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ABSTRACT:

This paper focuses on person detection in aerial and drone imagery, which is crucial for various operations such as situational
awareness, search and rescue, and safe delivery of supplies. We aim to improve disaster response efforts by enhancing the speed,
safety, and effectiveness of the process. Therefore, we introduce a new person detection dataset comprising 311 annotated aerial and
drone images, acquired from helicopters and drones in different scenes, including urban and rural areas, and for different scenarios,
such as estimation of damage in disaster-affected zones, and search and rescue operations in different countries. The amount of
data considered and level of detail of the annotations resulted in a total of 10,050 annotated persons. To detect people in aerial
and drone images, we propose a multi-stage training procedure to improve YOLOv3’s ability. The proposed procedure aims at
addressing challenges such as variations in scenes, scenarios, people poses, as well as image scales and viewing angles. To evaluate
the effectiveness of our proposed training procedure, we split our dataset into a training and a test set. The latter includes images
acquired during real search and rescue exercises and operations, and is therefore representative for the challenges encountered
during operational missions and suitable for an accurate assessment of the proposed models. Experimental results demonstrate the
effectiveness of our proposed training procedure, as the model’s average precision exhibits a relevant increase with respect to the
baseline value.

1. INTRODUCTION

In recent years, the use of aerial imagery from aircraft and
drones for disaster monitoring, management, and search and
rescue missions has increased significantly. This advanced tech-
nology has proven to be highly effective in providing real-time,
high-resolution images and videos of disaster-affected areas,
enabling first responders and emergency personnel to assess
the damage and critical aspects of the situation and respond
quickly. The use of aerial imagery significantly minimizes the
time and effort required to locate affected areas and individuals,
facilitating rapid and effective intervention by scanning large
areas in a short period of time. These data also provide rescue
teams with vital information about the path to follow during
search and rescue operations, and enabling effective decision
making and resource allocation during disaster management,
resulting in more efficient and effective response efforts. This
has helped optimizing the use of resources and minimizing the
risk of human casualties during critical situations (Mohd Daud
et al., 2022).

In this paper, we focus in particular on the detection of people in
aerial and drone imagery, which is often a critical requirement
for situational awareness, search and rescue missions, safe de-
livery of supplies to affected areas, and safe landing of drones.
We hope this will improve the speed, safety, and effectiveness
of disaster response efforts and in turn help saving lives. Accur-
ately detecting a person in large aerial and drone images with
complex scenes is a challenging task due to several factors, in-
cluding the very small size and pixel coverage of people in com-
parison to the large number of pixels in the image, the numer-
ous poses and articulated nature of the human body, as well as
variations in lighting and weather conditions, object occlusion,
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(a) Aerial/drone image (b) Predictions

Figure 1. Sample detection results. Bounding box colors are:
predictions with ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎ confidence < 0.5 and ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎ confidence ≥ 0.5.

and changes in camera angles. In order to overcome these chal-
lenges and achieve higher accuracy in detecting people in large
aerial and drone images with complex scenes, effective and ap-
propriate algorithms and training data are required.

Advances in algorithms based on Deep Neural Networks (DNNs)
in recent years have led to significant improvements in object
detection performance. These include two-stage approaches
such as the R-CNN (Region-based Convolutional Neural Net-
work) family (Girshick et al., 2016, Girshick, 2015, Ren et
al., 2015), one-stage approaches such as the YOLO (You Only
Look Once) family (Redmon et al., 2016, Redmon and Far-
hadi, 2017, Redmon and Farhadi, 2018, Wang et al., 2022), and
anchor-free approaches such as CenterNet (Zhou et al., 2019).
One-stage object detectors have several advantages over two-
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(a) different illumination conditions (b) different resolutions

(c) different viewing angles (d) different scenarios

Figure 2. Samples of the dataset showing different illumination conditions (a), resolutions (b), viewing angles (c), and scenarios (d).

stage object detectors including speed, simplicity, end-to-end
training, and high accuracy. This makes them well-suited for a
variety of applications, including object detection in autonom-
ous driving, robotics, and surveillance systems.

