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ABSTRACT:

Land transport is a major contributor to the human-caused climate change; knowing the total number and composition of the vehicle
fleet is key for estimating its emissions. Especially for countries of the Global South, emission inventories are associated with high
uncertainties because fleet data are often unknown or outdated – classifying vehicles on remote sensing has the potential to change
this. We present the XWHEEL dataset based on annotated vehicles in aerial images with six classes depending on the number of
wheels, size and motorization. The dataset consists of 73 annotated aerial images of the city of Dar es Salaam (Tanzania) with
15,973 vehicles. To analyze the performance of the dataset, a convolutional neural network, ReDet, and a transformer-based neural
network, DINOOBB, are trained with different configurations and validated on the validation and test split, but also on aerial images
from other regions. The transformer-based DINO architecture has been adapted to the remote sensing domain and modified to
predict Oriented Bounding Boxes. Results show a good performance on the test split from Dar es Salaam, when the two-wheeled
classes are merged and the non-motorized three-wheeled vehicles are excluded due to their rare occurrence. The best performing
algorithm configurations with four classes were then tested on aerial images of Kathmandu (Nepal) and Kampala (Uganda). The
performance drops for cycles and three-wheeled vehicles, as their appearance varies between countries. A main finding is that we
can reliably detect the different vehicle classes in Dar es Salaam. When algorithms trained on XWHEEL are generalized to other
regions of the Global South, performance decreases for the more difficult classes (bicycles and tricycles). To obtain results that are
comparable across the board, we therefore recommend expanding the dataset with additional annotations from other regions of the
Global South.

1. INTRODUCTION

Accurately classifying vehicles in remote sensing images, par-
ticularly in urban areas, has become increasingly crucial. Such
a classification can provide valuable insights into traffic anal-
ysis and management, urban planning and development, envi-
ronmental monitoring, and search and rescue operations. One
application case is the estimation of land transport emissions in
the Global South, where uncertainties in the absolute number
of vehicles, the composition of the vehicle fleet and rapid set-
tlement growth contribute to uncertainties in both the value and
the spatial distribution of the calculated emissions.

To address these challenges, the combination of precise vehi-
cle classification, mileage, and emission factors can improve
the accuracy of total emission calculations compared to exist-
ing inventories. In addition, the use of remote sensing im-
agery facilitates the mapping of vehicles over large areas, al-
lowing for more accurate and up-to-date modeling of land trans-
port emissions on the country level. Currently, the majority of
datasets available for vehicle detection algorithms are based on
scenes from the Global North. As a result, the development of
these algorithms has primarily been tailored to the conditions of
this world region, potentially limiting their effectiveness in the
Global South, where there are significant differences in the to-
tal number and types of vehicles. Consequently, relying solely
on existing datasets to detect vehicles in Global South scenes
may result in reduced accuracy, and any analysis based on the
output of such algorithms would introduce significant uncer-
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tainty. Therefore, it is crucial to develop datasets that accu-
rately reflect the unique conditions in order to improve the ef-
fectiveness of these algorithms in regions of the Global South.
Figure 1 provides examples of some vehicles commonly found
in the Global South but rarely seen in the Global North.

To address this issue, our paper introduces the XWHEEL dataset,
which is a new aerial imagery dataset designed to improve ve-
hicle detection in the Global South, focusing on Dar es Salaam
(Tanzania). By creating this dataset, we aim to provide the
community with a valuable tool for developing more accurate
and effective vehicle detection systems that are tailored to the
unique characteristics of this world region. In general, some ar-
eas of the Global South are covered with aerial imagery from
public databases like OpenAerialMap. The challenge is that
sensor quality and mosaicking are more heterogeneous and tend
to be poorer than for the Global North. In particular when work-
ing with not-projected aerial images, the existing GNSS/inertial
information must be further improved during a preprocessing
step.

