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ABSTRACT:  

 

Since the proposal of the "2030 Agenda", the United Nations Sustainable Development Goal indicator 11.7.1 aims to calculate the 

accessibility and quality of urban open spaces(UOS). An accurate and rapid assessment framework of UOS is of great significance for 

urban sustainable development. Previous research on UOS has mainly focused on the evolution patterns of UOS, with little research 

on assessments of their accessibility for different population structures (i.e., men vs. women, young vs. older). In this study, a U-Net 

deep learning network was used for training from 3072 annotated samples of urban green spaces(UGS) which was created based on 

Gaofen-2 remote sensing images. The trained model was used to identify UGS within five districts of Beijing at sub-meter level, 

incorporated with Open Street Map and area of interest data. A spatial analysis was conducted for accessibility of UOS, finding that 

most of the UOS in the central urban area of Beijing can be reached within 10 minutes, but access to the eastern and western edges is 

poorer (more than 30 minutes). Finally, using Worldpop data, the accessibility of UOS was statistically analyzed for different ages and 

genders. The results show that UOS accessibility rate for the elderly and children reaches over 90% (10 minutes accessibility). 

 

1. INTRODUCTION 

 

 In 2015, the United Nations 2030 Agenda for Sustainable 

Development (2030 Agenda) established 17 Sustainable 

Development Goals (SDGs) and 169 targets, with the aim of 

harmonizing the trinity of economic growth, social inclusion and 

environmental well-being (Colglazier, 2015). SDG 11.7.1 is” 

Average share of the built-up area of cities that is open space for 

public use for all, by sex, age and persons with disabilities”. One 

important way to make cities more inclusive, safe and sustainable 

is to provide urban open spaces (UOS), which can provide many 

material and non-material benefits to residents through their 

environmental and social functions, and can improve the 

environmental quality of cities(Wai et al., 2018). In 2018, UN-

HABITAT provided a technical paper describing the reference 

calculation steps and potential data sources for this SDG 11.7.1. 

And it suggests three steps: (1) Estimation of the land allocated 

to streets(LAS); (2) Estimation of the share of land allocated to 
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public open spaces; (3) Computation of core indicator: Average 

share of built-up area of cities that is open space for public use 

for all (UN-Habitat, 2018).  

 Previous research on UOS includes studying on the 

morphological changes of UOS under rapid urbanization (Zhu 

and Ling, 2022), the relationship between dynamic growth of 

UOS and walk ability (Liang et al., 2021), as well as landscape 

characteristics of UOS at different resolutions (Toger et al., 2015). 

The application of multiple methods has allowed for the 

identification of UOS in both temporal and spatial dimensions. 

Urban green spaces (UGS) such as parks and gardens, and urban 

squares as a type of urban grey space, are both important 

elements of UOS. It is worth noting that there are various 

definitions suited to different research needs. In this paper, it is 

argued that UOS serves as a place of recreation and entertainment 

for residents, and therefore encompasses both urban green spaces 

and urban squares. 

 Earth observation, especially using high-resolution 
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imagery, can help acquire more detailed urban information. Sub-

meter satellite imagery not only accurately delineates land 

boundaries, but also reveals complex spatial relationships, 

facilitating the exploration of the interplay between economic 

growth, social activities, and environmental protection during the 

urban development process(Maso et al., 2020). Geospatial 

observation data can supplement or even replace inaccurate or 

invalid existing datasets(Verde et al., 2022). Earth observation 

plays a crucial role in advancing the implementation of the 

Sustainable Development Goals (SDGs) and the Global Indicator 

Framework, contributing to the tracking of progress in SDGs 

implementation, and providing indispensable information for 

SDGs planning and decision-making(Kavvada, 2020). 