At the beginning of our research, YOLOv3 (Redmon and Far-
hadi, 2018) was the most stable available variant of the YOLO
family, and we chose it for our experiments and adaptation.
Since then, however, the state of the art has evolved to YOLOv7
(Wang et al., 2022), which has proven to be faster and more ac-
curate on benchmark datasets. We propose a multi-stage train-
ing procedure to enhance the capabilities of YOLOv3 in learn-
ing crucial features of people in aerial and drone images, en-
abling it to effectively handle variations in scenes, scenarios,
people poses, and scales across a wide range of spatial resol-
utions and viewing angles. Although our analysis and sugges-
tions are based on YOLOv3, they can also be applied to the
newer variants of the YOLO family as the challenges posed by
aerial and drone imagery often require adaptation of the meth-
ods, regardless of the specific variant employed.

Datasets play a crucial role in training and testing DNNs as they
allow to identify patterns and relationships in the data, general-
ize to new scenarios, evaluate performance, and compare differ-
ent techniques. However, collecting and annotating large aerial
images can be a time-consuming and expensive process, espe-
cially for real-world applications such as disaster management
and search and rescue, where privacy and security concerns re-
lated to the use of the data constitute additional hindrances. As
a result, there is a lack of publicly available reference datasets
for person detection in aerial imagery, thing which hinders the
development of algorithms that can be effectively used in real-
world applications.

In recent years, researchers have attempted to overcome this
problem by creating new datasets. One example is the Vis-
Drone2019 dataset (Zhu et al., 2021), a large-scale benchmark
dataset containing over 2.6 million bounding boxes of pedes-
trians, cars, bicycles, and tricycles in drone images acquired
over China. The VisDrone dataset has been used for various
tasks, including detecting and tracking objects and estimating
crowd density. The UAVHuman dataset (Li et al., 2021) was
originally created for action recognition, enabling a better un-
derstanding of human behavior in UAV-related scenarios, and
can also be used for person detection. The dataset includes

multimodal video sequences and frames for action recognition,
pose estimation, person re-identification, and attribute recogni-
tion from drones, acquired at an altitude ranging from 2 to 8
meters. Datasets such as DLR-ACD (Bahmanyar et al., 2019)
were created for crowd counting and density estimation tasks,
which can also be used for person detection. However, the
lower spatial resolution of their images, as they are typically
taken from higher altitudes, limits their suitability for person
detection. Recently, the Manipal-UAV person detection data-
set (Akshatha et al., 2023) was released, which contains 13,462
image samples from 33 videos taken at different flight altitudes
in different locations and weather conditions. This dataset con-
tains a total of 153,112 annotated persons. The SeaDronesSee
dataset (Varga et al., 2022) was created specifically for search
and rescue missions. It contains images of people in open water,
and annotations have been created for both people detection and
tracking tasks. The dataset was collected from various heights
and angles of view, ranging from 5 to 260 meters.

While these datasets cover a wide range of altitudes and weather
conditions and contain a large number of annotated people, none
of them, except for SeaDronesSee, are specifically designed
for real-world search and rescue missions. We believe that
an appropriate dataset for disaster management and search and
rescue missions should include images with a spatial resolu-
tion (Ground Sampling Distance or GSD) ranging from 1 to 6
cm/pixel, acquired from diverse relevant scenes and scenarios.
This paper contributes a novel person detection dataset consist-
ing of 311 annotated aerial and drone images captured by mul-
tiple flying vehicles, such as helicopters and drones, in vari-
ous scenes and scenarios. The dataset includes both urban and
rural environments, acquired in the frame of extreme events or
search and rescue missions and exercises in multiple countries.
The images were acquired from varying flight altitudes, ranging
from 80 to 300 meters, and feature diverse GSDs from 0.2 to 6
cm/pix. The overview in Figure 4 provides the geographical
distribution of the images, while Figure 2 demonstrates their
diversity through a set of sample images. We performed a
thorough manual process to annotate people in the images, res-
ulting in a total of 10,050 annotated individuals. Figure 3 shows
some examples of the annotation results.

In order to evaluate the performance of our proposed training
procedure for YOLOv3, we divided the dataset into two sub-
sets for training and testing. We use the training set to train
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Figure 3. Samples of the annotated dataset. Each person is annotated with an individual bounding box. This figure shows image
samples from the training set.

YOLOv3 according to our proposed procedure and assess its
performance on the independent test set. Experimental results
demonstrate the effectiveness of our training procedure and the
suitability of our dataset for operational missions.