To create an effective dataset, it is crucial to begin by appro-
priately standardizing and categorizing vehicle types based on
their appearance and relevance to different analytical applica-
tions. In addition, the process of annotating vehicles in re-
mote sensing data involves several uncertainties that must be
addressed by incorporating attributes. This task is particularly
challenging in countries of the Global South, where vehicles
exhibit diverse construction principles, making it difficult to as-
sign them to specific types. Moreover, literature suggests that
there can be overlaps when classifying vehicles into different
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(a) combination bus – s4w (b) jeepney – l4w (c) microbus – s4w (d) tuk tuk – m3w (e) tricycle – m3w

(f) cycle rickshaw – n3w (g) motorcycle – m2w (h) man-powered rickshaw
– n3w

(i) motorela – m3w (j) cycle rickshaw – n3w

(k) tuk tuk – m3w (l) tuk tuk – m3w (m) small truck – s4w (n) motorcycle – m2w (o) small bus – l4w

(p) cycle rickshaw – n3w,
diff

(q) cycle rickshaw – n3w (r) cycle rickshaw – n3w,
diff

(s) tricycle – m3w (t) cycle rickshaw – n3w,
diff

Figure 1. Examples of vehicle classes in the Global South (a–j) compared with their appearance in aerial images (k–t)

types (Chevre et al., 2022, Facchin, 2019). To solve this prob-
lem, we propose a new classification of vehicle types based on
the number of wheels, such as cycles (2w), three-wheeled ve-
hicles (3w), and four-wheeled vehicles (4w). Table 1 displays
the categorization used to create the XWHEEL dataset with a
few examples for each category. Figure 1 provides examples
of how vehicle types are assigned to the proposed classes and
how these vehicles look like in aerial images with a Ground
Sampling Distance (GSD) of 5 cm, which refers to the the dis-
tance between the centers of two adjacent pixels measured on
the ground.

Vehicle detection in aerial imagery poses unique challenges com-
pared to ground imagery because vehicles are smaller, more nu-
merous, and located in arbitrary orientations throughout the im-
age. As a result, identifying and locating vehicles in aerial im-
agery requires advanced techniques and algorithms to overcome
these challenges. To improve the accuracy of aerial object de-
tection, Oriented Bounding Boxes (OBB) are often used instead
of Horizontal Bounding Boxes (HBB), which are typically used
to detect objects in ground images (Han et al., 2021).

Convolutional Neural Networks (CNN) have demonstrated im-
pressive performance in object detection in recent years. How-
ever, since they are primarily designed for ground imagery, they
often do not account for varying orientations. To address this
problem, (Han et al., 2021) introduced a rotation-equivariant
detector (ReDet) that incorporates both rotation equivariance
and rotation invariance. ReDet’s rotation-invariant network al-
lows accurate prediction of OBBs without the need for addi-
tional network parameters or extensive orientation augmenta-
tion data. Transformer-based neural networks have emerged
as the leading object detection methods in many ground im-

agery benchmark datasets, such as the COCO dataset (Lin et
al., 2014). In particular, DINO (Zhang et al., 2022), a neural
network based on Detection with Transformers (DETR) archi-
tecture, is often used as a detector in many of the top scoring
methods such as InternImage (Wang et al., 2023) and Focal-
Net (Yang et al., 2022). Recent studies have explored the use
of transformer-based architectures for object detection in aerial
imagery, demonstrating promising results. For instance, (Wang
et al., 2022) have applied plain vision transformers and ViTAE
transformers to the DOTA dataset (Ding et al., 2021), a large
remote sensing dataset for detecting multiple object classes in-
cluding vehicles. Moreover, a recent study (Dai et al., 2022)
proposes a method for adapting DETR (Carion et al., 2020) to
predict OBBs.

We summarize our contributions as follows:

1. We publish the XWHEEL dataset to the community and
demonstrate the potential and challenges of the dataset.
The dataset is available here: https://www.dlr.de/eoc/en/
desktopdefault.aspx/tabid-12760/22294 read-84375/

2. We train and test two vehicle detection methods: ReDet,
a CNN-based approach, and DINOOBB, a DETR-based
method that we adapt from (detrex contributors, 2022). We
add angle as a query/output to DINO for predicting OBBs
and adjust the dimensions in the transformer and loss func-
tions accordingly.