 With the accumulation of increasingly abundant earth 

observation data, new applications of computer vision have been 

opened up, including but not limited to change detection, long-

term monitoring, and image segmentation. The U-Net model is 

widely used for land-cover recognition due to its small data 

requirements, quick training process, and high accuracy in image 

segmentation. As a segmentation network algorithm evolved 

from fully convolutional network, U-Net neural network 

considers both global and detailed information of the image. 

Furthermore, U-Net concatenates the each layer of the encoder to 

the decoder, significantly enhancing the accuracy of the 

segmented image information and ultimately results(Ali et al., 

2017; Abascal et al., 2022 ). Thus, the utilization of high-quality 

geospatial information and advanced deep learning techniques to 

obtain accurate UGS is critically significant for improved 

assessment of SDG 11.7.1 indicator. 

 Previous research on SDG 11.7.1 indicator mostly focuse 

on calculating the proportion of area, but lacks spatial 

descriptions of urban open space that can serve residents. 

Accessibility analysis is the process of using destination point or 

area data and road data to conduct network analysis. By creating 

accessibility maps of a certain type of destination, it is possible 

to clearly reflect the spatial distribution of accessibility for that 

geographic feature. Accessibility analysis plays an important role 

in urban planning, assessing urban development potential, 

environmental protection, and enhancing residents' sense of well-

being(Giuliani et al., 2021). Many scholars have used 

accessibility analysis to calculate SDG indicators, including 

infrastructure services, medical facility coverage, and resident 

education, supporting the calculations of SDG 1.4.1, SDG 3.8.1, 

and SDG 4.a.1, respectively. Building on existing research, 

accessibility analysis methods can be applied to UOS to calculate 

their service range. 

 To address the urgent need for monitoring and measuring 

the Service scope of UOS, this paper developed an accurate and 

rapid assessment framework for the SDG 11.7.1 indicator 

assessment. This study introduces a deep learning U-Net 

framework that leverages earth observation advantages to extract 

UGS using sub-meter satellite images. 2) combine multiple-

sources (i.e., area of interest, Open Street Map) acquired UOS 3) 

and explores the accessibility of services based on gender, age, 

especially for the elderly and children for supporting the 

assessment of SDG 11.7.1 indicator.  

 

2. MATERIALS AND METHODS 

 

2.1 Multiple sources of earth observation dataset 

 

 (1) High-resolution Gaofen-2 images. This study utilized 

high-resolution imagery from the Gaofen-2 satellite to cover 8 

scenic areas in Beijing, China, with imaging dates ranging from 

2020 to 2021. The areas covered include Dongcheng, Xicheng, 

Chaoyang, Haidian, and Shijingshan districts(Figure 1, (a)). The 

imagery has a resolution of 0.8 meters and was pre-processed 

with Digital Elevation Model data.  

 (2) Multi-temporal Urban built-up area(UBA) datasets. 

The study utilized data from the built-up areas of Beijing (Figure 

1, (b)), delineated based on 30-m Global Artificial Impervious 

Surface data processed by Professor Gong Peng from Tsinghua 

University. This data was derived from high-resolution satellite 

imagery, which was used to identify impervious surfaces within 

urban areas(Shi et al., 2023). From 1900-2018, there are 7 years 

of urban boundary data available, and the 2018 data are used for 

this study. 

(3) Spatially-detailed population dataset. The study utilized 

Worldpop population data for the year 2020 (Figure 1, (c)), with 

a spatial resolution of 100 meters(). A top-down, constrained 

approach was used to predict population counts, allowing for 

accurate depiction of residential areas and buildings and resulting 

in precise population distribution estimates. This approach also 

helped to reduce the impact of uninhabited areas on the analysis.  

(4) Multiple sources of Volunteered Geographic 

Information(VGI). The study utilized Open Street Map (OSM) 

road, Aera of interest (AOI), and water body data (Figure 1, (d)). 

In the water information of OSM, there are three types of water-

related areas: reservoir, riverbank, and water. These data are part 

of VGI and are characterized by its fast updates and diverse data 
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types. However, data gaps and accuracy issues are also common. 

