in various community scenarios 

In order to demonstrate the effectiveness of various attention 

mechanisms in improving the YOLO v5 model for pedestrian 

recognition, this study compared the performance of six different 

methods for detecting pedestrian targets on both the TJ-Person 

dataset and the COCO-2017 dataset (Kim et al., 2019). A test set 

of 15 untrained and unverified images was selected from each of 

the four scenes in the TJ-Person dataset, while in COCO-2017, 

20 images were chosen from each of the four scenarios with 

complex backgrounds, clean backgrounds, light changes, and 

numerous interference from detection targets. Four 
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representative images were selected for comparison and display. 

The comparison results of different models are summarized in 

Table 1, while the detailed comparison results of the test set are 

shown in Figure 14. 

 

Table 1. Comparison of pedestrian recognition accuracy of models in multiple scenarios using the TJ-Person dataset 

Training 

configuration 

Model 

improvement 

methods 

mAP50(%) mAP50:90(%) 
F1-Score 

(%) 

Optimal 

detection 

accuracy (%) 

Dataset： 

TJ-Person 

YOLO v5s 99.08 80.97 97.59 97.39 

+ShuffleAttetion 99.03 78.77 97.37 98.05 

+CA 99.03 78.76 97.66 97.89 

+CBAM 99.08 77.94 97.64 97.21 

+SEAttention 98.92 78.73 97.72 97.76 

+SKAttention 99.06 78.74 97.71 97.79 

YOLO-STP 99.13 79.00 97.86 98.47 

Dataset： 

COCO-2017 

YOLO v5s 69.28 39.39 67.05 73.82 

+ShuffleAttetion 66.84 36.82 65.10 73.00 

+CA 67.13 37.41 65.56 73.57 

+CBAM 66.81 36.56 65.04 70.66 

+SEAttention 66.46 36.34 64.99 72.64 

+SKAttention 67.98 38.19 66.22 73.18 

YOLO-STP 70.02 40.09 67.90 74.92 

 

Based on the experiments conducted on the TJ-Person dataset, it 

was observed that the SEAttention method had the lowest 

mAP50 index of 98.92%, while the proposed YOLO-STP 

method had the highest mAP50 index of 99.13%, which was 0.05% 

higher than the second-ranked YOLO v5s method. Furthermore, 

it was found that the CBAM method had the lowest mAP50:90 

index of 77.94%, while the YOLO v5s method had the highest 

mAP50 index of 80.97%, followed by the proposed YOLO STP 

method with a mAP50 index of 79.00%. The detailed comparison 

results on the TJ-Person dataset are shown in Table 1, and the 

comparison of the detection results on the test set is shown in 

Figure 14. 

 

Based on the experiments conducted on both TJ-Person and 

COCO-2017 datasets, the results indicate that the proposed 

YOLO-STP method with SKAttention mechanism outperforms 

other existing methods. The mAP50 index for TJ-Person dataset 

testing is 99.13%, which is the highest among all tested methods, 

while the mAP50:90 index for COCO-2017 dataset testing is 

40.09%, also the highest among all tested methods. In addition, 

the YOLO-STP method shows a consistent improvement in 

performance across all tested indicators compared to other 

methods. Therefore, the proposed YOLO-STP method can be 

effectively applied to pedestrian target recognition in open 

communities. 

 

Overall, the results in Table 1 demonstrate that the proposed 

YOLO-STP model performs well on both the TJ-Person dataset 

and the public COCO-2017 dataset, outperforming other 

improved YOLO v5 models. This indicates that the YOLO-STP 

model is the optimal choice for pedestrian target monitoring in 

open communities using the YOLO v5 series. 
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(a) Four types of scenario testing in the TJ-Person dataset 
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(b) Four types of scenario testing in the COCO-2017 dataset 

Figure 14. Comparison of YOLO-STP network and various improved YOLO networks in different scenarios. (a) represents the 

situation of the TJ-Person dataset, and these four types of scenarios are bar, kitchen, activity room, and dining area scenarios from 

left to right; (b) Representing the situation of the COCO-2017 dataset, these four types of scenes are sequentially classified from left 

to right as scenes with complex backgrounds, clean backgrounds, varying lighting, and high target interference. 

 

As depicted in Figure 14, our proposed YOLO-STP model 

consistently achieved excellent results compared to other 

methods for improving the model when tested on the TJ-Person 

dataset. This demonstrates that the YOLO-STP model has high 

reliability in recognizing pedestrian targets in open communities. 

 

Based on the testing results on the COCO-2017 dataset, we can 

conclude that the YOLO-STP model proposed in this article has 

superior performance compared to other attention mechanism 

methods in recognizing pedestrian targets in complex 

backgrounds and detecting a large number of targets. Meanwhile, 

it also shows good performance in clean backgrounds and 

changes in light. On the other hand, the SEAttention and 

SKAttention methods have flaws in target duplicate detection, 

and the CBAM method has the lowest mAP50:90 index. These 

results further demonstrate the effectiveness and reliability of the 

YOLO-STP model in open community pedestrian target 

recognition tasks. 

 

In summary, our experimental results under different scenario 

conditions demonstrate the high reliability and availability of the 

YOLO-STP method proposed in this article, both in the TJ-

Person dataset testing and in the COCO-2017 public dataset 

testing. It exhibits superior performance in multiple scenarios, 

indicating the effectiveness and potential of our proposed method 

in the open community pedestrian target monitoring tasks. 

 

4. CONCLUSIONS 

In this article, we conducted a detailed evaluation of the 

performance of the YOLO-STP network in dealing with 

pedestrian target recognition problems in open community multi 

scene spaces. To validate the effectiveness of the method, we 

constructed a pedestrian target recognition image dataset called 

TJ-Person, which covers four typical scenarios of a bar, kitchen, 

activity room, and dining area in the NICE2035 open community 

in Shanghai. The experimental results show that the improved 

YOLO STP network achieved an optimal detection accuracy of 

up to 98.47% in these scenarios, which has significant advantages 

compared to the original YOLO v5s network and other similar 

networks. 

 

In addition, we also tested the YOLO-STP network on the 

COCO-2017 open source dataset to further validate its 

performance. The experimental results show that compared with 

other similar networks, the YOLO-STP network has higher 

recognition accuracy on the COCO-2017 dataset. This result 

further proves the effectiveness and applicability of YOLO-STP 

network in pedestrian target recognition in open community 

multi scene spaces. 

 

However, although the YOLO-STP network has shown high 

recognition accuracy in experiments, there are still some 

limitations and potential room for improvement. For example, in 

scenes with severe occlusion, complex lighting conditions, or 
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high background noise, the performance of the network may be 

affected. In order to address these challenges, future research can 

explore more effective attention mechanisms and other advanced 

computer vision technologies to further improve the performance 

of YOLO-STP networks in handling pedestrian target 

recognition problems in open community multi scene spaces. 
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