3. We demonstrate that we can reliably detect three-wheeled
vehicles and four-wheeled vehicles based on different ex-
periments. For cycles, the detections are less reliable as
they are difficult to distinguish from pedestrians with shad-
ows or other small objects.
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Cycles (2w)
Motor. Cycles (m2w) Non-motor. Cycles (n2w)

Motorcycle Bicycle
Motorcycle taxi

3-wheeled vehicles (3w)
Motor. 3-wheeled (m3w) Non-motor. 3-wheeled (n3w)

Auto rickshaws Cycle rickshaw front
Motorcycle plus trailer Cycle rickshaw back
Motorcycle rickshaw, front/back Cycle rickshaw side
Motorela Man-powered rickshaw
Tricycle
Tuk-tuk

4-wheeled vehicles (4w)
Small 4-wheeled (s4w) Large 4-wheeled (l4w)

Micro bus Combination bus
Shared cab Jeepney
Van Lorry
Car Large, medium, mini bus
Trucks

Table 1. XWHEEL’s vehicle classes with examples

2. XWHEEL DATASET

Our XWHEEL dataset consists of 73 annotated aerial images
acquired over Dar es Salaam (Tanzania). These images are se-
lected from a collection of 11, 822 aerial images1 with an aver-
age size of 5472 × 3456 pixel covering 45 km2. These images
were captured by drones in 2017 at two different flight altitudes:
210m above ground for a smaller area near the city center, and
350m for the rest of the city. This resulted in an average ground
sampling distance (GSD) of 8 cm and 5 cm for the higher and
lower flight altitudes, respectively.

In this dataset, we initially classify vehicles into three types
based on the number of wheels: cycles (2w), three-wheeled ve-
hicles (3w), and four-wheeled vehicles (4w). Additionally, we
take into account other attributes such as size (large or small)
and motorization (motorized or non-motorized). We also con-
sider attributes that reflect the appearance of the vehicles, such
as ‘occluded’ (occl), ‘difficult’ (diff), and ‘uncertain’ (un). If
more than 10% of a vehicle’s total or estimated total surface is
obscured by objects such as trees, buildings, or bridges, it shall
be annotated with the attribute ‘occluded’. Additionally, if the
class or motorized status of a vehicle is difficult to discern or
cannot be identified at all, it shall be annotated with the attribute
‘difficult’ or ‘uncertain’, respectively. The XWHEEL dataset’s
categorization, along with sample instances for each category, is
presented in Table 1. As shown in the table, the category of cy-
cles is further divided into motorized (m2w) and non-motorized
(n2w) categories. Cycles are a common mode of transportation
in this region; however, differentiating between bicycles and
motorcycles in aerial images can be challenging. In addition,
the category of three-wheeled vehicles can also be divided into
motorized (m3w) and non-motorized (n3w) categories. These
vehicles are usually smaller than four-wheeled vehicles and dis-
play a significant degree of variability in terms of their shapes
and colors across different regions. Non-motorized three-wheeled
vehicles tend to be smaller than the motorized ones. As with
cycles, distinguishing between motorized and non-motorized
three-wheeled vehicles can also be a challenge in aerial im-
agery. Additionally, the category of four-wheeled vehicles is
further subdivided into small (s4w) and large (l4w) subcate-
gories. Vehicles with more than four wheels are also classified

1Worldbank, senseFly S.O.D.A.

Figure 2. Spatial distribution and numerical statistics of
XWHEEL dataset

as large and assigned to the four-wheeled category. Moreover,
we classify vehicles that are 1.5 times larger than standard cars
as large. However, this assumption can lead to a grey area be-
tween the small and large categories, which may make it chal-
lenging to accurately classify some vehicles in certain cases.
The proposed classes for vehicle types and their assignment are
illustrated in the examples shown in Figure 1.

