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ABSTRACT:

Satellite remote sensing has gained a key role for vegetation mapping distribution. Given the availability of multi-temporal satellite
data, seasonal variations in vegetation dynamics can be used trough time series analysis for vegetation distribution mapping. These
types of data have a very high variability within them and are subjected by artifacts. Therefore, a pre-processing phase must be
performed to properly detect outliers, for data smoothing process and to correctly interpolate the data. In this work, we compare
four pre-processing approaches for functional analysis on 4-years of remotely sensed images, resulting in four time series datasets.
The methodologies presented are the results of the combination of two outlier detection methods, namelytsclean and boxplot

functions in R and two discrete data smoothing approaches (Generalized Additive Model ”GAM” on daily and aggregated data).
The approaches proposed are: tsclean-GAM on aggregated data (M01), boxplot-GAM on aggregated data (M02), tsclean-
GAM on daily data (M03), boxplot-GAM on daily data (M04). Our results prove that the approach which involves tsclean

function and GAM applied to daily data (M03) is ameliorative to the logic of the procedure and leads to better model performance
in terms of Overall Accuracy (OA) which is always among the highest when compared with the others obtained from the other three
different approaches.

1. INTRODUCTION

In the last four decades, satellite remote sensing has gained a
key role for vegetation and habitat distribution mapping (Zlin-
szky et al., 2015). The habitat distribution can be properly rep-
resented by vegetation map, which, when repeated over time,
are useful to assess their preservation (Dash and Ogutu, 2016,
Viciani et al., 2016). Given the availability of multi-temporal
satellite data, seasonal and inter-annual variations in vegetation
dynamics (phenology) can be quantified trough time series ana-
lysis and used for vegetation distribution mapping (Caparros-
Santiago et al., 2021). These types of data have a very high
variability within them, due to the fact that they are derived
from satellite images acquired at different time periods, using
different sensors, capturing constantly changing dynamics, with
ever-changing weather conditions and with solar radiance in-
clination which creates shadows and reflections caught by the
sensors (Meraner et al., 2020). Furthermore, if we add to this
the technological issues which may occur when dealing with
artificial instrumentation (e.g., of sensor malfunctions), we can
immediately realize that the data must be fixed before being
used for different purposes. The most challenging spectral re-
flectance abnormal values are often caused by adverse weather
conditions, undetected sub-pixel cloud cover, atmospheric dust
and gaseous absorbers but also seasons lighting variations,
soil-induced disturbances, shading, or sensor glitches (Alvera-
Azcárate et al., 2012). All of them are generally referred to as
artifacts (Du et al., 2003) and must be removed from the time-
series. These artifacts can alter the temporal pattern of reflect-
ance values, causing a reduction in the accuracy of the pheno-
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logical estimations (Clark et al., 2002). Therefore, in order to
process the data correctly, it is necessary to implement a data
pre-processing phase. Given the very large variability of the
data and, consequently, the outliers occurrence, it is essential to
operate through diversified methods for the detection of those
anomalies to obtain a representative output of the vegetation to
classify (Jackson and Chen, 2004). A knowledge about what
is intended to classify is fundamental because outliers detection
also comes through a deep awareness concerning the expected
value of a given class. Without such background, which only
the user’s experience can provide, information might be lost
that, instead, is essential to the classifier. Hence, smoothing of
the discrete data becomes a key phase to achieve accurate clas-
sification models which describe detailed vegetation dynamics
and reduce as good as possible the outlier (Zeng et al., 2020).
Considering these issues, it is necessary to use appropriate ap-
proaches (i.e data smoothing and outliers detection methods)
that will mitigate the noise effects of time-series from satellite
imagery (Santos et al., 2021). The greater the care and atten-
tion in this step, the higher the quality of the data that will be
processed and, hence, the output that will be obtained. In stat-
istics, smoothing consists in the application of a function filter
aimed to highlight relevant patterns by mitigating noises gen-
erated by environmental, computational, or physiological arti-
facts (Atkinson et al., 2012). The presence of time gaps, given
by the missing data due to both the satellite temporal resolution
and the artifacts, makes it necessary to deal also with a data
interpolation phase that will allow to obtain a continuous func-
tion throughout the year. The interpolation process consists to
average the data in a series with contiguous values to describe
a pattern, but considering these values in a cyclic way given by

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-1/W1-2023 
ISPRS Geospatial Week 2023, 2–7 September 2023, Cairo, Egypt

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-1-W1-2023-33-2023 | © Author(s) 2023. CC BY 4.0 License.

