MACHINE LEARNING APPLICATION FOR CARBON ESTIMATION – A CASE STUDY

Prisilla Jayanthi¹,*, Iyyanki Muralikrishna²

¹Ecole Centrale School of Engineering, Mahindra University, Hyderabad, India. prisillaj28@gmail.com ²India Academic Programs Director, UC Berkeley, India. iyyanki@gmail.com

KEY WORDS: Regression models, Climate Change, Carbon monoxide, Carbon dioxide, Air Quality Index

ABSTRACT

Climate change is a most global challenging issue. In this regard, a study on carbon dioxide, one of the pollutants causing the climate change is demonstrated in two different states of India viz., Visakhapatnam district (AP) and Shastri Nagar (RJ) for the period of April 2022 to January 2023. Carbon dioxide (CO₂) is experiential on hourly and monthly basis for different seasons – summer (April), rainy (July) and winter (December). Most of air pollutants include NO₂, CO₂, PM_{2.5}, PM₁₀ etc. that are the major cause for climate change. The air quality in these zones is very poor, highly polluted and risk to humans. The study proved that CO₂ is found comparatively low in rainy season over other. The machine learning regression models were modelled for Visakhapatnam and best models obtained are 1. Step-wise Linear Regression model with MSE (4.51E-28), RMSE (2.12E-14) and R-Squared (1) identified for rainy month. 2. Neural Network Narrow model with MSE (0.462), RMSE (0.680) and R-Squared (0.999) for winter month. 3. Linear Regression model with MSE (0.108), RMSE (0.329) and R-Squared (0.999) for summer. Similarly, the best models for Shastri Nagar for monthly data are 1. Step-wise Linear Regression with RMSE (20.292), MSE (411.774) and MAE (12.524) for April & May (summer), 2. Neural Network Narrow model had RMSE (3.399), MSE (11.554) and MAE (2.141) for July (rainy). 3. Neural Network Bilayered model with RMSE (1.618), MSE (2.619) and MAE (0.593) for November & December (winter). The results obtained were very efficient and reliable.

1. INTRODUCTION

Global warming is caused by hasty increase in carbon dioxide and other GHG produced by burning oil, gas, coal, fossil, industries and so on. Global warming further causes climate change, one of major issue world-wide. Abnormal climate change brings disaster and harm to humankind (Zhao, 2019). Thereby, global warming is triggering changes in rains, snow patterns and rising sea levels (Letcher, 2021). Thus, one have to build low-carbon and resilient cities to lower the global warming (Lee, 2013 & Yoro, 2020) and protect the planet. The huge impact on global warming is due to high emission of CO₂. The transport and industry sector are significant contributor for CO2 emission (Lee, 2013 & Yoro, 2020) and carbon monoxide (CO) (Wang, 2021). Vehicles produce CO₂ from engine combustion that is harmful carbon monoxide (CO) from incomplete combustion to CO₂ (Wang, 2021). CO₂ and CH₄ are significant emitters for GHG effect (Chapman, 1996). Furthermore, CO poisoning leads to long-term neurological (Rose, 2017); and cardiovascular diseases (Wang, 2021). In atmosphere, high temperature sensitivity results due to weak CO₂ adsorption of pure carbonaceous materials (Kanjilal, 2020). Let's ponder on few remarkable reasons for emission of CO2

Firstly, ICT contributes 1.8% to 2.8% of global GHG emissions to environmental pollution, global warming and ultimately climate change. Research indicates the carbon footprint is produced by production and use-phase electricity consumption (Sutton-Parker, 2022). All analysts agree that ICT emissions will not reduce without the

determined efforts of political and industrial (Freitag, 2021).

Secondly, carbon credit trading (Chonde, 2016) is for controlling and reducing GHG emission that contributes to global climate change (Robinson, 2006). CO₂ is a concern that happens to be most important GHG produced by combustion of fuels. The other gases emitted from industries include CO₂, NO₂, CH₄ and hydro fluorocarbons (Chonde, 2016). Carbon credit allows one ton of CO₂ to be discharged into the air. A great deal of businesses buying/ selling carbon credits for excess emissions has encouraged carbon trading globally. India is among emerging leader for the developing countries in designing innovative strategies and portfolios for carbon trading (Gupta, 2011). From the middle of the 18th century, the concentration of CO₂ with two factors, land use changes and the burning of fossil fuels increasing. higher have been The atmospheric concentrations of CO₂ are absorbed by the oceans (Breeze, 2017).