To obtain annotated images for our dataset, we select 73 images
with a GSD of 8 cm from various locations that cover different
traffic situations. We annotate all vehicles in the selected im-
ages with OBB, and assigned each one its corresponding class
and attributes. In total, we annotated 15, 973 vehicles. In order
to ensure accurate annotation of data, we develop an annotation
policy that specifies the defining characteristics of each class.
Next, a team of experts performs a multi-level quality check to
ensure that the annotations meet high standards. To illustrate
the quality of our annotated data, we include several examples
in Figure 4 that showcase our training dataset. In order to eval-
uate the performance of our model, we split the 73 images into
three disjoint sets: the training set, which consists of 39 images,
the validation set, which consists of 17 images, and the test set,
which also consists of 17 images. This split results in 8,034
training vehicles, 3,906 validation vehicles, and 4,033 test ve-
hicles. In addition, we prepare georeferencing information (in-
terior and exterior parameters) for each image, which allows us
to project the annotated vehicles onto world coordinates using
an elevation model.

Figure 2 displays the spatial distribution of the selected images
across the three sets, along with the distribution of the images
with respect to the number of instances per class, the total num-
ber of instances, the annotated area per instance, and the at-

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-1/W1-2023 
ISPRS Geospatial Week 2023, 2–7 September 2023, Cairo, Egypt

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-1-W1-2023-371-2023 | © Author(s) 2023. CC BY 4.0 License.

 
373



tributes. Note that the images from the three sets do not overlap
even though the location of images appear to be quite close in
the figure. Based on the statistics, there is a significant class
imbalance in the vehicle classes. The majority of all anno-
tations are for small four-wheeled vehicles (s4w), and only a
small number of non-motorized two- and three-wheeled vehi-
cles are annotated. Additionally, the figure reveals that most
images contain approximately 250 instances, with an average
instance size of around 1600 pixels. Furthermore, less than
10% of all instances have the attributes ‘difficult’ or ‘uncer-
tain’ set to true. Based on a visual survey, it appears that the
most common type of three-wheeled vehicle in Dar es Salaam
is the tuk-tuk, which can be identified by its black roof. How-
ever, it is difficult to distinguish other types of three-wheeled
vehicles, especially non-motorized ones. Although cycles out-
number three-wheeled vehicles, only motorized cycles are easy
to distinguish.

As a means to assess the transferability of the algorithms trained
on the Dar es Salaam images to other regions, we use an or-
thorectified aerial image mosaic of Kampala, Uganda2. This
image mosaic covers a representative area of 0.013 km2 near
the city center, with a GSD of 5 cm. In addition, we use an im-
age mosaic of Kathmandu, Nepal3, taken in 2014, with a GSD
of 10 cm and covering an area of 0.013 km2. In order to quanti-
tatively evaluate the performance of vehicle detection, we par-
tially annotate the vehicles in the image of Kampala. However,
we left the vehicles in the remaining images unannotated due to
the significant cost and human effort involved. Thus, our eval-
uation of the vehicle detection performance in those images is
qualitative. Our observations show that in Kampala and Kath-
mandu the m3w class is less represented and less homogeneous
compared to Dar es Salaam, where almost all m3w are charac-
terized by a black roof.

3. EXPERIMENTS AND RESULTS

Prior to training, we perform offline augmentation on the dataset.
The augmentation process involves resizing the original images
by factors of 0.5, 1.0, and 1.5. After resizing, the images are
split into patches of size 1024×1024 with a stride of 824. Since
there are no large objects in the images, there is no need for
significant overlap between patches.Any objects that are trun-
cated by tiling are preserved if more than 50% of the object
remains within the tile. When testing scaled images, we ap-
ply Non Maximum Suppression (NMS) to suppress overlap-
ping results of the same class with an Intersection over Union
(IoU) greater than 10%. Results with lower confidence levels
are suppressed. To prepare the model for a variety of scenarios,
we apply standard online data augmentation techniques during
training. These include cropping, flipping, and rotation aug-
mentation.