2. PERSON DETECTION DATASET

In order to train and evaluate our person detection method and
to investigate the current challenges of real-world applications,
we created a new dataset for person detection, containing 311
annotated aerial and drone images acquired by the 4K (Kurz

Figure 4. Illustration of the distribution of the aerial and drone
images within the training ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎, validation ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎ and test ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎ sets in
Germany, the Netherlands, Switzerland, France, Spain, and

Nepal. Image source: Google Earth Pro; Data: SIO, NOAA,
U.S. Navy, NGA, GEBCO; Image: IBCAO; Image:

Landsat/Copernicus; 12/14/2015.

et al., 2014) and MACS (Brauchle et al., 2019) camera sys-
tems mounted on helicopters and drones, respectively, as well
as by the DJI’s Phantom-4 and Movic-Pro drones. Image sizes
vary between 4864× 3232 px, 5184× 3456 px, 5616× 3744 px,
and 8000 × 6000 px. Particular care was taken to select im-
ages having different GSD, cloud cover, and acquired with dif-
ferent weather conditions, sun positions, viewing angles, sea-
sons, times of day, types of scenes (urban, suburban, rural, park,
and recreation sites), and application scenarios (rescue, crowd
events, construction). The selected images have a GSD between
0.2 and 6 cm/pix and were acquired between 2012 and 2022
over different regions in Germany, the Netherlands, Switzer-
land, Spain, France, and Nepal. Figure 4 gives an overview of
the spatial distribution of the images, while Figure 2 illustrates
the diversity of the images through several examples.

We generated high-quality annotations for each image through
a manual process using the CVAT annotation tool (Sekachev
and et al., 2020). An annotation policy was created in order to
define the main criteria of the annotation process, in order to
ensure consistency across the dataset and to provide a basis for
its further expansion. Each person was then annotated with a
bounding box. We performed a multi-stage quality check in or-
der to correct or remove erroneous annotations and add missing
ones to guarantee the quality of the dataset, which contains in its
final form a total of 10,050 annotated persons. Figure 3 shows a
few examples of the annotations. In Figure 5, we present some
statistics of the dataset. From the plots, it can be seen that the
majority of the images have a smaller GSD size. While 78.8%
of the images have a GSD≤ 3cm/pix, they contain only 25.5%
of the annotations. This is due to the fact that the images having
a higher GSD were taken from higher altitudes, things which al-
lows them to cover larger areas and be acquired over populated
areas, such as urban areas, where it is usually not allowed to fly
at lower altitudes.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-1/W1-2023 
ISPRS Geospatial Week 2023, 2–7 September 2023, Cairo, Egypt

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-1-W1-2023-343-2023 | © Author(s) 2023. CC BY 4.0 License.

 
345



(a) Histogram of GSDs

(b) Number of annotations vs. GSDs

Figure 5. Overview of statistical characteristics of the dataset:
(a) histogram of the GSDs and (b) number of annotations vs.

GSDs

In order to train, validate, and test our neural networks, we di-
vided the 311 images into three disjoint sets: 1) the training set
consisting of 259 images with 6934 annotations, 2) the valid-
ation set consisting of 25 images with 2706 annotations, and
3) the test set consisting of 27 images with 410 annotations.
Figure 4 shows the distribution of images from different sets,
where special care has been taken in order to select the test im-
ages from locations as different from one another as possible.
To evaluate the ability of the developed algorithms in real-world
situations, the test set includes urban scenes as well as images
from search and rescue exercises and missions. In addition,
there are a few images of the same region/area that are part of
different sets, which have been acquired during different flight
campaigns and at different points in time.

3. YOLOV3 FOR PERSON DETECTION

For the person detection procedure used in this paper, we follow
YOLOv3 (Redmon and Farhadi, 2018) with some adaptations.
YOLOv3 is a one-stage object detection CNN from the YOLO
family, designed to achieve reasonable detection accuracy in a
time and computationally efficient manner (Redmon and Far-
hadi, 2018). Darknet-53 is used as backbone for the feature
extraction process. It consists of 52 convolutional layers, bene-
fits from a residual structure, and downscales the input image
32 times. Darknet-53 has been shown to outperform its prede-
cessor Darknet-19 (Redmon and Farhadi, 2017), ResNet-101,
and ResNet-152 (He et al., 2016) in object detection. Figure 6
illustrates the network architecture of YOLOv3.