 
33



their annual nature. Interpolation process can either precede or
even be followed by a data aggregation phase. The data, in or-
der to provide valuable insights for the resulting classification,
can be processed through functional data analysis (FDA) (Hur-
ley et al., 2014). The latter must represent discrete data as func-
tions, as the FDA needs to analyze the data as a single function
rather than a set of point values spread over time (Pesaresi et al.,
2022). Therefore, to work by functional analysis, a proper out-
lier detection step, data smoothing phase and data interpolation
can not be ignored.

With this papers, we want to figure out a suitable strategy
to adopt when processing time-series, through the comparison
among the classification accuracies obtained. Thus, we com-
pared the outputs of four data pre-processing approaches. The
approaches presented are the results of the combination of two
outlier detection options (tsclean function in forecast pack-
age (Hyndman and Khandakar, 2008) and boxplot function
in graphics package (Murrell, 2005)) and two discrete data
smoothing approaches (Generalized Additive Model ”GAM”
(Wood, 2006) on daily and aggregated data). The approaches
proposed are: tsclean-GAM on aggregated data (M01),
boxplot-GAM on aggregated data (M02), tsclean-GAM on
daily data (M03), boxplot-GAM on daily data (M04).

The main contribution of this work is to perform four dif-
ferent satellite image time series pre-processing approaches,
combining two outliers detection methodology (tsclean and
boxplot) and a data smoothing technique (GAM) applied to
differently aggregated datasets, testing them within 2 study
areas with a combination of predictors and vegetational indi-
cies.

2. MATERIALS AND METHODS

2.1 Study Areas

2.1.1 Frasassi Gorge The study area overlaps with the Spe-
cial Area of Conservation ”Gola di Frasassi IT5320003”, cover-
ing an area of 728 ha within the Rossa and Frasassi Gorge Re-
gional Natural Park between the municipalities of Genga and
Fabriano, in the province of Ancona. The Frasassi gorge is
placed inside the anticline of Mount Valmontagnana - Mount
Frasassi, in the pre-Apennine mountain belt. The peak eleva-
tion of the site is 931.2 m.a.s.l. at ”Monte di Valmontagnana”,
while the minimum elevation measured is 200 m.a.s.l. at the
edge of the Esino river’s left bank.

2.1.2 Conero Mount This study area is part of the ter-
ritory in between the Special Areas of Conservation ”Monte
Conero IT5320007” and ”Portonovo e falesia calcarea a mare
IT5320007”. It covers an area of 650 hectares within the
Conero Regional Natural Park in the province of Ancona,
between the municipalities of Sirolo and Ancona. Conero
mount is a limestone promontory of 582 m.a.s.l., being the only
stretch of limestone coastline from Trieste to Gargano, it in-
terrupts the continuous low and sandy shoreline typical of the
Adriatic coast.

2.2 Dataset Collection and Processing

The dataset used are the ones validated on two previous
works (Pesaresi et al., 2020, Pesaresi et al., 2022). The eco-
logical variability of this data will then allow to define the best
applicable method in different scenarios. In the Conero mount

study area, on the basis of the vectors used in (Pesaresi et al.,
2022) paper (Figure 1), the vegetation categories identified are 4
and are distributed over 175 points: thermophilic woods with a
prevalence of Quercus ilex (Cyclamino hederifolii - Quercetum
ilicis); mesophilic woods with a prevalence of Quercus ilex
(Cephalanthero longifoliae - Quercetum ilicis sub. ruscetosum
hypoglossi); Ostrya carpinifolia-dominated woodlands (Aspar-
ago acutifolii - Ostryetum carpinifoliae); coniferous reforesta-
tion(Biondi, 1986, Biondi, 1982).

Figure 1. Conero mount study area.

In the Frasassi gorge study area, according to the vectors used
in (Pesaresi et al., 2022) research (Figure 2), the described ve-
getation categories are 8 and distributed in 242 points: broom
bushes (Spartio juncei - Cytisetum sessilifolii var. a Spar-
tium junceum); junipers bushes (Spartio juncei - Cytisetum
sessilifolii var. with Juniperus oxycedrus and Juniperus com-
munis); forests dominated by Quercus ilex (Cephalanthero
longifoliae - Quercetum ilicis); mosaic of garrigue and scrub;
Ostrya carpinifolia-dominated woodlands (Scutellario colum-
nae - Ostryetum carpinifoliae), grasslands (Asperulo purpureae
- Brometum erecti); Quercus pubescens-dominated woodlands
(Cytiso sessilifolii - Quercetum pubescentis); Pinus sp. reforest-
ation(Biondi and Casavecchia, 2002, Allegrezza et al., 2020).