3.1 Object detection methods

We used a state-of-the-art CNN-based architecture for the au-
tomatic detection of vehicles from aerial images, called Re-
Det (Ding et al., 2021). The main advantage of ReDet are
rotation-invariant features, which reduces the model size and
data needed to train the model compared to other CNNs.

As an alternative neural network architecture, we utilize the
state-of-the-art transformer model DINO (Zhang et al., 2022).

2OpenAerialMap, CC-BY 4.0
3German Aerospace Center, MACS camera system

This model is initially optimized for detecting HBBs on the
COCO dataset, but we aim to adapt it to the remote sensing
domain.

Specifically, we modify the output dimension of DINO to pre-
dict OBBs by adding a rotation parameter to the existing four
HBB parameters, resulting in five parameters. To ensure that
our 5D OBB is compatible with the DINO model, we change
the dimensions of the queries throughout the transformer. In
addition, we adjust the Hungarian matching process by chang-
ing the generalized IoU loss to a distance IoU loss (Zheng et
al., 2019). This change improves the accuracy of object de-
tection by refining the matching process. To further improve
the stability of the matching process, DINO incorporates a de-
noising loss by adding noise to the ground truth inputs during
training. Since we are changing the dimensions of the output to
5D OBBs, we must also change the dimensions of the inputs to
match the new format.

3.2 Evaluation metrics

In order to evaluate our experiments, we use mean Average Pre-
cision (mAP), which is calculated by computing Precision (P)
and recall (R):

P =
TP

TP + FP
, (1)

R =
TP

TP + FN
, (2)

where (TP) are the True Positives, (FN) the False Negatives
and (FP) the False Positives. These metrics depend on the con-
fidence threshold required to count as a detection and can be
plotted against each other for every confidence threshold, the
so-called Precision-Recall curve. The area under this curve for
each class is then calculated as AP (see Figure 3):

AP = ∫
1

0
P (R)dR (3)

The mAP score is then obtained by taking the mean value of all
APs across all classes:

mAP =
1

N

N

∑
n

APn (4)

3.3 Experiments

In order to analyze the potential of the XWHEEL dataset for
training ReDet and DINOOBB, we conduct several experiments
denoted as A to L in Table 2. Due to the relatively small size
of the XWHEEL dataset, we train all models for 36 epochs.
We trained the object detection algorithms with different num-
bers of classes and evaluated the results on the validation and
test sets of the XWHEEL dataset as well as the aerial images
from Kampala and Kathmandu. In our experiments, we fuse
the non-motorized cycle class with the motorized cycle class
(n2w + m2w→ 2w) as the number of annotated non-motorized
cycles is very low. This allowed us to increase the number of
samples in the 2w class, which could help improve the model’s
performance.

Experiments A and B in Table 2 represent the results of ReDet
in detecting five vehicle classes on the validation and test sets.
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AP (%)
exp. model backbone trained on evaluated on classes mean 2w n3w m3w s4w l4w
A ReDet ReResNet50 train XWHEEL val 5 67.0 55.4 5.9 85.2 95.9 92.4
B ReDet ReResNet50 train&val XWHEEL test 5 65.8 55.6 2.2 85.3 96.0 89.3
C ReDet ReResNet50 train XWHEEL val 4 82.2 55.4 – 85.2 95.9 92.4
D ReDet ReResNet50 train XWHEEL test 4 80.3 53.9 – 82.9 96.1 88.2
E ReDet ReResNet50 train&val XWHEEL test 4 80.9 54.1 – 83.9 96.4 89.1
F ReDet* ReResNet50 train&val XWHEEL test 4 67.2 37.2 – 63.2 91.4 71.1
G DINO Swin tiny 224 4 scale train XWHEEL test 4 78.3 49.7 – 83.3 94.2 85.9
H DINO* Swin tiny 224 4 scale train XWHEEL test 4 79.4 49.8 – 85.5 95.3 87.1
I DINO* Swin base 384 4 scale train XWHEEL test 4 80.2 50.3 – 87.7 95.4 87.4
J DINO* Swin large 384 4 scale train XWHEEL test 4 80.9 51.0 – 89.2 95.4 87.9
K DINO* Swin large 384 4 scale train&val XWHEEL test 4 81.6 52.9 – 89.4 96.1 88.2
L DINO* Swin large 384 4 scale frozen(3/4) train&val XWHEEL test 4 82.2 53.2 – 90.6 96.2 88.6
M ReDet ReResNet50 train&val Kampala 4 50.3 12.3 – 4.0 91.5 93.6
N DINO* Swin large 384 4 scale train&val Kampala 4 57.8 20.1 – 20.0 92.1 99.0
O DINO* Swin large 384 4 scale frozen(3/4) train&val Kampala 4 51.9 17.2 – 0.0 91.8 98.8