Darknet-53 is connected to several convolutional layers which
upsample the extracted features in two steps. A bounding box
prediction is done using three prediction heads at three spatial
scales, 1/32, 1/16, and 1/8, inspired by feature pyramid net-
works. At each scale, the feature pixels are considered as a grid,
and three bounding boxes are predicted for each one, resulting
in tensors of N ×N ×[3∗(4+1+C)], where 4 is for the bound-
ing box offsets, 1 is for the objectness prediction, and C is the
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Figure 6. The network architecture of the YOLOv3.

number of classes. Thus, the size of the predicting tensors and
the number of predictions depends on the size of the input im-
ages. In our experiments, with an input of 416×416 pixels and
only one class, we have tensors of (13×13×18), (26×26×18),
and (52 × 52 × 18), and 10,647 predicted bounding boxes. The
final bounding boxes are then selected according to their con-
fidence score and using the Non Maximum Suppression (NMS)
technique to choose the best bounding box from multiple over-
lapping bounding boxes that may represent each object.

3.1 Training procedure

In order to apply the mesh to the images, we split the images
into patches of 416×416 pixels with a 10% overlap. This results
in 35,991 training image patches. Due to the wide coverage of
the images and the small size of single persons, the number of
image patches without people, negative (Neg) patches, is more
than 9× larger than the number of image patches with people,
positive (Pos) patches, namely 32,471 versus 3,520. In addi-
tion, although 76.5% of the training image patches have a GSD
better than 3 cm/pix, only 48.7% of the Pos image patches are
within this GSD range, containing only 35% of the annotated
people. Considering that the pose appearance of people in im-
ages with a GSD ≤ 3 cm/pix exhibits higher variability than in
images with higher GSDs, the dataset naturally suffers from a
large sample imbalance. This can cause the trained model to be
biased towards the detection of smaller objects,i.e., the people
in the images with a higher GSD.

In order to address these challenges, we split the training data
into the images with a GSD ≤ 3 cm/pix and the images with
a GSD > 3 cm/pix. We train the network in three consecutive
steps:

● Step-1: The main idea of the first step is to learn general
features, including different background features. We train
the network on the whole training set for 300k iterations.
We do not use data augmentation as it causes early diver-
gence.

● Step-2: The idea of the second step is to focus on learning
the target features in higher resolution images. Therefore,
we continue to train the model from Step-1 on the Pos im-
age patches with GSD ≤ 3 cm/pix for 35k iterations. As the
network has already seen these patches, we apply intensive
data augmentation including scaling, rotation, translation,
and illumination changes.

● Step-3: In the last step, the network should learn all the
target features. Therefore, we train the model from Step-2
on all Pos image patches of the training set for 66k itera-
tions with an intensive data augmentation, as in Step-2.
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Figure 7. Distribution of the bounding boxes in height and width
space and the anchor boxes as cluster centers depicted by red

dots (a), illustration of the anchor boxes (b).

3.2 Experimental setup

We use the source code published by the authors in (Redmon
and Farhadi, 2018) as the base code for our implementation and
experiments. We select the number of training iterations by ob-
serving that the loss curve reaches a plateau and the validation
results stop improving. The validation set, consisting of 25 im-
ages, was used to calculate the validation results. After setting
up the overall training procedure, we trained the network with
all images in the training set and applied the final model to the
test set. For all training steps (Step-1 to Step-3), we set the batch
size to 50. The learning rate for the whole training proced-
ure was set to 5e−7 and with the same scheduling mechanism
as (Redmon and Farhadi, 2018). We used the Adam optimizer
with a decay of 5e−4 and we employed the pre-trained model on
the MS COCO dataset (Lin et al., 2014), which turned out to be
the best fit for our problem considering the overall object sizes.
The training process was realized on a GeForce RTX 2080 Ti
GPU for training and inference, respectively.