After undergoing data quality checks and consistency checks, 

OSM data can be used to supplement urban open space ranges 

and support the calculation of SDG 11.7.1 indicator. Additionally, 

The study utilized a sample set created from Google imagery to 

enhance training of the U-Net model(Shi et al., 2023).

 

Figure 1. Research area and datasets: (a) date and location of Gaofen-2; (b) Urban built-up area; (c)Worldpop2020 data; (d)DEM and 

OSM data

2.2 Methods 

 

 High-resolution Gaofen-2 imagery was used in conjunction 

with the U-Net deep learning architecture to extract UGS. Then, 

Based on the identification results of UGS, combined with AOI 

data, the representation of UOS is carried out. Moreover, 

performing cost calculation on OSM road data, conducting 

accessibility analysis of UOS, and estimating the population 

within the service range. 

 
Figure 2. A framework of mapping UGS and supporting SDG 

11.7.1 assessment derived multiple-source geo-spatial data 

 

2.2.1 U-Net architecture 

 

 U-Net is a convolutional neural network proposed in 2015 

for medical image segmentation, aiming to accurately locate and 

quantify objects within a specific category. Due to its excellent 

performance, it has been widely applied to various directions of 

semantic segmentation, such as satellite image segmentation 

(Ronneberger et al., 2015). U-Net is an Encoder-Decoder 

architecture, similar to fully convolutional network, where the 

front-end performs feature extraction and the back-end performs 

upsampling. The left half of the network comprises a 

downsampling module, consisting of two 3x3 convolutional 

layers with Rectified Linear Unit (ReLU) activation and a 2x2 

max-pooling layer, designed to capture contextual features 

through convolutional operations. The right half of the network 

contains an upsampling module, including an upsampled 

convolutional layer, feature concatenation, and two 3x3 

convolutional layers with ReLU activation, designed to localize 

the target object while incorporating corresponding features from 

the left-hand side.  

 The input to the left side of the network is a 512x512 image. 

Through paired 3x3 convolutions, the depth of the image is 

increased, followed by pooling operations to reduce the size of 

the image. At each downsampling step, the image is reduced by 
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half, while the number of convolutional filters is doubled. In the 

right side of the network, four upsampling steps are performed, 

resulting in an output of the same size as the original image. 

However, since deconvolution can only enlarge images rather 

than restore them, in order to reduce data loss, the approach is 

taken to crop the images from the left-hand side to the same size 

and concatenate them directly to the right-hand side to increase 

feature layers. Then, convolution is performed to extract features, 

and a 1x1 convolutional layer is used at the output layer to adjust 

the number of channels to match the number of object categories 

and obtain the segmentation result. 

 

Figure 3. U-Net architecture (Ronneberger, 2015) 

 During the image segmentation process, it is necessary to 

segment objects of the same class that are in contact with each 

other. To better segment the boundaries of each object, weights 

need to be assigned to each pixel position during the training 

process to calculate the weighted loss. The weight of the 

boundary region is higher, which effectively strengthens the 

learning of boundary samples. 

 

2.2.2 Service range analysis 

 

 Firstly, it is necessary to collect road data with different 

grades. The OSM road data has a class tag, which includes 

motorway, motorway link, trunk, trunk link, primary, primary 

link, secondary, secondary link, tertiary, and tertiary link types, 

corresponding to Chinese highways, first, second, and third level 

roads. Based on the design speed of Chinese highways and the 

actual situation of the research area, the speed for highways and 

expressways is determined to be 80 km/h, the speed for main 

roads is 60 km/h, the speed for secondary roads is 45 km/h, and 

the speed for urban roads is 35 km/h. Due to factors such as road 

conditions, weather, and traffic volume, the actual operating 

speed is often calculated by reducing the design speed and setting 

a reduction coefficient of 0.7. In addition, residents' travel modes 

are often closely related to road length, and different travel 

distances lead to different probabilities of residents choosing 

walking or driving. Therefore, a designed driving probability is 

generated for determining the driving probability for each road 

(Table 1). Meanwhile, the walking speed on roads is set at 6 km/h, 

and off-road walking speed is set to 3.5 km/h. Finally, the time 

cost for one kilometer of road after revision is calculated. 

