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ABSTRACT: 

 

A novel multispectral image filtering technique is proposed in this article. Since the multispectral images are often corrupted by 

mixed Poisson-Gaussian noise during the sensing and acquisition process, a nonlinear anisotropic diffusion-based restoration 

approach that deals efficiently with this type of noise mixture is considered here. A second-order vector-valued reaction-diffusion 

model that leads to a system of well-posed single-valued anisotropic diffusion equations coupled by correlation terms is introduced 

for this purpose. A finite difference method-based fast-converging approximation algorithm that solves numerically this nonlinear 

diffusion-based system is then proposed. This iterative numerical approximation scheme is successfully used for removing both the 

additive Gaussian and quantum noises while preserving the essential features of the multi-valued image. The effectiveness of the 

described mixed denoising technique is illustrated by the results of the restoration experiments and method comparisons that are also 

presented here. The proposed restoration approach enhances considerably the spectral image quality, making it well-prepared for the 

further MSI analysis and computer vision processes, such as the geospatial and remote sensing image analysis.  

 

 

1. INTRODUCTION 

The multi-spectral imaging (MSI) is based on capturing the 

image data within specific wavelength ranges across the 

electromagnetic spectrum. These wavelengths can be separated 

by filters or detected using some devices that are sensitive to 

particular wavelengths, such as light from frequencies beyond 

the visible light range. Thus, the multispectral camera captures 

the infrared and ultra-violet lights that are invisible to humans. 

(Hagen and Kudenov, 2013; Reddy and Pawar, 2020). A MSI 

system employs a wide array of sensors with specific frequency 

bands of light illumination. Since its sensors may detect energy 

beyond what is humanly visible, the multispectral imagery 

enable us to observe various things that are not so apparent. 

 

Thus, a multispectral image represents a collection of several 

monochrome layers of the same scene, which are acquired at 

multiple wavelength bands. These spectral images provide more 

authentic representations of the real-world scenes than the RGB 

color images and the 2D gray-level images, thus improving the 

effectiveness of various image analysis and computer vision 

tasks (Reddy and Pawar, 2020).  

 

Since they allow the scientists to view and examine many 

objects and events that would be normally hidden, the multi- 

spectral images have found applications in numerous domains, 

such as the remote sensing, medical imaging, astronomical 

imaging, fluorescence microscopy, environmental management, 

geographical tracking, military target tracking, weather forecas-

ting, thermal signature detection, maritime surveillance or docu-

ment and artwork investigation. Earth exploring represents also 

a major application field, since almost the entire earth is photo-

graphed and monitored by a lot of sensors mounted on aircraft, 

satellites and drones (Brown and Harder, 2016). The multi- 

spectral imagery generated by these imaging devices captures 

valuable information about our world (Schowengerdt, 2007).   

 

Hyperspectral images represent a special category of spectral 

images. While the multispectral images are characterized by a 

low number of frequency bands, which is usually between 3 and 

15, the hyperspectral images are acquired in more than 100 

contiguous spectral bands (Chang, 2003; Lennon et al., 2002). 

 

Unfortunately, the most multispectral and hyperspectral images 

are corrupted during the acquisition process. Since, the image 

capturing devices involve some physical measurements, the 

acquired multispectral images get affected by various sources of 

noise and multiple noises may come across them (Reddy and 

Pawar, 2020). The elimination of those noises constitutes a 

necessary and important pre-processing step that facilitates the 

further spectral image analysis processes, such as multispectral 

image classification and pattern recognition (Shen et al., 2001). 

 

The multispectral image denoising and restoration still 

represents a very challenging task. Filtering each frequency 

band separately does not represent an efficient denoising 

solution and would produce loss of information, since the 

channels of the multispectral image are often highly correlated 

(Peng et al., 2014). So, any effective noise removal approach 

has to deal properly with this spectral band correlation and also 

must preserve the essential image details and overcome the 

unintended effects during the restoration process. 