The images have been acquired by the Sentinel-2A and
Sentinel-2B satellite platforms, both managed by the European
Space Agency (ESA) as part of the European Copernicus plan
(Pesaresi et al., 2022). For each study area, 93 L2A images
referable to the period between April 2017 and March 2020
have been collected using the sen2r package. The satellite
imagery acquisition frequency permits to aggregate in accord-
ance with defined temporal intervals. They can be aggregated
by year, month (semester, trimester, bimester), week (weeks,
biweeks) or days of the year (DoY). Sentinel-2 acquisition
frequency allows for a weekly aggregation time, allowing for
time-series composed of 52 values. The images have been co-
registered, cropped with the shapefiles matching the limits of
the study areas and masked by the cloud cover. Seven vegeta-
tion indices have been computed for each of these images and
each one has been used as prediction variable. Additionally we
used the FPCA to group the information related to the curves’
temporal variability into a set of main components. The coef-
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Figure 2. Frasassi gorge study area.

ficients quantifying the weight of each component and main-
taining the chronological order of the functional variations are
referred to as ”scores” (Pesaresi et al., 2020). We used them,
in total and in a fraction thereof, as second and third predic-
tion variables in this classification. Moreover, we removed
the last component resulting from the FPCA and we recon-
structed the time-series and we used them as the fourth pre-
diction variable. The seven vegetation indices are: Normal-
ized Difference Vegetation Index (NDVI), Modified Chloro-
phyll Absorption in Reflectance Index (MCARI), Green Nor-
malized Difference Vegetation Index (GNDVI), Normalized
Difference Red/Green Redness Index (RI), Normalized Dif-
ference Red-Edge (NDRE), Normalized DIfference Moisture
Index (NDMI), Modified Normalized Difference Water Index
(MNDWI). The proposed classification algorithm is Random
Forest. In order to ease the readability of the manuscript, the
general workflow is reported in Figure 3.

Figure 3. Workflow for the overall accuracy evaluation,
combining the dataset to be subjected to one of the 4

pre-processing approaches.

2.2.1 Outliers Removal Temporal information is obtained
by extracting the capture date and then converting it into the

corresponding day of the year (DoY). Using this information,
data are chronologically sorted and the dataset is thus obtained,
which will be subjected to the outlier detection process. The
detection methods for the anomalous point values are the most
cited in the literature (Willsky et al., 1980, Hu et al., 2021, Ven-
katasubramanian et al., 2003). Among them, the most widely
used are the so-called model-based techniques (Mehrang et al.,
2015, Basu and Meckesheimer, 2007), followed by the density-
based (Tang and He, 2017, Tian et al., 2016, Angiulli and Fas-
setti, 2007) and the histogramming ones (Blázquez-Garcı́a et
al., 2021, Muthukrishnan et al., 2004). In this paper two dif-
ferent methods of point outlier detection are compared: the
tsclean function of the forecast package (Hyndman et al.,
2020) and the boxplot function of the graphics package (Mur-
rell and Murrell, 2020). Both are part of model-based tech-
niques, meaning that a point x at time t can be declared an out-
lier if the distance from its expected value x is greater than a
predefined threshold τ (Formula 1).

|xt − x̂t| > τ (1)

The tsclean function is used to process univariate time series
and the detection of outliers is different for seasonal and non-
seasonal time series (Kandanaarachchi et al., 2020). In this
study the interest is in the former type, where a significant
seasonal component is identified in the variation of the phe-
nomenon. Specifically, the function uses a time series de-
composition method: Seasonal and Trend decomposition using
LOESS (STL) (Cleveland et al., 1990). The STL method em-
ploys location-adapted regression models to deconstruct a time
series into trend, seasonal, and residual components. The STL
algorithm smooths the time series using the locally estimated
scatterplot smoothing (LOESS) method in two cycles: an inner
and an outer cycle. During the inner one, the seasonal and trend
components are calculated. The residual is then found by sub-
tracting these from the time series (Cleveland, 1990). For each
time series, outliers are identified and replaced by interpolation.