Thirdly, for amending environmental change, CO_2 capture is considered as the key technology (Kanjilal, 2020). The other is industry penetration of solvent absorption technology for CO_2 captures (Scholes, 2020). The low partial pressure of CO_2 and reduced separation driving force in flue gas applications also hampers the development of membrane technology in industrial applications (Scholes, 2020).

^{*} Corresponding author

Climate change and air pollution are the biggest environmental concern globally (Coelho, 2021). The study of pollution discusses the negative impacts on environment (Brusseau, 2019). Fourthly, the practice of conservation of forest and soil that enhance the storage of carbon or reduce CO_2 emissions is accomplished with terrestrial carbon sequestration (Sundquist, 2008).

2. DISCUSSION AND RESULTS

 CO_2 remains longer in the atmosphere than any pollutants; this warms the earth causing climate change. Industrial revolution (IR) is related closely to emission of CO_2 causing the pollution. IR increased CO_2 by 50% because of burning fuel, electricity, heat and transportation. Humans have generated an estimated 1.5 trillion tons of CO_2 . CO_2 effects human health including headaches, dizziness, restlessness, breathless, and sudden rise in blood pressure.

In this study of monthly and hourly air quality index (AQI) vs CO_2 and CO for Visakhapatnam (AP) and Shastri Nagar (RJ) for April, July, December and January 2023 were collected from https://app.cpcbccr.com/AQI_India/ and ML regression models were developed shown in tables (1, 2, 3, 4). The best models for hourly data are RMSE of SVM–L (5.1594) for April, GPR–SE for July (0.0002) and December (0.0038), and NN-N (0.1932) for January. The response plot of CO_2 vs AQI is shown in figures A.1 in Appendix -A. The model number in each table represents the corresponding graph in Appendix-A and Appendix-B.

For monthly data, the RMSE of best models were LR (0.329) for April & May, SLR model (2.12E-14) for July, NN-N (0.680) for November and December is shown in tables (5 to 7). Visakhapatnam has three seasons with excessive humidity from southern part whereas Shastri Nagar has moderate rains with high heat in summer.

Let's discuss a little on regression models

Linear Regression, is a relationship between the response and explanatory parameters, and is represented by

 $y = ax + b \qquad (1)$ or $y = m_0 + m_1 x_1 + m_2 x_1^2 + (2)$ where 'y' is the output, constant is denoted by 'b' and 'm_0' and slope by 'a' and 'm_1'.

Stepwise linear regression does multiple regressions a number of times, every time it removes the weakest correlated variable. It is represented by

$$b_{j,std} = b_j \frac{sx_j}{sy} \tag{3}$$

where $s_{xi} \, \text{and} \, s_v$ are the standard deviation for response and explanatory variables.

Tree – fine/ medium model uses a decision tree to represent how different input variables can be used to predict a target value. Machine learning uses tree-based models for both classification and regression problems.

Support vector machine (SVM) –Linear regression model is a ML tool for classification and regression and is considered a nonparametric technique because it relies on kernel functions. It expressed as $f(x) = x'\beta + b \quad \dots \quad (4).$

Gaussian process regression (GPR) models are utilized for statistical modeling and are nonparametric kernel-based probabilistic models with a finite collection of random variables with a multivariate distribution.

Neural Network model is a computational system that is organized into layers of nodes.

2.1 Visakhapatnam models based on the hourly data

It was interesting to note with hourly data on December 2, 2022, the value of CO started with 48 (ppm) at 4:00 am, decrease to 8 (ppm) at 11:00 am, later gradually increased to 36 (ppm) at 9:00 pm. July month had the value of CO to 5 (ppm) on July 24, 2022 with almost < 35 (ppm) the entire month. On April 26, 2022 the highest value of CO (60 ppm) was found with the entire month higher than 31 (ppm). January 6, 2023 had 108 (ppm) at 1:00pm. Hence, it is clear that rainfall washes the pollutant CO in the atmosphere and CO is found less in rainy season.