Secondly, it is necessary to filter and clip other data in OSM. 

In the AOI surface data of OSM, there is a land use type named 

"park", which includes most parks and squares in Beijing and can 

be used as auxiliary information to determine UOS.  

Table 1. Comparing Driving Probability on Roads 

 Thirdly, Accessibility analysis takes UOS, OSM water data, 

and OSM roads as input objects, and through analysis, the time 

from any location in the city to the nearest urban open space can 

be obtained. This involves analyzing the scale of UGS and 

squares and identifying service areas for developing green/grey 

open spaces (Pafi et al., 2016). Accessibility analysis typically 

includes two methods: the establishment of an Origin-

Destination (OD) cost matrix for network analysis and gridded 

cost distance. The study use the gridded cost way to evaluate the 

accessibility of UOS within a geographic area for different 

population groups. 

 

2.2.3 Accuracy Assessment 

 

 The Confusion Matrix serves as a fundamental tool in the 

evaluation of the predicted values with the Google Image Maps 

and UGS-1m(Shi et al., 2023). It is widely utilized to analyze and 

quantify the preditive accuracy and reliability of models in the 

field of image recognition. 

 Predicted Positive Predicted Negative 

Actual Positive TP FN 

Actual Negative FP TN 

Table 2. Confusion Matrix 

 Where TP represents the number of instances that are 

actually predicted as positive, while FN indicates the instances 

Distance(km) Driving probability 

0<d≤1 d/2 

1<d≤2 0.5 

2<d≤3 d/4 

3<d≤4 0.75 

4<d≤5 d/5 

d>5 1 
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wrongly classified as negative. Conversely, FP refers to instances 

incorrectly classified as positive, and TN represents instances 

correctly classified as negative. 

 These metrics facilitate the computation of critical 

evaluation measures, including accuracy, precision, recall, and 

F1 score. These measures are essential in assessing the 

performance and effectiveness of classification models in the 

context of image recognition tasks. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
( )

( )
           (1) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
( )

               (2) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
( )

                 (3) 

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 ×
( × )

( )
           (4) 

 A high accuracy represents that the model has a high 

percentage of correctly classified samples. A higher precision 

means that the model correctly identifies most of the actual 

positive cases, minimizing the chances of misdiagnosis and a 

higher recall rate means that the model is able to capture more 

true positive samples, reducing the risk of missing relevant 

positive samples (false negatives) by incorrectly predicting 

them as negative. A high F1 score means that the model is able 

to maintain a high level of precision while not sacrificing its 

ability to recognize positive samples. 

 

3. RESULTS 

3.1 Estimation of urban extent and the land allocated to 

streets(LAS) 

 

 After applying Urban-Built-up Area(UBA) data filtering to 

exclude green space samples from non-urban areas, more 

accurate samples of UGS were obtained. Statistical analysis 

showed a area of 1,039.81 km2 for the UBA across five in Beijing, 

accounting for 97% of the total area.. 

 Following the method in section 2.2.2, road classification 

results were obtained as shown in Figure 4. The spatial extension 

of each road classification was performed according to Table 3, 

followed by resampling to the same resolution. The results found 

that total surface of urban streets to be 168.96 km2 Then, 

estimating the official recommended metric LAS by eq(5): 

𝐿𝐴𝑆 =
    

    
× 100%    (5) 

 LAS refer to land allocated to streets, and The result is 

16.2%. Given that the study area is part of the city, road buffer 

zones were appropriately set at the boundary to improve 

connectivity between adjacent regions and obtain more accurate 

accessibility calculation results. 