In the context of outlier detection methods, the boxplot be-
longs to the techniques using basic statistics. Pixels considered
outliers are those having values placed over X times the in-
terquartile range from the first and third quartiles, and repres-
ented as isolated points in the plot. In this study, the coeffi-
cient X is equal to 1.5, considered as the default value in the
boxplot graphics package function of R. Although groups of
pixels can be processed simultaneously, the function is con-
figured by considering the single pixel as a univariate time
series (Bernard et al., 2012), making the outputs comparable
to those obtained with the tsclean function. As opposed to
the latter, the boxplot function permits to analyze the data by
selecting a chosen time span. Therefore, it is necessary to set a
vector containing the time span that best considers, in an inde-
pendent way, the seasonal variability of the data (a value detec-
ted anomalous on winter is not necessarily anomalous on sum-
mer). In this study, monthly time span has been chosen, based
on the density of observations in the DoYs and their seasonal
distribution.

2.2.2 Data Smoothing The proposed smoothing algorithm
is a Generalized Additive Model (GAM) based on Cyclic Cu-
bic Spline Regression. GAMs are extensions of linear models
in which the predictor is the sum of regular functions plus a
conventional parametric component (Wood and Wood, 2015).
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GAMs allow the configuration of both complex non-linear re-
lationships and inferential statistics by understanding and ex-
plaining the inherent structure of the discrete data dispersion
model (Azzalini and Scarpa, 2012). The Cyclic Cubic Spline
Regression summarises the multi year variability of vegetation
surfaces from satellite imagery into one artificial/ideal year.
The Cyclic Cubic Spline Regression is a function composed
of several connected polynomials designed to interpolate a set
of points into defined intervals, called knots. The number of
knots in which the dataset is divided is set through a process
of cross validation. Separating the dataset into subsets, local-
ized smoothing is achieved and overfitting (given by the global
influence of each point on the fit) is avoided (Faraway, 1992).
The Cyclic Cubic Spline Regression provides the connection
between the first and last knot to consider the temporal nature of
the analyzed curves which describe a continuous trend between
December and January.

Interpolation process is performed by the gam function, of the
mgcv package (Wood and Wood, 2015). The ”GAM on Aggr”
approach involves the GAM application on data previously ag-
gregated by weeks, while the ”GAM on DoY” one applies the
GAM directly on cleaned daily data, not yet aggregated. In the
first case, an early data grouping is carried out, in order to com-
pensate the double collection of images in the same days but
in different years, and subsequently aggregated by weeks. In
the second case, instead, the compensation of double collected
values is carried out directly by GAM, to obtain time-series fit-
ted with 365 values. The latter are then aggregated by weeks,
making the two approaches comparable.

2.3 Predictors

Once that the outliers removal and the data smoothing processes
have been performed with the different approaches, each pixel
value (recorded throughout the 4 years) has been fit in a yearly
time series. The latter presents slight differences according to
the pre-processing approach used, as can be noticed in the figure
4.

The aggregated time-series resulting from approaches M01,
M02, M03, and M04 are the first predictors used in this study
for classification. These are subsequently subjected to FPCA, a
statistical method for variance analysis of functional data (Ullah
and Finch, 2013). It is well adapted to time-series, where indi-
vidual observations are not independent, but rather constrained
by their chronological order. It provides an estimation of dataset
complexity by determining the minimum number of compon-
ents needed to represent the content of the dataset without loss
of information. The ”scores” are the parameters quantifying
the similarities among the time-series: they provide informa-
tion on the position, shape and variation of each curve observed
in the space (Shang, 2014). The main FPCA outputs, besides
the scores, are the eigenvalues and the eigenfunctions. The ei-
genvalues represent the variation explained by each compon-
ent for each time-series. Their sum is equal to the overall data
variance. The components explaining up to 99% of the total
variance are considered to extract a reduced number of scores.
Eigenfunctions, on the other hand, estimate the scores’ value by
describing the largest functional variances for each component
(Hurley et al., 2014). Through these outputs, the original data
(XiK) can be rebuilt as a summation of the product of each score
(Aik) by its eigenfunction (ϕk), plus the mean value (µ) (Wang
et al., 2015) (Formula 2):

Figure 4. NDVI values for a randomly chosen pixel which fit
differently in the function in the different approaches, the black
dots are the single pixel values recorded in the 4 years satellite

imagery used in this paper.