Visa	Visakhapatnam hourly – AQI and CO predictions for							
	April 25 to 30, 2022							
Mode	Model	RMSE	MSE	R-Sq	MAE			
1	Туре	(V)	(V)	(V)	(V)			
2.1	LR	5.310	28.197	0.516	1.595			
2.2	LR–I	5.820	33.881	0.418	2.241			
2.4	SLR	5.545	30.756	0.472	1.881			
2.5	Tree – Fine	5.767	33.262	0.429	1.447			
2.6	Tree – Medium	5.714	32.660	0.439	2.045			
2.8	SVM –L	5.159	26.619	0.543	0.811			
2.9	SVM–Q	5.181	26.845	0.539	0.932			
2.16	GPR-SE	5.521	30.488	0.476	1.434			
2.18	GPR-E	5.463	29.849	0.487	1.257			
2.20	NN–N	12.871	165.683	-1.842	2.338			
2.23	NN–B	13.010	169.282	-1.904	2.027			
2.24	NN-T	6.118	37.430	0.357	1.098			

*V = Validation

Table 1. Regression models for April month

Vis	Visakhapatnam hourly – AQI and CO predictions for July 20 to 25, 2022							
Model	Model	RMSE	MSE	R-Sq	MAE			
Model	Туре	(V)	(V)	(V)	(V)			
2.1	LR	2.43E- 14	5.91E- 28	1	2.05E-14			
2.2	LR–I	2.21E- 14	4.88E- 28	1	1.70E-14			
2.4	SLR	2.12E- 14	4.51E- 28	1	1.62E-14			
2.5	Tree – Fine	1.071	1.147	0.993	0.788			
2.6	Tree –	2.190	4.796	0.974	1.771			

2.8

2.9

2.16

SVM-L

SVM-M

GPR-SE

	Medium				
2.8	SVM – L	1.145	1.311	0.993	0.927
2.9	SVM – Q	1.499	2.247	0.988	1.316
2.16	GPR- SE	0.0002	4.42E- 08	1	0.000
2.18	GPR-E	0.669	0.448	0.997	0.374
2.20	NN–N	0.008	7.73E- 05	1	0.001
2.23	NN–B	0.002	4.92E- 06	1	0.000
2.24	NN–T	0.260	0.067	0.999	0.042

*V = Validation

Visaltan transform handles AOI and CO and isting for								
V 18	Visakhapatnam hourly – AQI and CO predictions for December 1 to 6, 2022							
Model	Model Type	RMSE (V)	MSE (V)	R-Sq (V)	MAE (V)			
2.1	LR	6.79E- 14	4.62E-27	1	4.88E-14			
2.2	LR–I	6.74E- 14	4.54E-27	1	5.22E-14			
2.4	SLR	6.74E- 14	4.54E-27	1	5.22E-14			
2.5	Tree – Fine	5.998	35.981	0.993	4.063			
2.6	Tree – Mediu	11.150	124.323	0.977	8.283			
2.8	m SVM– L	6.062	36.749	0.993	4.636			
2.10	SVM –C	8.130	66.107	0.987	7.058			
2.16	GPR- SE	0.0038	1.46E-05	1	0.002			
2.18	GPR- E	2.592	6.719	0.998	1.271			
2.20	NN–N	0.117	0.013	0.999	0.015			
2.23	NN–B	0.510	0.261	0.999	0.093			
2.24	NN–T	0.882	0.778	0.999	0.215			

*V = Validation

Table 3. Regression models for December month

Visa	Visakhapatnam hourly – AQI and CO predictions for						
		January 1	to 6, 2023				
Model	Model	RMSE	MSE	RSq	MAE		
Model	Type	(V)	(V)	(V)	(V)		
2.1	LR	5.285	27.932	0.99	3.918		
2.2	LR–I	1.408	1.988	0.99	1.020		
2.4	SLR	1.467	2.152	0.99 9	1.017		
2.5	Tree – Fine	6.640	44.093	0.99 2	4.061		
2.6	Tree- Medium	18.628	347.011	0.94 1	11.400		

2.18	GPR-E	1.985	3.940	0.99 9	1.075
2.20	NN–N	0.193	0.037	0.99 9	0.047
2.23	NN–B	0.720	0.519	0.99 9	0.410
2.24	NN–T	0.712	0.507	0.99 9	0.314