 

Although the additive white Gaussian noise (AWGN) is mostly 

considered by the restoration approaches (Aiazzi et. al., 2002), 

there are many other types of noise that contaminate the MSI  

and deteriorate their quality, such as Poisson noise (Mansouri et 

al., 2016), stripe noise (Chang, 2015), spectral impulse noise 

and various noise mixtures (Sun et al., 2022). In fact, the hyper– 

and multi-spectral image capturing devices generate very often a 

type of mixed noise that follows the Poisson-Gaussian 

distribution (Haight, 1967). Since the noise in the multispectral 
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data has a signal-dependent character, the Poisson-Gaussian 

mixed noise model is the most accurate one to describe it. 

While its AWGN component comes from natural sources, like 

the spontaneous thermal generation of electrons, its Poisson 

noise, which is also called quantum or shot noise, is generated 

by the mechanism of quantized photons and uniform exposure. 

 

Various mixed noise removal techniques for hyperspectral and 

multispectral images have been developed in the last years. 

They include methods using spatial-spectral structure similarity 

(Yang and Zhao, 2013), the tensor-based techniques (Peng et 

al., 2014; Dong et al., 2018) or the 2D approaches extended for 

volumetric data, like 3D NLM (non-local means) filter (Qian et 

al., 2012), 3D Median filter or 3D Gaussian filter combined to 

variance-stabilizing transform (VST) (Mäkitalo and Foi, 2012). 

 

Here we consider a partial differential equation (PDE) – based 

mixed noise reduction technique for MSI. The PDE models 

have been used successfully in the image processing and 

analysis fields in the last 35 years, since they succeed in 

regularizing the data while preserving essential image features 

like edges and corners. Many variational and nonlinear PDE-

based filtering models for Gaussian (Weickert, 1998; Barbu, 

2019; Barbu, 2013), Poisson (Sawatzky et al., 2009; Barbu, 

2020) and mixed noise removal (Thanh and Dvoenko, 2016; 

Pham et al., 2020) from the 2D and RGB images have been 

proposed. The PDE-based Poisson-Gaussian noise removal 

approach introduced here is based on a novel non-variational 

well-posed second-order nonlinear anisotropic diffusion-based 

model for vector-valued images (Tschumperle and Deriche, 

2002; Tschumperle and Deriche, 2005; Lennon et al., 2002), 

described in the next section. It consists of a system of several 

coupled reaction-diffusion equations that evolve simultaneously 

and represents the major contribution of this research work.  

 

A stable and fast-converging iterative numerical approximation 

algorithm that is consistent to the proposed nonlinear PDE-

based model and has been developed by applying the finite 

difference method is also presented in the second section. This 

numerical solving scheme has been applied successfully to 

many multispectral image datasets affected by noise mixture. It 

has provided effective mixed noise removal results while 

preserving the essential details, as illustrated in the third 

section. This method can be applied properly to environmental 

remote sensing image analysis domain. The main conclusions 

and future research plans are discussed in the fourth section.  

 

 

2. A NOVEL VECTOR-VALUED NONLINEAR 

DIFFUSION - BASED FILTERING SCHEME 

2.1 Second-order vector-valued reaction-diffusion model 

A multispectral image with M frequency bands can be 

represented as a vector-valued function : Mu R , where 

the image domain 2R  (Tschumperle and Deriche, 2005). 

Therefore, we have: 

 

       1, , ,..., , , ,Mu x y u x y u x y x y      (1) 

 

where each single-valued function  , 1,...,ku k M  is a 

channel acquired at a particular wavelength band. 

The noise mixture representing here a combination of white 

additive Gaussian and quantum noises occurs because the 

multispectral image acquisition sensors have 2 noise sources: a 

signal-dependent one coming from the way light intensity is 

measured and a signal-independent source which is thermal and 

electronic noise. The Poisson–Gaussian mixed noise model has 

the form: 

 

   2

0 0,u u N                        (2) 

 

where 
0u  is the observation impaired by this noise,  u  

represents the photon-limited image u corrupted by a Poisson 

noise with distribution   , 0
!

ne
P n n

n



   (Haight, 1967) and 

 20,N   is AWGN characterized by 0 mean and variance σ. 