3.2.1 Loss calculation In order to calculate the loss, we con-
sider the objectness and bounding box errors. For the bounding
box prediction loss, we calculate the complete IoU (CIoU) (Zheng
et al., 2022) between the predicted and target bounding boxes,
similar to the original paper (Redmon and Farhadi, 2018):

Lbox = 1 −CIoU. (1)

We estimate the objectness scores for the predicted bounding
boxes using logistic regression, as in the original paper. Then
we compute the objectness loss (Lobj) by computing the cross-
entropy between the predicted and target scores. Finally, we
compute the total loss by combining the two loss values:

L = Lobj + 0.05 . Lbox. (2)

3.2.2 Anchor boxes To select appropriate anchor boxes, we
perform a statistical analysis on the bounding boxes of the train-
ing set. We evaluate various properties of the bounding box dis-
tribution in height and width space, including the outliers, and
apply k-means clustering to the distribution for nine clusters,
resulting in the following anchor boxes: (12 × 12), (18 × 18),
(23×20), (26×28), (37×30), (44×42), (59×44), (75×62), (106×
98). Figure 7 shows the distribution of the bounding boxes, the
anchor boxes as cluster centers (red dots), and the visualization
of the anchor boxes with respect to the image patch size. Ex-
perimental results show significant improvement with defined
anchor boxes over the original setup.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

IoU=75
IoU=50
IoU=30

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Recall

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

Step 1
Step 2
Step 3

Figure 8. Precision-Recall curves for different IoU thresholds
(top), and different training steps with IoU=30 (bottom).

3.3 Evaluation metric

For quantitative evaluation, we use Average Precision (AP),
the weighted average of Precision at different prediction con-
fidence thresholds. The weight is the increase in Recall from
the previous threshold. AP summarizes the Precision-Recall
curve. More correct predictions result in a better Precision-
Recall curve and higher AP. The best possible score is 1 and
the worst possible score is 0. Precision and Recall are:

Precision = TP

TP + FP
, (3)

Recall = TP

TP + FN
, (4)

where True Positive (TP) and False Positive (FP) indicate whether
a predicted bounding box is correct. False Negative (FN) in-
dicates the number of actual bounding boxes that were missed.
To assign the predicted bounding boxes to the actual ones, we
use the Intersection of Union (IoU) metric, which quantifies the
closeness of the two bounding boxes with a value between 0 and
1. For complete overlap of the bounding boxes, IoU is equal to
1. To consider a match as true, we set a threshold for IoU.

4. RESULTS AND DISCUSSION

We evaluate our trained model on the test set. We assume that
our test set can clearly show the performance of our model for
operational missions because it covers various challenges that
are present in real-world applications, as its images were taken
during search and rescue exercises and missions. We compare
the results quantitatively in Table 1 and qualitatively in Figure 9
to demonstrate the impact of different training steps on model
performance. In Table 1, AP30, AP50, AP75, specify the value
of AP by selecting the IoU threshold as 0.3, 0.5, and 0.75,
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Training LR # Iter Pos/Neg GSD Aug AP30 AP50 AP75 AP≤ 3 AP> 3

Step 1 5e−7 300k Pos + Neg All - 0.41 0.23 0.02 0.34 0.67
Step 2 5e−7 35k Pos ≤ 3 cm ✓ 0.49 0.25 0.01 0.60 0.62
Step 3 5e−7 71k Pos All ✓ 0.60 0.29 0.01 0.54 0.76

Table 1. The training steps with their specifications and the APs of their results. AP≤ 3 and AP> 3 refer to the results for the test
images with the GSDs ≤3 and >3 cm/pix, respectively.

(a) Aerial/drone image (b) Ground truth (c) Step-1 (d) Step-2 (e) Step-3

Figure 9. Detection results for the three training steps (see Table 1). The GSDs of the images from top to bottom are 4.2, 4.2, 1.2, and
2.9 cm/pix. Bounding box colors are: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎ ground truth, predictions with ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎ confidence < 0.5 and ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎ confidence ≥ 0.5.

respectively. The best results are obtained by setting the IoU
threshold to 0.3 (IoU=30). Due to the very different shapes and
sizes of the bounding boxes (see the distribution in Figure 7) the
model has difficulties fitting the prediction exactly to the ground
truth bounding boxes. For most of the intended applications of
this model such as in search and rescue missions, the main goal
is to identify the presence of people, and delineating their exact
contour is not important. Therefore, setting the IoU=30 is suf-
ficient. Figure 8 (a) also shows a better Precision-Recall curve
for IoU=30.