37.317

26.484

0.414

6.108

5.146

0.643

*V = Validation

0.99

4 0.99

6 0.99

9

5.639

4.468

0.482

Table 4. Regression models for January month

2.2 Visakhapatnam models based on the monthly data

Visakhapatnam monthly-AQI and CO predictions for April								
& May 2022								
Model RMSE MSE R-Sa								
Model	Туре	(V)	(V)	(V)	MAE (V)			
2.1	LR	0.329	0.108	0.999	0.170			
2.1	LK	0.329		0.333	0.170			
2.4	SLR	0.343	0.118	0.999	0.183			
	Tree -	< 0 7 5	17 07 1	0.001	4 422			
2.5	Fine	6.875	47.274	0.921	4.433			
	Tree –							
2.6	Medium	11.095	123.119	0.796	8.359			
2.8	SVM-L	1.723	2.969	0.995	1.241			
2.0	SVM-L	1.725	2.909	0.995	1.241			
2.9	SVM-Q	1.736	3.015	0.995	1.374			
	GPR-				0.400			
2.16	SE	0.382	0.146	0.999	0.199			
2.18	GPR-E	4.290	18.410	0.969	1.800			
2.20	NN-N	0.594	0.353	0.999	0.180			
2.23	NN-B	0.626	0.392	0.999	0.192			
2.24	NN-T	0.433	0.188	0.999	0.199			
				*V =	= Validation			

Table 5. Regression models for April and May month

359

Visakhapatnam monthly-AQI and CO predictions for July 2022							
Model	Model Type	RMSE (V)	MSE (V)	R-Sq (V)	MAE (V)		
2.1	LR	2.43E-14	5.91E-28	1	2.05E-14		
2.4	SLR	2.12E-14	4.51E- 28	1	1.62E- 14		
2.5	Tree – Fine	1.071	1.147	0.993	0.788		
2.6	Tree – Medium	2.190	4.796	0.974	1.771		
2.8	SVM-L	1.145	1.312	0.993	0.927		
2.9	SVM–Q	1.499	2.247	0.988	1.316		
2.16	GPR-SE	0.0002	4.42E-08	1	0.0001		
2.18	GPR-E	0.669	0.448	0.997	0.374		
2.20	NN–N	0.008	7.73E-05	1	0.001		

2.23 NN-B	0.002	4.92E-06	1	0.0008
2.24 NN-T	0.260	0.067	0.999	0.042

***V** = Validation

Table 6. Regression models for July month

Visak	Visakhapatnam monthly –AQI and CO predictions for							
November & December 2022								
Model	Model	RMSE	MSE	RSq	MAE			
WIGUCI	Туре	(V)	(V)	(V)	(V)			
2.1	LR	9.723	94.543	0.973	8.288			
2.4	SLR	10.256	105.18 6	0.970	8.499			
2.5	Tree – Fine	13.517	182.73 3	0.949	10.302			
2.6	Tree – Medium	23.988	575.45 7	0.840	17.432			
2.8	SVM-L	9.548	91.164	0.974	8.112			
2.9	SVM-Q	7.407	54.864	0.984	6.060			
2.16	GPR-SE	5.520	30.478	0.991	3.444			
2.18	GPR-E	8.109	65.762	0.981	6.207			
2.20	NN–N	0.680	0.462	0.999	0.136			
2.23	NN–B	1.439	2.072	0.999	0.484			
2.24	NN–T	1.484	2.204	0.999	0.372			

*V = Validation

Table 7. Regression models for November & December month

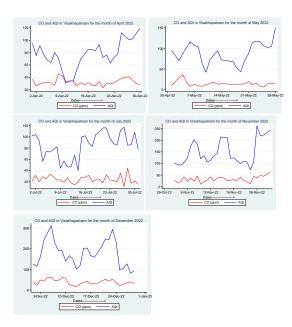


Figure 1. Trends for Visakhapatnam

The monthly trends of CO and AQI for visakhapatnam are plotted using STATA shown in figure 1 for the months of April, May, July, November and December 2022. AQI and CO seems to be severely bad in December month.

2.3 Shastrinagar hourly outcomes

The value of CO in shastri nagar was found higher on December 2, 2022 with 108 (ppm) at 4:00pm and during the month of January, January 6 had highest 73 (ppm) at 4:00pm and 17 (ppm) on January 3 & 4, 2023. The entire July month had the values between 20 (ppm) to 46 (ppm). The entire april month had the values between 21 (ppm) to 100 (ppm) on April 27, 2022 at 5:00pm and decreased to 28 (ppm) at 9:00pm. Shastri nagar being the dry region has more pollution than Visakhapatnam.