Table 2. Mean average precision of ReDet and DINOOBB for different number of classes evaluated on validation or test split with
different pre-trainings and backbones

model backbone # param. speed mAP
ReDet ReResNet50 31.6 M 1.78 MP/s 77.6
DINOOBB Swin tiny 224 4 scale 48.1 M 9.31 MP/s 75.8
DINOOBB Swin base 384 4 scale 108.1 M 5.41 MP/s 77.4
DINOOBB Swin large 384 4 scale 217.9 M 3.79 MP/s 78.5

Table 3. Comparison of model parameters, inference speed on
TITAN RTX (24GB) and mAP (%) of EAGLE pre-trains (12

epochs from scratch on EAGLE) for the different models

As can be seen, the model performance for the n3w class is very
poor. This is due to the small number of samples available for
this class and the high variability in its appearance. Thus, we
have decided to exclude n3w from the experiments C onward.
By excluding this class, we simplify the experiments and focus
on the classes with more samples and less variability in appear-
ance. In experiment F, we pretrain ReDet for 12 epochs on
the EAGLE dataset (Azimi et al., 2021), a vehicle dataset with
many instances of two vehicle classes with high heterogeneity,
and then fine-tune it on the XWHEEL dataset. In Table 2, for all
models marked with a star (*), we follow the same pretraining
procedure.

In experiments G to L, we train and evaluate DINOOBB with
different Swin backbones on the XWHEEL dataset. In exper-
iments O to M, we evaluate the best ReDet and DINOOBB

models (experiments E, K, L) on an aerial imagery from Kam-
pala.Furthermore, we apply the best ReDet and DINOOBB mod-
els (E, L) to an aerial imagery from Kathmandu and since we
do not have annotations for this image, we perform a qualita-
tive evaluation. Table 3 shows some details about the different
model configurations we use in our experiments.

3.4 Results and discussion

According to Table 2, in experiments A and B, the AP scores
for m3w, s4w, and l4w are notably high. However, the AP score
for 2w is slightly lower, and the AP score for n3w is consider-
ably lower. The reason for the poor results of n3w is the sig-
nificantly low number of samples available in Dar es Salaam,
which makes it very difficult to accurately identify and clas-
sify them. Therefore, we exclude them from our experiments
and only consider the four other classes: 2w, m3w, s4w, l4w.
Comparing experiments A to E, the test split seems to be more
challenging for the algorithm than the validation split. Even if
we add the validation part to the training in experiment E, we
still get lower results compared to just evaluating on the vali-
dation split as in C. Based on the results, using the pre-trained

model in experiment F significantly degrades performance. At
this point, it is not clear why this is the case, or whether modify-
ing the hyperparameters will solve the problem. However, since
ReDet contains significantly fewer parameters (see Table 3) and
is rotation invariant, it is unlikely that fine-tuning the model will
yield substantial improvements over training it from scratch.