 
Figure 4. Road classification results and road density map

Table 3. The road widths used in this study

 The Worldpop population data for China, which was 

segmented by age and gender, was clipped according to the five 

districts of Beijing and projected into a unified coordinate 

system. The population statistical results for Dongcheng and 

Xicheng districts were 2.102 million people, while the seventh 

national population census reported a resident population of 

1.815 million people in the core area of Beijing, with an error 

rate of 15.8%. 

 

3.2 Accurate sample sets of UGS using high-resolution 

images 

 

 The high-resolution satellite imagery from Gaofen-2 

conducted orthorectification and geometric correction before the 

multispectral and panchromatic images are fused. Currently, 

there are two popular fusion methods, the Gram-Schmidt fusion 

and the NNDiffuse fusion, which both preserve color, texture, 

and spectral information well. However, the NNDiffuse method 

Road level Motorway Trunk Primary Secondary Tertiary Service 
Residential/ 

Living street 

Pedestrian/ 

Footway 

Width(m) 50 40 30 25 20 15 10 5 
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tends to produce a blue-colored bias in the fused results when 

there are large water bodies in the image (Figure 5). As green 

space samples need to be created based on the fused images, a 

blue bias can impede the identification of ground objects. 

Therefore, the Gram-Sch method is chosen. 

 
Figure 5. Comparison of the effects of different fusion methods 

before and after the preprocessing of GF-2 image 

 The fused Gaofen-2 imagery is segmented into 5120*5120 

sized images, of which 48 are uniformly selected for manual 

visual interpretation based on the "Urban Green Space 

Classification Standards", with samples labeled for park green 

space (Figure 6, (a)) and affiliated green space (Figure 6, (b)). 

Both categories of urban green space in Beijing are accurately 

marked to improve the effectiveness of deep learning models. 

These 48 images can generate 768 annotated images, which can 

be augmented to create 3072 training samples. The model was 

trained for 100 epochs, with the final loss value reaching 0.0024 

(Figure 7). Specifically, the recognition performance of green 

spaces in parks is superior to that of affiliated green spaces, as 

evidenced by the clearer external contours of green spaces in 

parks and the ability to discern roads and water bodies. However, 

there is a problem of missing segmentation, where small holes 

may appear in the middle of green spaces(Figure 8, (a)). 

Moreover, affiliated green spaces are susceptible to 

misidentification, where residential buildings may be mistakenly 

identified as green spaces(Figure 8, (b)). 

 

Figure 6. Urban green space sample sets 

 

Figure 7. The U-Net Train loss(100 epochs) 

 

Figure 8. Training results of different data sets in U-Net model 

 According to the method mentioned in Section 2.2.3, the 

accuracy of the identified urban green spaces was validated. A 

total of 200 validation points were randomly selected within the 

study area for this purpose. The identification results were 

compared with the contemporaneous Google imagery and 

UGS-1m dataset. The obtained results are shown in Table 4 and 

5. 

UGS-1m 
Predicted 

Positive 

Predicted 

Negative 

Actual Positive 91 12 

Actual Negative 9 88 

Table 4. Confusion Matrix Comparison: our method vs UGS-

1m 
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Google Image 
Predicted 

Positive 

Predicted 

Negative 

Actual Positive 94 8 

Actual Negative 6 92 

Table 5. Confusion Matrix Comparison: our method vs Google 

Image 

 The accuracy, precision, recall, and F1 score, compared 

to UGS-1m and Google Image respectively, all exceed 90%. 

The proposed method performs better in Google Image. This 

indicates that the proposed method achieves a high level of 

performance in terms of accuracy, precision, recall, and F1 

score. It demonstrates the reliability and effectiveness of the 

proposed method in accurately identifying and classifying 

images, surpassing the 90% threshold for these evaluation 

metrics. Such results highlight the superiority of the proposed 

method and demonstrate its potential for practical applications 

in image analysis and recognition tasks.  