Shastrinagar hourly -AQI and CO predictions for April								
	25-30, 2022							
M. 1.1	Model	RMS	MSE	R-Sq	MAE			
Model	Type	E (V)	(V)	(V)	(V)			
2.1	LR	3.267	10.673	0.983	2.574			
2.2	LR – I	1.733	3.005	0.995	0.963			
2.4	SLR	1.763	3.111	0.995	0.955			
2.5	Tree – Fine	2.430	5.909	0.991	1.628			
2.6	Tree – Mediu m	3.240	10.500	0.984	2.557			
2.8	SVM-L	3.257	10.609	0.984	2.577			
2.9	SVM-Q	3.357	11.273	0.983	2.810			
2.16	GPR- SE	1.545	2.389	0.996	0.699			
2.18	GPR-E	1.653	2.734	0.995	0.745			
2.20	NN-N	1.693	2.866	0.995	0.789			
2.23	NN-B	1.884	3.552	0.994	0.814			
2.24	NN-T	1.793	3.217	0.995	0.820			
	*V – Validation							

*V = Validation

Table 8. Regression	models for	April	month
---------------------	------------	-------	-------

Sh	Shastrinagar hourly -AQI and CO predictions for						
		July 20-2					
Model	Model	RMSE	MSE	R-Sq	MAE		
model	Туре	(V)	(V)	(V)	(V)		
2.1	LR	3.433	11.787	0.886	2.739		
2.2	LR-I	2.544	6.476	0.937	2.005		
2.4	SLR	2.475	6.128	0.940	2.026		
2.5	Tree – Fine	2.135	4.559	0.955	1.496		
2.6	Tree – Medium	3.146	9.901	0.904	2.419		
2.8	SVM-L	3.387	11.477	0.889	2.514		
2.9	SVM-Q	2.528	6.395	0.938	1.882		
2.16	GPR-SE	1.554	2.415	0.976	1.037		
2.18	GPR-E	1.398	1.957	0.981	0.968		
2.20	NN-N	2.190	4.798	0.953	1.481		
2.23	NN-B	2.047	4.190	0.959	1.383		
2.24	NN-T	3.328	11.078	0.892	1.815		

Sha	Shastrinagar hourlyAQI and CO predictions for						
	December 1-6, 2022						
Mode	Model	RMS	MSE	R-Sq	MAE		
1	Туре	E (V)	(V)	(V)	(V)		
2.1	LR	2.450	6.005	0.979	0.764		
2.2	LR - I	2.695	7.266	0.975	1.071		
2.4	SLR	2.482	6.164	0.979	0.828		
2.5	Tree – Fine	3.116	9.714	0.967	1.719		
2.6	Tree – Mediu	3.732	13.931	0.952	2.585		
	m						
2.8	SVM-L	2.591	6.717	0.977	1.110		
2.9	SVM-Q	3.055	9.337	0.968	1.516		
2.16	GPR- SE	2.492	6.212	0.978	0.644		
2.18	GPR-E	2.572	6.616	0.977	0.694		
2.20	NN-N	2.704	7.314	0.975	1.081		
2.23	NN-B	2.564	6.576	0.977	0.787		
2.24	NN-T	3.320	11.026	0.962	0.905		

***V** = Validation Table 9. Regression models for July month

*V = Validation

Table 10. Regression models for December month

Sh	Shastrinagar hourly -AQI and CO predictions for						
	January1-6, 2023						
Model	Model	RMSE	MSE	R-Sq	MAE		
	Туре	(V)	(V)	(V)	(V)		
2.1	LR	3.429	11.759	0.984	2.906		
2.2	LR – I	3.015	9.09	0.987	1.473		
2.4	SLR	1.822	3.321	0.995	1.354		
2.5	Tree –	4.302	18.513	0.976	2.888		
	Fine						
2.6	Tree –	7.640	58.373	0.926	6.145		
	Medium						
2.8	SVM-L	3.483	12.137	0.983	3.037		
2.9	SVM-Q	5.966	35.597	0.952	2.774		
2.16	GPR-SE	4.97	24.701	0.967	0.957		
2.18	GPR-E	3.089	9.547	0.987	1.063		
2.20	NN–N	1.828	3.342	0.995	0.187		
2.23	NN-B	5.193	26.974	0.964	0.757		
2.24	NN-T	2.437	5.941	0.992	0.593		

