
VEHICLE TRACKING AND SPEED ESTIMATION FROM UNMANNED AERIAL 
VEHICLES USING SEGMENTATION-INITIALISED TRACKERS 

 
 

S.M. Tilon1, F. Nex1 

 
1Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, Enschede, The Netherlands - (s.m.tilon, 

f.nex)@utwente.nl 
 
 
 

KEY WORDS: infrastructure monitoring, edge computation, vehicle tracking, segmentation, lightweight 
 
 
ABSTRACT: 
 
We propose an effective vehicle tracker and speed estimation method from Unmanned Aerial Vehicles (UAVs) videos that can be 
deployed on UAV-embedded edge devices. Our tracker uses segmentation-derived vehicle regions to initialise a MOSSE tracker. This 
enables road operators to make multipurpose use of segmentation outputs while still being able to track the vehicles across frames. The 
vehicle speed is estimated using flight parameters derived from the UAV's flight computer and the vehicle displacement across frames. 
We trained CABiNet on the UAVid urban segmentation benchmark dataset and finetuned it on a dataset collected at our study site. A 
mean Intersection over Union (mIoU) of 0.73 was obtained for the vehicle class. Our segmentation-initialised MOSSE tracker was 
evaluated on the VisDrone Multi-Object Tracking (MOT) benchmark dataset and compared against traditional methods that utilise 
object regions for tracker initialisation. Our approach yielded a Multi-Object Tracking Precision (MOTP) of 0.872 compared to 0.830 
when using YOLOv4. Our vehicle speed estimations approach was evaluated using a privately collected ground truth vehicle speed 
dataset. Our approach yielded a Root Mean Square Error (RMSE) between 3.42 and 16.12 km/hr across different flight configurations. 
Finally, our approach was deployed on an NVIDIA Jetson Xavier NX edge device and could be executed at 8 Frames Per Second 
(FPS). The results indicate that our approach is a simple yet fast alternative to traditional tracking methods while producing 
multipurpose segmentation information.  
 
 

1. INTRODUCTION 

Vehicle speed estimation is essential in traffic management 
operations to monitor traffic flow and enforce speed limits. 
Traditional methods for speed estimation use fixed sensors such 
as inductive loops and magnetic systems (Gheorghiu et al., 2021), 
range sensors such as radar (Czyżewski et al., 2019) and lasers 
(Zhang et al., 2020) or video systems (Fernández Llorca et al., 
2021). Using video data from traffic cameras is a popular way to 
estimate vehicle speed, as it can also be used for other traffic 
management tasks, such as recognising vehicle types or license 
plates. However, traffic cameras are limited to observing a 
relatively small area at a fixed location and often require 
expensive equipment installation. Unmanned Aerial Vehicles 
(UAVs) offer a low-cost solution to survey large areas. The 
utilisation of UAVs has become more prevalent in recent years 
due to technological advancements and the scientific and 
industrial testing of UAVs in various applications. This increased 
usage has made UAVs an essential tool for road operators to 
monitor their infrastructures and gain a deeper understanding of 
their surroundings (Nex et al., 2022). With the increased 
capability of UAVs in manoeuvrability and flight-time, the 
improved performance of deep learning algorithms and the nature 
of applications in which UAVs are being deployed, there is a 
trend in industry and research to reach holistic and real-time 
UAV-based monitoring by using (UAV-embedded) edge devices 
that are fit for deploying deep learning models and effective 
communication to a ground control station (Tilon et al., 2022).  
Extensive research has been conducted towards vehicle tracking 
and speed estimation from UAV systems (Balamuralidhar et al., 
2021; Biswas et al., 2019; Hossain & Lee, 2019; Li et al., 2019; 
Shan et al., 2021). Most methods use deep learning-derived 
object detections to initialise their trackers. While vehicle object 
detections are helpful when vehicle tracking is the single 

objective, segmentations are more advantageous for road 
operators because they can provide multiple insights, such as 
deriving the shape and size of assets. In addition, they enable 
operators to accomplish various tasks simultaneously, such as 
asset inventory and traffic monitoring.  
Nowadays, operators require a mix of information products to 
acquire multiple insights or achieve multiple tasks. Segmentation 
annotations are needed to gain information about the shape or 
size of infrastructure assets, such as road surface damages. Object 
detections are required for vehicle speed estimations or asset 
identification. These information products can be gained by 
running several single-tasks in parallel or using multi-task 
methodologies, which is computationally expensive and, 
therefore, unfeasible to acquire using computationally 
constrained UAV-embedded edge devices (Chang et al., 2021). 
There is a need to reduce the required information products to 
achieve several tasks. As such, deriving vehicle speeds from 
segmentation products rather than object detections is a logical 
first step. 
Therefore, this paper aimed to estimate vehicle speed from 
segmentation information. We present a simple but effective 
vehicle speed estimation and tracking approach that can operate 
in real-time on a UAV-embedded edge device while the tracker 
is initialised from segmented vehicle regions instead of bounding 
box detections.  
 