In this table, we can also see that training in different steps con-
tributes significantly to the performance, and the final model
achieves an AP of 0.60, which is about 46% improved com-
pared to the AP of the first step. Figure 8 (b) shows that differ-
ent steps reduce the number of missing people and increase the
correctness of the predicted bounding boxes. Table 1 also eval-
uates the training influence on the low and high GSD images.
AP≤ 3 and AP> 3 refer to the results for the test images with
the GSDs ≤3 and >3 cm/pix, respectively. AP≤ 3 and AP> 3 are
calculated by averaging the image-wise APs for the respective

GSDs. Consequently, their calculation differs from the overall
APs, which consider all detections across the entire dataset sim-
ultaneously. Therefore, their weighted average does not reflect
the other APs. The results verify our assumption about the data
imbalance and the design of our training strategy. Training on
the whole dataset in Step-1 significantly biases the model to-
wards the images with higher GSD. Further training the model
only on the images with GSD≤ 3 cm/pix in Step-2 brings the
model into balance by significantly improving its performance
on the images with lower GSD. Finally, by training on the entire
dataset in Step-3, we recover the reduced detection performance
for the high GSDs in Step-2. In addition, training only on the
Pos image patches in Step-2 and -3 allows the network to focus
on learning the target features faster without increasing the FP
detections, since the model has already learned the background
diversity in Step-1.

Figure 9 visually demonstrates the model performance for dif-
ferent training steps. We include examples from different scen-
arios and GSDs to give a more comprehensive impression of
the performance. In all examples, moving from Step-1 to Step-
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3 leads to the detection of missing people and increases the
network’s confidence in the detected bounding boxes. Further-
more, this helps getting rid of some erroneously detected bound-
ing boxes. Figure 10 shows further example results of the final
model. Although the model misses a few people in the first
example, the overall detection performance is reasonable con-
sidering the complexity of the scene, where many objects which
could be confused with people are present among the ruins. In
the second and third examples, where the images have very
small GSDs, all people are correctly detected. In the second
example, we can see some multiple detections that can be re-
moved by post-processing. In the last example, with a higher
GSD and a more complex scene, we can see some false detec-
tions. It is common in high GSD images that many objects look
very similar to people. Overall, we can rate the detection per-
formance in this example as good, since most of the people are
correctly detected.

In many applications, such as search and rescue missions, the
inference time and computational complexity play a crucial role
due to the limited time and computational resources available.
In this regard, we find YOLOv3 to be relatively fast and effi-
cient. Our model can process 1 Megapixel in 0.12 seconds, for
a GSD of 3 cm/pix, which means 1 km2 in 2.3 minutes.

4.1 Examples of failed attempts

For simplicity, similar to many existing crowd datasets, we an-
notate people with single points on their bodies. We then auto-
matically create squared bounding boxes centered on the points
and size them according to the image GSDs. A visual inspec-
tion shows that for the images with higher GSDs, where the
viewing angles are closer to the nadir and the people appear
almost as circles, the bounding boxes can do a good job of es-
timating the people’s coverage. However, these bounding boxes
almost fail to circumscribe the people in the images with bet-
ter GSDs. People have different poses, and due to the oblique
viewing angle of the images, several of their body parts such as
hands and legs are visible. The experimental results also show
unsatisfactory predictions of the bounding boxes and a low AP.

In order to compensate for the data imbalance, we apply dif-
ferent weighting strategies to the loss calculation as a function
of the number of images and the number of annotations for dif-
ferent GSDs. All these strategies result in underfitting and per-
formance degradation. We also try YOLOv3-Tiny (Gong et al.,
2019); however, it does not perform well. This could be due
to its much shallower backbone, Darknet-19, and the fact that
it only performs detection on two courser scales, which results
in missing smaller bounding boxes that cover a large portion of
our dataset.

5. CONCLUSION AND FUTURE WORKS

Our paper presents a novel dataset for person detection in aerial
and drone images, which incorporates diverse scenes and scen-
arios, including disaster-affected areas and search-and-rescue
exercises and missions. The dataset’s broad coverage ensures
that the algorithms trained and tested on it are suitable for real-
world operational missions. We propose a multi-stage training
strategy that significantly enhances the detection performance
of YOLOv3. Our analysis and suggestions, based on YOLOv3,
can be applied to newer variants of the YOLO family. Aer-
ial and drone imagery challenges often require method adapt-
ation, regardless of the specific variant used. Our future work

includes expanding our dataset with more diverse images from
real-world scenarios, as well as increasing the sample size. We
also aim to explore other YOLO variants to achieve improved
detection accuracy with lower computational demands.
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