 

A nonlinear anisotropic diffusion-based model extended to 

vector-valued images is proposed here for the removal of this 

multiple noise combination. Since we consider an anisotropic 

diffusion process described by a sequence of evolution 

equations, a time parameter  0,t T  has to be introduced in 

the spectral image function definition. The proposed second-

order vector-valued diffusion model has the form: 

 

      

     

     

   

2

0

0

0,

, ,0 , ,      ,

, , 0,     , , 0,

, , 0,   ,

u
u u u u u

t u

u x y u x y x y

u x y t x y t T

u
x y t x y

n




  



  
              

   

    

   



(3) 

 

where      1,2 , , 0,1 , 0,0.5      , 

 : 0, Mu T R  ,  
1,

*k k M
u u G  

 , with 

 
2 2

22
2

1
,

2

x y

G x y e 







  a 2D Gaussian kernel, and 
0u  is 

the observed multispectral image corrupted by mixed noise. We 

propose the following diffusivity (conductance) function, that is 

positive, monotonic decreasing and converges to 0 (Weickert, 

1998), for the model (3): 

 

     
 

3 2
: 0, 0, :  

ln

K
s

s K
  

 
   

 

(4) 

 

where  0,1 , 1, 5      and 7K  . The 

other positive function used within this PDE-based model has 

the next form: 

 

     

1

1

: 0, 0, :  
r rs

s
 

 


 
     

 

   (5) 

 

where    , 1,5 , 0,0.5     and  0,1r . 

The components provided by these functions, the conductance 

term  u   and    2u u    , assure the 

coupling of the single-diffusion based processes obtained from 

(3), in order to deal with the inter-channel correlation.  
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Since u  represents the generalized Jacobian matrix of u , 

we get: 

 

    

1

1

,

M

M

u u

x x
u u u

u ux y

y y

  

  
     
              
   

(6) 

 

Also, 
2

1

M
k

k

u u 


    and 

1

M
k

k

u u


   . So, 

the vector-valued PDE model (3) becomes equivalent to the 

following system of single-valued diffusion equations: 

 

 

 

1
2

1

1 1

1 1

0 1

2

1 1

0

      ,

       

M M
k k

k k

M M M
k k M

k k

M M

M

u
u div u u

t

u u
u

u
u div u u

t

u u
u





 






 






 

 

     
               


 
   
   





    
              

  
    
  

 

 

 

(7) 

 

These second-order parabolic PDEs represent nonlinear 

reaction-diffusion equations that evolve simultaneously but not 

independently, since they share the two coupling terms: 

1

M
k

k

u


 
 

 
  and the conductance 

2

1

M
k

k

u 


 
 

 
 
 . 

The M anisotropic diffusion processes are thus correlated by 

these coupling components that model properly the inter-

channel relations, preserving the meaningful boundaries of all 

the spectral layers.  

 

Each nonlinear diffusion-based equation of the system (7) is 

non-variational, since it cannot be derived from the 

minimization of any energy cost functional (Fox, 1987). It 

removes successfully both the additive Gaussian and the 

Poisson noise from the corresponding image channel ku , due 

to the  0

k k

k
u u

u






 
  
 
 

 term, where the controlling 

parameters   and   depend on the amounts of the AWGN 

and quantum noise respectively, and preserves efficiently the 

edges and other essential details, while overcoming the 

unintended effects, like blurring and staircasing (Buades et al., 

2006). It is also well-posed, admitting a unique weak solution.  

 

The solution of the vector-valued diffusion-based model (3) is 

then determined by solving numerically the equation system (7). 

A numerical approximation algorithm is constructed for this 

system by applying the finite difference method and is described 

in the next subsection. 

 

2.2 Numerical Approximation Algorithm 

The presented nonlinear PDE-based filtering model is then 

discretized by using finite differences. An approximation 

scheme that solves numerically the diffusion-based system (7) is 

created applying the finite difference method (Johnson, 2008). 

 

So, a finite difference-based discretization is applied to the 

reaction-diffusion equation related to mu  for  1,...,m M  . 