*V = Validation

Table 11. Regression models for January month

2.4 Monthly outputs of Shastrinagar

Shastrinagar monthlyAQI and CO predictions for April & May, 2022					
		cc may	, 2022		
Model	Model	RMSE	MSE	R-Sq	MAE
Model	Type	(V)	(V)	(V)	(V)
2.1	LR	20.706	428.768	0.778	13.376
2.2	LR – I	25.674	659.173	0.658	14.947

2.4	SLR	20.292	411.774	0.784	12.524
2.5	Tree – Fine	27.287	744.616	0.592	17.839
2.6	Tree – Mediu m	31.381	984.767	0.460	20.984
2.8	SVM- L	20.222	408.968	0.788	11.024
2.9	SVM- Q	17.769	315.764	0.836	9.174
2.16	GPR- SE	22.674	514.138	0.733	13.272
2.18	GPR-E	23.378	546.570	0.717	13.438
2.20	NN–N	46.377	2150.86	- 0.113	15.211
2.23	NN-B	187.287	35076.4 2	- 17.15 5	42.675
2.24	NN-T	65.108	4239.08	- 1.194	22.971

*V = Validation

Table 12. Regression models for April and May month

Shastr	Shastrinagar monthlyAQI and CO predictions for July 2022					
Model	Model Type	RMSE (V)	MSE (V)	R-Sq (V)	MAE (V)	
2.1	LR	6.085	37.039	0.792	3.688	
2.2	LR- I	8.202	67.285	0.622	4.822	
2.4	SLR	5.574	31.073	0.819	3.911	
2.5	Tree – Fine	6.890	47.479	0.724	5.673	
2.8	SVM-L	6.377	40.678	0.771	3.996	
2.9	SVM-Q	6.033	36.402	0.795	3.631	
2.16	GPR- SE	3.951	15.615	0.912	2.923	
2.18	GPR-E	3.416	11.673	0.934	2.27	
2.20	NN–N	3.399	11.554	0.935	2.14	
2.23	NN-B	17.705	313.482	-0.757	6.289	
2.24	NN-T	5.145	26.479	0.851	3.055	

*V = Validation

Table 13. Regression	models for	or July month
----------------------	------------	---------------

Sha	Shastrinagarmonthly-AQI and CO predictions for					
	Nov	ember & I	December 2	2022		
Model	Model	RMSE	MSE	R-Sq	MAE	
Widdei	Туре	(V)	(V)	(V)	(V)	
2.1	LR	8.549	73.096	0.950	6.276	
2.2	LR- I	7.302	53.330	0.964	4.658	
2.4	SLR	8.500	72.250	0.951	5.213	
2.5	Tree – Fine	18.667	348.457	0.766	10.924	
2.8	SVM-L	9.852	97.068	0.934	5.158	
2.9	SVM-Q	9.983	99.662	0.933	4.927	

2.16	GPR- SE	6.924	47.942	0.967	3.140
2.18	GPR-E	9.159	83.902	0.943	5.291
2.20	NN–N	4.522	20.449	0.986	1.762
2.23	NN-B	1.618	2.619	0.998	0.593
2.24	NN-T	3.616	13.076	0.991	1.333
2.24		3.616		0.991	1.333

***V** = Validation

Table 14. Regression models for November and December month

From the tables 8 to 11, the RMSE of best models for hourly data of CO2 and AQI for Shastri nagar were GPR-SE (1.545) for April, GPR-E (1.398) for July, LR (2.450) for December and SLR (1.822) for January. The response plot is plotted for CO2 and AQI is shown in figure B.1 in Appendix -B. Similarly from tables 12 to 14, RMSE of monthly best models were step-wise LR (20.292) for April & May, NN Narrow (3.399) and NN Bilayered (1.618) for November & December.

The global roadmap is set for 2025 to have no new coal plants and by 2050 to have clean green energy sources and affordable energy, to achieve the net carbon zero globally.

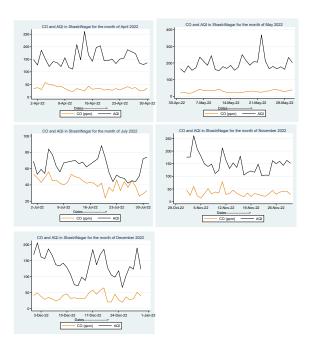


Figure 2. Trends in Shastri Nagar

The monthly trends of CO and AQI for Shastri Nagar is shown in figure 2 for the months of April, May, July, November and December 2022. CO is high in July and December whereas in May, CO is comparatively low. In May month, AQI is severely poor than other months.