 UGS-1m Google Image 

Accuracy 90% 93% 

Precision 91% 94% 

Recall 88% 92% 

F1 Score 90% 93% 

Table 6. Accuracy assessment metrics 

 

3.3 Performance of UOS identification model optimized by 

AOI data 

 

 The U-Net model has been trained to achieve promising 

results in UGS, which is part of UOS. However, using only the 

identification results of UGS as UOS is far from sufficient.  In 

this study, OSM data was incorporated to refine the precise 

location of UGS based on the identified results. This includes 

segmenting the objects based on the road network and merging 

objects with similar semantics in spatial terms. 

 By aggregating the UGS identification results and utilizing 

urban roads to segment the UGS, the study have selected green 

spaces larger than 400m2 as urban green space areas. The study 

have also fused this information with OpenStreetMap's AOI data 

for parks and squares. This study employs a geospatial overlay 

analysis technique to integrate the results of UGS recognition 

with AOI data, delineating overlapping areas as UOS. 

Furthermore, any unrecognized green open spaces are 

supplemented with OSM data. 

 

3.4 The overall characteristics of UOS service range 

considering gender and age 

 

 In accordance with the approach outlined in Section 2.2.2, 

the calculation of road speed, traffic probability, and time cost 

was conducted. Subsequently, the roads were rasterized, with 

time cost used as the value of each pixel and a resolution of 10m. 

The areas outside of the roads were designated as pedestrian 

areas with a speed of 3.5 km/h. OSM water data was included as 

a mask, and water areas were designated as impassable. City 

open space accessibility was computed based on the cost of road 

rasterization and city open space, with the results reclassified 

and analyzed for service area every 2 minutes (Figure 9), 

followed by the calculation of the cumulative proportion of the 

serviced population (Figure 10, (b)). 

 As shown in Figure 9, most areas within the five central 

districts in Beijing have a city open space accessibility time of 

under 10 minutes. The area between the 3rd and 4th Ring Roads 

displays moderately accessible zones with localized clustering. 

In the northeast and northwest of the study area, there are areas 

with a 10-20 minute accessibility zone, typically in areas with 

lower road density. However, there are areas that are difficult to 

access city open spaces, including the airport in the northeast, 

locating nearby the western, northwestern, and eastern edges of 

the study area. 

 After resampling the spatial accessibility map using 

population density data stratified by gender and age, zoning 

statistical analysis is used to obtain the number and proportion 

of corresponding populations in each accessibility level (Figure 

10, (a1-a8)(c1-c8)). According to Figure 10, it can be inferred 

that regardless of age group, the gender gap in urban open space 

service coverage rates is not significant. The gender ratio 

remains at a basic 1:1, with the largest difference in proportions 

being that women aged 70-75 have 5% more access to these 

services compared to men of the same age group. These findings 

indicate that in Beijing City, both children and the elderly can 

enjoy convenient services when using UOS. 
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Figure 9. Service coverage analysis map and Cumulative 

service number chart 

 
Figure 10. Calculation of the proportion of urban open space 

accessible to population by age and sex 

 

4. CONCLUSIONS 

 

 This study introduces a deep learning U-Net framework 

that leverages earth observation advantages to extract UGS using 

sub-meter satellite images. This provides a more accurate 

approach to evaluate SDG 11.7.1 indicators and explores the 

accessibility of services based on gender, age, especially for the 

elderly and children. The use of remote sensing data with wide 

observation coverage and low cost at the urban level enhances 

the sustainable development of cities. 

 Due to the significant impact of data quality on research 

results, it is necessary to study the accurate extraction of urban 

built-up areas and the finer spatialization of population data in 

future works. Moreover, obtaining time-series data composed of 

multiple high-precision satellite images is needed to  monitor 

UOS dynamics. This will enable more accurate evaluation of 

SDG 11.7.1 indicators, which, in turn, will facilitate the 

construction of inclusive, safe, resilient, and sustainable cities 

and human settlements. 
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