Thus, one considers the spatial coordinate quantization 

   , , 1,..., , 1,...,x ih y jh i I j J   

and the time coordinates  , 0,...,t n t n N   , where 

h is the space size, t  represents the time step of the grid and 

 JhIh  is the size of the mu  support image. The respective 

equation could be reformulated as: 

  

 
2

0

1 1

m M M
m m k k m

m
k k

u
u u u u u

t u



  

  

      
                      

  (8) 

 

The left term of (8) is approximated numerically applying the 

central differences (Johnson, 2008), as follows: 

 

   
    

 
 

 
 

 
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,

0
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1
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n n ti j i j m m m
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i j

n
m m

n ni j i jm m

i j i j

u u
u u u

t tu

u u
tu u






 
 

 





 
  

       
 

   
   

          
   

(9) 

 

Then, in the right term, 

1

M
k

k

u


 
 

 
  is discretized as  

         
, , , , ,

2
1

4
n n n n n

k k k k k
M

i h j i h j i j h i j h i j

k

u u u u u

h


   



    
 
 
 
 



and the divergence component 2

1

M
k m

k

u u


  
     

  
  
  

is approximated as    
2

, ,
1p

M
n n

k m

i j p q
q N k

u u 
 

 
  
 
 

  , 

where  0,  1  , Np is the set of pixels representing the 4-

neighborhood of the pixel p given as a pair of coordinates (i, j),  

 
       

2 2

, , , ,

, 2 2

n n n n
k k k k

n i h j i h j i j h i j hk

i j

u u u u
u

h h

   



   

    
     
   
   
   

 and 

     
,

n n n
m m m

p q q p
u u u   . 

 

One may consider the parameter values h = 1 and 1t  . 

Therefore, by using these discretization results, one obtains the 

following explicit numerical approximation scheme for the mth 

equation of the system (7): 
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   

        
    

   

 
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 
    

 
 



 

(10) 

 

for  0,...,n N . The iterative approximation algorithm 

(10) is stable and consistent to the mth equation of the nonlinear 

diffusion system (7) and converges fast to its numerical 

solution, for  1,...,m M  . 

 

Therefore, because of the shared terms, the state of the evolving 

image mu  determined at iteration n + 1 depends not only on its 

initial observation and its state at the previous iteration, but also 

on the evolving images of the other channels determined at 

iteration n. Thus, the numerical solution of the vector-valued 

diffusion-based model (3) is computed by applying (10) 

iteratively for each n from 0 to N and for each m from 1 to M. 

The proposed finite difference-based numerical approximation 

scheme is successfully applied in the mixed noise reduction 

experiments discussed in the next section. 

 

  

3. EXPERIMENTS AND METHOD COMPARISON 

The described vector-valued diffusion–based multispectral 

image restoration framework has been tested on numerous 

datasets and some effective results have been obtained. The 

numerical simulations have been performed on an Intel (R) 

Core (TM) i7- 6700HQ CPU 2.60 GHz processor on 64 bits, 

which operates Windows 10. The MATLAB programming 

platform has been used for the software implementation of the 

proposed filtering technique. 

 

Several multispectral image databases have been used in our 

mixed noise removal experiments. So, we have used 135 8-

channel multispectral images from the UGR Spectral Saliency 

Database that contains urbanization scenes (Martínez-Domingo 

et al., 2021) and 55 [31 x width x height] – sized spectral 

images collected from 2 multispectral image databases 

containing full spectral resolution reflectance data from 400 nm 

to 700 nm at 10 nm steps (31 wavelength bands), built using 

SpectraCube (Finlayson et al., 2004) and Cooled CCD Camera 

(Yasuma et al., 2010) respectively, which have been corrupted 

by various amounts of Poisson and Gaussian noise.  

 

Since nonlinear diffusion improves images qualitatively by 

removing noise while preserving and even enhancing details, 

the proposed denoising approach filters successfully both the 

signal-independent AWGN and the signal-dependent shot noise 

from the spectral images and overcomes the undesired effects 

like blurring and staircasing. Also, it deals properly with inter-

channel correlation problem, preserving successfully essential 

features, such as edges and corners, among different layers. This 

MSI restoration technique is characterized by a rather low exe-

cution time, due to its fast-converging numerical solver. How-

ever, the number of iterations required by this algorithm and its 

running time depend on the multispectral image dimension and 

the levels of quantum and white additive Gaussian noises.  

 

Figure 1. Multispectral image denoising example 

 

Also, the implementation is sensitive to parameters which are 

necessarily tuned to sharpen a narrow range of edge slopes. The 

optimal model’s parameters are determined empirically by using 

a trial-and-error approach. 