The figure 3 shows the trends of CO (ppm) and AQI for the Visakhapatnam and ShastriNagar from the year 2017 to 2023. AQI seems to be severe in the year January 2019

(AP) whereas AQI is severely bad in the year September 2020 (RJ).

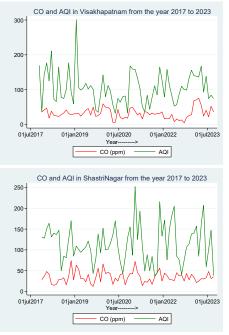


Figure 3. The trends of CO and AQI in AP and RJ.

3. CONCLUSION

It is very clear that CO₂ is very risky for human health by studying two different states - moderate and dry climate regions. It is further observed that one need to minimize the emission of CO₂ to protect the planet to attain net zero carbon and let other generations to live on this planet. This regression models will help the researchers, government official and global health organization to make necessary requirements for the highly polluted areas. The best regression model obtained for Visakhapatnam hourly 1. For rainy month, GPR-SE model obtained MAE (0.0001). 2. GPR-SE model with MAE (0.002) for December and Neural Network - Narrow model MAE (0.047) for January. 3. SVM -L with MAE (0.811), for summer. Similarly, the best models for Shastri Nagar for hourly data are 1. Gaussian Process Regression -Square Exponential with MAE (0.699) for summer month, 2. For rainy month, Gaussian Process Regression - Exponential model obtained MAE (0.968). 3. Linear regression with MAE (0.764) for December & Stepwise Linear Regression with MAE (1.354) for January (winter).

REFERENCES

Breeze. P. 2017 The Carbon Cycle and Atmospheric Warming. Electricity Generation and the Environment. Academic Press. 2017. 13-21. ISBN 9780081010440, https://doi.org/10.1016/B978-0-08-101044-0.00002-0.

Brusseau, M. L., Pepper, I., Gerba, C. 2019. The Extent of Global Pollution. Environmental and Pollution Science (Third Edition). Academic Press. 3-8. ISBN 9780128147191. https://doi.org/10.1016/B978-0-12-814719-1.00001-X.

Chapman, S. J., Thurlow, M. 1996. The influence of climate on CO2 and CH4 emissions from organic soils. Agricultural and Forest Meteorology. 79(4). 205-217. ISSN 0168-1923.

Chonde. S. G. 2016. Use of Carbon Credits / Trading for Environmental Protection: A Review. International Education and Research Journal (IERJ), 2(9). Retrieved from http://ierj.in/journal/index.php/ierj/article/view/411

Coelho, S., Rafael, S., Lopes, D., Miranda, A. I., Ferreira, J. 2021. How changing climate may influence air pollution control strategies for 2030? Science of the total environment. Vol 758. 143911. ISSN 0048-9697. https://doi.org/10.1016/j.scitotenv.2020.143911.

Freitag, C., Berners-Lee, M., Widdicks, K., Knowles, B., Blair, G. S., Friday, A. 2021. The real climate and transformative impact of ICT: A critique of estimates, trends, and regulations. Patterns. Cell Press. https://doi.org/10.1016/j.patter.2021.100340

Gupta. Y. 2011. Carbon Credit: A Step towards Green Environment. Global Journal of Management and Business Research, 11(5), 17–19. Retrieved from https://journalofbusiness.org/index.php/GJMBR/article/vie w/492.

Kanjilal, B., Masoumi, A., Nabavinia, M., Krishnadoss, V., Savelski, M., Noshadi, I. 2020. CO2 adsorption by carbonaceous materials and nanomaterials. Advances in Carbon Capture. Woodhead Publishing. 173-192. ISBN 9780128196571. https://doi.org/10.1016/B978-0-12-819657-1.00008-6.

Lee, Z. H., Sethupathi, S., Lee, K. T., Bhatia, S., Mohamed, A. R. 2013. An overview on global warming in Southeast Asia: CO2 emission status, efforts done, and barriers. Renewable and Sustainable Energy Reviews, Vol 28, 71-81, ISSN 1364-0321.

Letcher. T. M. 2021. Why discuss the impacts of climate change? The Impacts of Climate Change. Elsevier. 3-17. ISBN 9780128223734. https://doi.org/10.1016/B978-0-12-822373-4.00020-3.