XiK(t) = µ(t) +

K∑
k=1

Aikϕk(t) (2)

Through this process the four predictors used in this study were
obtained: time-series (TS), scores (ST), reduced scores (SR)
and rebuilt time-series (TSR). The classification is performed
by Random Forest. The overall accuracy (OA) is defined by the
proportion of correctly classified pixels by the algorithm and the
total number of pixels used to train the model. The number of
decision trees set in the algorithm is 1500. The Random Forest
training is performed through repeated cross validation. The
latter has been set by the authors and the number of folders [k-
fold] in which the dataset is divided is 10, while the number of
repetitions is 5. All functions used in this section belong to the
caret (Classification and Regression Training) package, which
is specific to the construction of classification models (Kuhn,
2015).

3. RESULTS

In this chapter, the tested combinations for defining our best
pre-processing approach for remote sensed time-series are
shown through boxplot graphs. These various methods, ob-
tained from the 4 pre-processing approaches, using 4 predict-
ors from 7 different vegetation indices in 2 different study areas
resulted in a total of 224 models. The charts summarize the
variability in accuracies generated by the models for the 4 ap-
proaches with respect to the different variables. Therefore, for
each plot, each method is compared individually to either a pre-
dictor, an index, or a study area. All of the accuracies obtained
from the models of each method for each predictor/index/study
area being analyzed are then grouped together. In particular,
each approach/predictor comparison chart groups 56 (224/4)
accuracies. Each approach/index comparison chart groups 32
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(224/7) accuracies. Each approach/area comparison chart con-
tains 112 (224/2) accuracies.

3.1 Approaches and Predictors

The results obtained from the predictors’ classification reveal a
substantial difference between the accuracies achieved. Models
obtained through TS, ST, and SR predictors achieved higher ac-
curacies than those based on TSR (Figure 5). For each method
and index, in both study areas, the TSR thus demonstrate an in-
sufficient models’ accuracy and it cannot be compared to the
other predictor models (Table 1). Therefore, the results ob-
tained from the TSR are not included in the subsequent charts
showing the accuracies achieved by the different approaches
(M01, M02, M03, M04) when compared to the vegetation in-
dices and the study areas. The combination tsclean and GAM
on DoY (M03) proves to perform better than the other ap-
proaches for TS, ST and SR.

M01 M02 M03 M04
TS 72.55 71.35 73.60 72.25
ST 73.30 71.90 76.70 75.20
SR 73.45 72.90 77.50 74.50
TSR 40.10 40.60 40.30 40.35

Table 1. Median accuracy values from models comparing
approaches and predictors.

Figure 5. Approaches versus Predictors.

3.2 Approaches and Vegetation Indices

Analyzing the 32 results obtained for each vegetation index
(Table 2), it can be noted that M03 is the best performing
method for 5 of the 7 indices used (MCARI, NDVI, NDMI,
NDRE, RI) (Figure 6). The M04 method is the best performing
for GNDVI and MNDWI.

3.3 Approaches and Study Areas

As a result of the 112 results obtained for each study area, the
chart (Figure 7) reveals that the M03 method continues to be the
most accurate (Table 3). Each of the 224 combinations of ap-
proaches has generated a map of the analyzed area, along with

M01 M02 M03 M04
GNDVI 68.95 69.55 71.05 71.20
MCARI 65.75 64.15 67.85 64.70
MNDWI 63.65 63.75 65.25 66.90
NDMI 65.60 65.80 70.55 68.15
NDRE 73.35 73.20 77.10 75.00
NDVI 71.35 70.25 71.40 69.90
RI 73.40 72.80 77.30 74.70

Table 2. Median accuracy values obtained from models
comparing Approaches and vegetation indices.

Figure 6. Approaches versus Vegetation Indices.

its corresponding confusion matrix and OA. By selecting the
models that achieved the highest OA for the two study areas, in
Figure 8 we can observe the classification obtained in Frasassi
gorge using the M03 approach, with SCR and the vegetation in-
dex RI. In Figure 9 we can observe the classification of Conero
mount obtained using the M03 approach, SCR and the vegeta-
tion index NDRE. The maps were produced from the best res-
ults obtained through the combination of different approaches.
However, a few classes were misclassified for labels that were
not initially represented in our classes.

M01 M02 M03 M04
CO 76.25 75.35 77.70 76.20
VM 65.65 65.80 67.85 67.25

Table 3. Median accuracy values obtained from models
comparing approaches and study areas.