In contrast to ReDet, our DINOOBB models exhibit improved
performance when pre-trained backbones are used, even with
smaller backbones. However, it is essential to utilize pre-trained
backbones when employing larger backbones to achieve opti-
mal results. For example, using the pre-trained backbone in
experiment H results in a 1.1% improvement in mAP. As a re-
sult, we use pre-trained backbones for all subsequent DINOOBB

experiments. For experiments H through K, the backbone pa-
rameters are not frozen during fine tuning. However, in exper-
iment H, 3 of the 4 backbone levels are frozen to preserve the
lower-level features learned by EAGLE, and only the higher-
level features are further trained. Given the improvement ob-
served with the latter configuration, we plan to experiment with
freezing different stages in the future, particularly as the initial
test looks promising. Figure 3 shows the class-wise precision-
recall curves for experiment E, the best result with ReDet and
experiment L, the best result with DINOOBB.

Additionally, the results demonstrate that DINOOBB performs
exceptionally well on m3w. Since 2w and m3w have similar
frequencies in the dataset, it is unlikely that the different abil-
ity of DINOOBB and ReDet to handle class imbalances is the
primary reason. We currently assume that 3w objects are typi-
cally better recognized by context, as they often appear in clus-
ters within images and are comparatively easier to identify in
contrast to s4w objects. The qualitative results of different ex-
periments are demonstrated in Figure 4. The ground truth is
shown in the first column, while the second and third columns
display the detections from ReDet and DINOOBB, respectively.
The confidence scores assigned to the detections from the net-
work are indicated by the numbers on the bounding boxes in the
second and third columns. For the qualitative results, we apply
NMS across classes if there is an IoU overlap of more than 50%,
while for the mAP calculation, NMS is only applied class-wise.
Additionally, only detections with a confidence score higher
than 30% are plotted.

In Figure 4, the first two rows show the qualitative results of
the experiment E and L respectively. According to these re-
sults, it appears that DINOOBB typically detects fewer false
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(a) ReDet

(b) DINOOBB

Figure 3. Precision-Recall curves for experiment E and L.

positives and assigns lower confidence scores to detections than
ReDet. This observation leads to a higher AP for the m3w class.
The inference result of DINOOBB on an image section of the
XWHEEL test set is presented in the form of a confusion plot
in Figure 5. The classes of s4w and l4w are accurately identi-
fied with mostly high confidence thresholds. The 3-wheelers in
the upper middle are detected, but with lower confidence scores.
While there are few false positives, some of them could poten-
tially be true positives (such as the occluded 0.32 or 0.79 score
detections); however, annotating them with high confidence is
not feasible.

We perform experiments M to O to evaluate the transferability
of the best ReDet and DINOOBB models to a very small aerial
image of Kampala. The image contains 178 annotated vehi-
cles, and we do not train the models on this new image. The
goal is to test the generalization ability of the models on dif-
ferent datasets. The Kampala image presents a challenge due
to its diverse vehicle distribution and a GSD of 5 cm, which
differs from the GSD of the XWHEEL training data, which is
mostly at 8 cm. We observe that changing the resolution of the
input image causes some small objects to be detected as cars,
especially for the ReDet model (see Figure 4, the third row).
Although DINOOBB detects fewer false positives than ReDet,
it also misses most of the 2ws and 3ws. We see that the mAP
scores for s4v and l4w are extremely high, as they are quite
easy to distinguish in the test image compared to some of the
XWHEEL test images. Furthermore, the number of annotations
in our dataset is insufficient to draw statistically significant con-
clusions beyond initial observations. For example, the AP of
l4w appears high, but this is likely due to a recall of about 1 for
most precision values, even with some false positives present
in the results. Therefore, care should be taken when drawing
firm conclusions based solely on these preliminary results. We
also observe that there are very few three-wheeled vehicles in
Kampala, and the few that are present have a different appear-
ance than those in the Dar es Salaam training set. In the case of
the 2w class, we find that the change in resolution contributes
significantly to the degradation in performance, with many 2w
vehicles being misclassified as small s4w vehicles or missed
altogether.