Robinson, J., Bradley, M., Busby, P., Connor, D., Murray, A., Sampson, B., Soper, W. 2006 Climate change and sustainable development: realizing the opportunity. Ambio. 35(1). 2-8. PMID: 16615692.

Rose J. J., Wang, L., Xu, Q., McTiernan, C. F., Shiva, S., Tejero, J., Gladwin, M. T. 2017. Carbon Monoxide Poisoning: Pathogenesis, Management, and Future Directions of Therapy. Am J Respir Crit Care Med. 195(5). 596-606. doi: 10.1164/rccm.201606-1275CI. Scholes, C. A. 2020 Challenges for CO2 capture by membranes. Advances in Carbon Capture. Woodhead Publishing. 357-377. ISBN 9780128196571, https://doi.org/10.1016/B978-0-12-819657-1.00016-5.

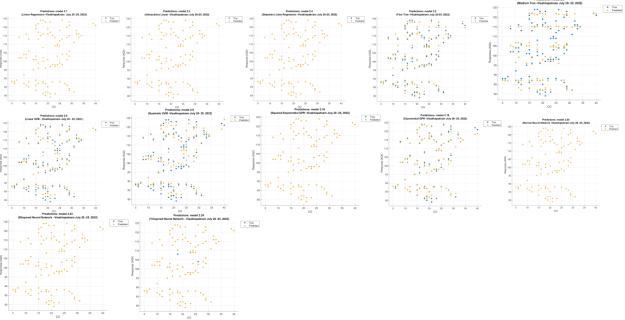
Sundquist, E., Burruss, R., Faulkner, S., Gleason, R., Harden, J., Kharaka, Y., Tieszen, L., Waldrop, M. 2008. Carbon sequestration to mitigate climate change. Fact Sheet 2008-3097. https://doi.org/10.3133/fs20083097.

Sutton-Parker. J. 2022. Is sufficient carbon footprint information available to make sustainability focused computer procurement strategies meaningful? Procedia Computer Science. Vol 203. 280-289. ISSN 1877-0509. https://doi.org/10.1016/j.procs.2022.07.036.

Wang, Y., Li, J., Wang, L., Lin, Y., Zhou, M., Yin, P., Yao, S. 2021. The impact of carbon monoxide on years of life lost and modified effect by individual- and city-level characteristics: Evidence from a nationwide time-series study in China. Ecotoxicology and Environmental Safety. Vol 210. 111884. ISSN 0147-6513. https://doi.org/10.1016/j.ecoenv.2020.111884.

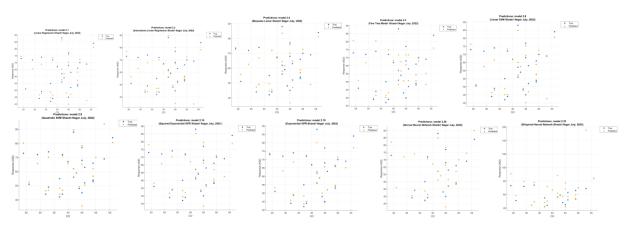
Yoro, K. O., Daramola. M. O. 2020. CO2 emission sources, greenhouse gases, and the global warming effect. Advances in Carbon Capture. 3-28. ISBN 9780128196571. https://doi.org/10.1016/B978-0-12-819657-1.00001-3.

Zhao, H. 2019. Climate Change and Sustainable Development. The Economics and Politics of China's Energy Security Transition. Academic Press. 277-305. ISBN 9780128151525.


ABBREVIATION

List of regression models used

Linear Regression	LR
Linear Regression – Interaction	LR-I
Stepwise Linear Regression	SLR
SVM - Linear	SVM-L
SVM – Medium	SVM-M
SVM – Quadratic	SVM-Q
SVM – Cubic	SVM-C
Gaussian Process Regression – Squared	GPR-SE
Exponential Gaussian Process Regression – Exponential	GPR-E
Neural Network – Narrow	NN-N
Neural Network - Bilayered	NN-B
Neural Network – Trilayered	NN-T


APPENDIX -A

VISAKHAPATNAM— JULY MONTH GRAPHS

APPENDIX -B

SHASTRINAGAR - JULY MONTH GRAPHS

Figure B.1 Shastrinagar monthly-AQI and CO Predictions for July 2022