 

A mixed noise reduction for MSI example, involving an urban 

scene, is described in Figure 1. The [512×612×8] multispectral 

image whose channels are displayed in a) is contaminated by a 

noise mixture composed of a high amount of AWGN, 

characterized by the mean 0   and the variance 2 0.12  , 

and an amount of Poisson noise. The deteriorated spectral 

image depicted in b) is then filtered applying the proposed 

technique and the denoising result achieved after N = 12 

iterations is displayed in c). One can see that all the 8 channels 

of the restored MSI have good visual quality.   

 

The performance of our nonlinear PDE-based multispectral 

image smoothing approach has been assessed by using 

performance metrics like the Peak Signal-to-Noise Ratio 

(PSNR) and the Structural Similarity Index Measure (SSIM) 

(Thung and Raveendran, 2009). The proposed mixed denoising 

framework achieves high values of these quality measures.  

 

Method comparison have been also performed. The anisotropic 

diffusion-based technique introduced here outperforms many 

other Poisson-Gaussian noise MSI filtering approaches, such as 

the 2D TV-based mixed noise removal models and some 3D 

image filters like 3D Median, 3D Gaussian combined to VST 

and 3D NLM filter, achieving higher average PSNR scores than 

them, as illustrated by the method comparison results displayed 

in Table 1.  
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Mixed noise removal filter Average PSNR 

Proposed vector-valued diffusion model 27.6157 (dB) 

3D Median filter  24.8563 (dB) 

3D Gaussian filter + VST 25.4695 (dB) 

3D Non-local Mean (NLM) filter 27.2346 (dB) 

TV - ROF Denoising  + VST  25.4775 (dB) 

TV-based mixed noise filtering  26.3208 (dB) 

Table 1. The average PSNR scores achieved by several filters 
 

 

4. CONCLUSIONS 

A nonlinear vector-valued diffusion-based mixed noise removal 

framework for MSI was described in this research paper. The 

main contribution of this work is the novel vector-valued 

second-order anisotropic diffusion-based filtering model 

proposed here. It is equivalent to a system of parabolic non-

variational well-posed single-value reaction-diffusion equations 

corresponding to the MSI layers. These nonlinear PDEs 

evolving simultaneously deal properly with both signal-

independent and signal-dependent noise components from the 

related spectral channels, removing successfully both the 

AWGN and the quantum noise, while avoiding the unintended 

effects. Also they take into account the channel correlation 

issue, being coupled by two shared correlation terms, based on 

gradient and Laplacian respectively, that model efficiently the 

inter-channels relations and capture the multi-edges, providing 

an essential detail-preserving multispectral image filtering. 

 

The finite difference method-based fast-converging numerical 

approximation algorithm that solves numerically the proposed 

model is another contribution of this paper. It was applied 

successfully in the described Poisson-Gaussian noise reduction 

experiments. The proposed noise mixture removal technique 

outperforms clearly the 2D restoration approaches that filter 

each MSI channel separately and also some volumetric 3D 

denoising schemes.   

 

The proposed spectral image restoration framework can be 

further used as an effective pre-processing step by many MSI 

analysis and computer vision applications, since the successful 

mixed noise removal and the enhancement of essential details 

provided by it may facilitate some important tasks, such as the 

multispectral image classification, the multispectral pattern 

recognition, the multispectral unmixing or the multispectral 

target detection and tracking. Thus, our MSI filtering results 

might aid the extraction of valuable information from some 

important types of multispectral data, such as the geospatial, 

remote sensing, astronomical and microscopy images. Some 

important information related to air pollution, air and water 

quality, land degradation or land use change and dynamics, 

natural disasters, urban development tracking and vegetation 

could be retrieved properly from the remote sensing images and 

sequences for environment management.  

 

Although this mixed noise filtering method was proposed for 

multispectral images, it could be extended to the hyperspectral 

images. Since the hyperspectral images are made up of much 

higher number of channels characterized by a continuous 

spectrum and implicit correlations between adjacent bands, 

modelling some proper cross-channel correlation terms for the 

diffusion equations could become a more difficult task. Such an 

improved extension of this anisotropic diffusion-based mixed 

denoising framework will represent the focus of our future 

research work in the spectral imaging domain. Also, we will 

consider some multispectral image pattern recognition solutions 

that extend our past pattern recognition approaches (Barbu, 

2006). 
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