4. DISCUSSION

According to the results obtained in this work, the method res-
ulting in higher model performance is M03, which involves the
tsclean function and the application of GAM on the daily data.
The tsclean function allows proper dataset cleaning from out-
liers with limited computation time and proves to be an import-
ant tool when processing time-series from vegetation indices,
as earlier proved by (Pesaresi et al., 2020, Pesaresi et al., 2022).
Nevertheless, the boxplot function has the merit of allowing
for outliers removal only (Kerandel et al., 2020) and, moreover,
although computation time is slightly stretched, in terms of
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Figure 7. Approaches versus study areas.

Figure 8. Best model classification obtained in Frasassi gorge,
using M03 approach with SCR and RI as vegetation index.

Figure 9. Best model classification obtained in Conero mount,
using M03 approach with SCR and NDRE as vegetation index.

coding it is easily handled and outliers can be detected within
the time series over different periods of the year (i.e. month,
bimester, trimester). Within more heterogeneous environments
such as the Frasassi gorge, the boxplot function performs bet-
ter for certain indices when compared to the tsclean func-
tion. In literature, different techniques have been used to carry
out the smoothing and correction phase of time-series satellite
data, such as the curve fitting (Pickers and Manning, 2015), the

Fourier decomposition (Mingwei et al., 2008), the asymmetric
Gaussian function (Jonsson and Eklundh, 2002), the double lo-
gistic functions (Atkinson et al., 2012, Eklundh and Jönsson,
2015), the Whittaker smoother (Shao et al., 2016, Kandasamy
et al., 2013), the Savitzky–Golay filter (Huang et al., 2021),
the high order spline with roughness damping (Hermance et
al., 2007), the spatio-temporal tensor completion method (Chu
et al., 2021) and other spatio-temporal combination methods
such as the adaptive spatio-temporal weighted method (Li et
al., 2017) and hybrid Generalised Additive Model (GAM)-
geostatistical space-time model (Poggio et al., 2012) wich are
even useful to fill temporal gaps. GAM utilization for regres-
sion model fitting is widely demonstrated in literature (Hua et
al., 2021). Applying GAM on the daily data permits to per-
form data aggregation during the subsequent steps of the work.
Being able to manipulate the dataset starting with the DoY is
an advantage in the procedure’s logic and actually an efficient
way to proceed. Computational times are stretched since the
range of values within which the data can be interpolated (from
1 to 365) is greater. However, a single subsequent aggregation
step is necessary to compensate positively the times, thus al-
lowing for easy variation in aggregation time (i.e. weekly or
biweekly). As a result, the process proves to be both elastic and
adaptable as required. Within the two study areas, differences
in the produced model accuracy values are evident and substan-
tial, making them coherent with those reported by (Pesaresi et
al., 2020, Pesaresi et al., 2022). These results are related to
the different complexity levels of vegetation phytocoenoses and
land cover in general. In the Conero mount study area there are
4 classes identified, while in the Frasassi gorge study area 8
classes are defined. Those are situated in a much more complex
geomorphological and topographical context. This emphasizes
the need to test the described methodologies in different and
diverse contexts, so as to further assess their reliability. From
this standpoint, this work has succeeded in providing a suitable
comparative analysis among 4 approaches for time-series pre-
processing. The processes involved can be replicated in other
areas in order to enhance and validate the mapping accuracy.

5. CONCLUSION

This method is indeed proven to be fast and efficient. In
this paper, 4 time series preprocessing approaches were com-
pared, combining 2 outlier detection methods (tsclean func-
tion forecast package and boxplot function graphics pack-
age) and 2 interpolation algorithm application methods (GAM
on aggregate data and GAM on daily data). Therefore, this re-
search intended to stress the preprocessing part of the data that
will be subjected to FPCA to identify which of the proposed
methodologies performed best in terms of outputs and compu-
tational time. From the results obtained, the approach which in-
volves tsclean function and GAM applied to daily data (M03)
is ameliorative to the logic of the procedure and leads to better
model performance in terms of Overall Accuracy. Although the
algorithms implemented with the GAM have demonstrated the
ability to adequately interpolate aggregate and daily data, the
application of other techniques is also desirable to improve the
construction of the time series. Other solutions, in the outlier
detection phase, will be subject to further analysis since there
are several methodologies which can be applied to clean the
time series. As a result of the results obtained and the iden-
tification of this methodological approach for mapping, it will
therefore be possible to periodically repeat these tests to pro-
duce maps up-to-date and, thus, to comply with EU regulations.
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