The qualitative results for Kathmandu are presented in the fourth
row of Figure 4. The performance of the model drops signifi-
cantly in Kathmandu compared to Kampala, likely due to the
worse GSD of the aerial images, which is 10 cm and lower
than that of the training dataset. Consequently, many m3w
and 2w vehicles are either not classified or classified with low
confidence scores due to the low spatial resolution, poor light-
ing conditions, and mosaicing artifacts. Accurate annotation of
these images would also be challenging due to the aforemen-
tioned difficulties.

4. CONCLUSIONS

Our paper presents the XWHEEL dataset, comprising of 73
high-resolution aerial images acquired from Dar es Salaam, Tan-
zania. The dataset contains 15,973 annotated vehicles, which
are classified into six distinct categories based on their size, mo-
torization, and number of wheels. In our study, we trained the
ReDet and DINOOBB detection algorithms on the XWHEEL
dataset using different configurations. The results show a high
detection performance on the two- and four-wheeled vehicles
as well as the motorized three-wheeled vehicles. However, the
non-motorized three-wheeled vehicles cannot be accurately de-
tected due to insufficient training samples, despite our augmen-
tation attempts. As a result, we have temporarily excluded this
class from the analysis until additional annotated images be-
come available. Nevertheless, the class remains part of the
dataset and may pose a challenge for future studies.

When we test the ReDet and DINOOBB detection algorithms
with aerial imagery from other cities, we observe a significant
drop in the performance of the two- and three-wheeled classes.
This highlights the need to expand the dataset by including an-
notations from other cities. To achieve this, we conducted a
thorough literature review on the fleet composition of countries
in the Global South, as documented in (Salazar, 2014, Salazar,
2015). Based on our research, we anticipated a high occurrence
of three-wheeled vehicles. However, during the annotation pro-
cess, we discovered that the number of annotated three-wheeled
vehicles was lower than expected. As a result, the imbalance
of annotations between classes is one of the main reasons for
the decreased performance of the two- and three-wheeled ve-
hicle detection in our experiments. This suggests a possible
change in the composition of the fleet in recent years. How-
ever, our study represents a crucial first step towards achieving
accurate vehicle classification in the Global South. We have
demonstrated that high-resolution aerial imagery can be used
to classify vehicles by the number of wheels, which can have
significant implications for modeling land transport emissions.
Remote sensing technologies offer the possibility of mapping
large areas accurately and in a timely manner, making it possi-
ble to model the impacts of different vehicle types on air quality
and public health.

Our next step is to expand the XWHEEL dataset to include
aerial imagery from other countries in the Global South. We
plan to iteratively expand the dataset to cover different regions
in the Global South, creating a representative dataset for the en-
tire region. With the algorithm trained on this extended dataset,
we can process vehicle detection on a city-wide basis for dif-
ferent countries in the Global South, thereby creating an inven-
tory of land transport emissions. In particular, we plan to ex-
plore the potential of high-resolution satellite data with a GSD
of 30 cm for this task. Additionally, we aim to improve the
algorithms used for detection by experimenting with different
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Annotations ReDet DINOOBB

Figure 4. Results of ReDet and DINOOBB on Dar es Salaam (first two rows), Kampala (third row), and Kathmandu (fourth row) for
∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎ l4w, ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎ s4w, ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎ m3w, ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎ 2w classes. Additionally, the confidence scores of the inference are plotted next to each detection.
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Figure 5. Confusion plot of DINOOBB on a test image crop from XWHEEL. The confidence threshold is set to 0.3 and the IoU
threshold, overlap with the ground truth for a detection to count as a TP, is set to 50%. The different entries are color coded:
∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎ TP, ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎ FP, ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎ FN, ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎ False Class. Additionally, the confidence scores of the inference are plotted next to each detection.

loss functions, freezing different stages, and further adapting
DINOOBB to the remote sensing domain. These efforts will
help us achieve greater accuracy and coverage in our vehicle
detection and emissions modeling efforts.
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