2. RELATED WORK 

2.1 Vehicle Tracking 

Vehicle speed estimation is achieved by detection-and-tracking 
(Fernández Llorca et al., 2021). First, vehicles are detected across 
frames, after which a multi-object tracking (MOT) algorithm is 
applied to the detections. How vehicles are detected varies and 
depends on the type of tracker used. Feature-based methods track 
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features such as key points or optical flow, while others utilise 
regions or bounding boxes of the complete vehicle or vehicle 
parts such as license plates across frames (Fernández Llorca et 
al., 2021). Region-based trackers are more popular because they 
showed to better account for large image motions. Within the 
region-based tracker category, various trackers exist. Popular 
tracking algorithms that make use of filters are, for example, 
Simple Online Real-time Tracking (SORT), which uses Kalman 
filters, Minimum Output of Sum of Squared Error (MOSSE) that 
uses correlation filters or CSRT that uses a  Discriminative 
Correlation Filter with Channel and Spatial Reliability (Bewley 
et al., 2016; Bolme et al., 2010; Lukezic et al., 2018). Other 
methods make use of deep learning-derived metrics. DeepSORT 
combines SORT with a deep learning association metric (Wojke 
et al., 2017). Generic Object Tracking Using Regression Network 
(GOTURN) learns the appearance and motion of vehicles in an 
offline manner, whereas other trackers learn the appearance of 
vehicles during runtime (Held et al., 2016; Wojke et al., 2017). 
As said earlier, trackers must be initialised with a region to start 
the tracking process. In most studies, these initialisations are 
derived from deep-learning vehicle object detectors. While this 
is a reasonable approach for scenarios where tracking is the single 
objective, this is not valid in a scenario where multiple objectives 
exist. Therefore, this paper proposes to use vehicle segmentations 
to initialise the vehicle trackers.  
UAV-based vehicle tracking is more challenging than tracking 
from fixed camera systems due to the constantly changing 
background, the UAV speed, illumination variances or other 
extrinsic parameters, which are static for fixed camera systems. 
Vehicle tracking from UAVs is researched by many. Li et al. 
(2019) proposed a homography-based motion tracking method to 
compensate for dynamic background changes. Biswas et al. 
(2019) used a Faster R-Convolution Neural Net (CNN) to detect 
vehicles and CSRT to track them. Shan et al. (2021) used  
YOLOv3 to detect objects and DeepSORT. Balamuralidhar et al. 
(2021) proposed an efficient multi-task vehicle detection 
framework that could be embedded on an edge device in 
combination with the MOSSE tracker that could run in parallel 
on the Central Processing Unit (CPU) without putting strain on 
Graphic Processing Unit (GPU) resources that were required for 
the deep learning process. Hossain and Lee (2019) compared 
various GPU-embedded devices for onboard object detection and 
tracking using DeepSORT. They concluded that the distance to 
the object is the main factor influencing the performance of their 
designed system. Vehicle speed is estimated using a function 
variation based on prior information on vehicle size and in-flight 
metrics such as the Ground Sampling Distance (GSD) and time 
between frames and travelled distance. The most common issue 
in these studies is the difficulty in testing and validating the 
proposed method without a proper benchmark dataset. To 
overcome this, some have created their own validation dataset 
using real-world vehicles (Shan et al., 2021) or proxy objects 
such as bicycles (Balamuralidhar et al., 2021), or tested their 
approach in a simulated environment  (Li et al., 2019).  
 
 
2.2 On-the-edge Multi-Objective Deep Learning 

UAV-embedded edge devices can process data instantly once 
they arrive or transmit the data to a remote workstation, where 
they are processed in real-time. Obtaining multiple information 
objects on an edge device in real-time is challenging for two 
reasons: the computational constraints of edge devices and the 
traditional single-objective way deep learning neural nets are 
traditionally constructed.  
Edge devices are constrained in memory, and computational 
ability, which affects how the device can be utilised. Therefore, 

neural nets must be constrained in size, reflected in the number 
of parameters residing in the net. This often diminished the 
performance of the net. In addition, most CNNs are constructed 
in a single objective manner, where scene segmentation or object 
detection is the single main aim.  
 

3. METHODOLOGY 

3.1 Overview 

Our approach is as follows. A segmentation CNN deployed on 
the UAV edge device delineates the road scene in the categories 
“Road”, “Vehicle” and “Background”. A tracker is initialised 
using the delineated vehicle regions. The vehicle is tracked across 
frames, and the vehicle speed is estimated using the vehicle's 
displacement between frames and flight parameters derived from 
the UAV board computer. More details are provided in the 
following sections.  
 
 
3.2 Scene Segmentation 

The segmentation CNN CABiNet is used to segment the UAV 
video into the categories “Road”, “Background” and “Vehicle” 
(Kumaar et al., 2021). It is a lightweight segmentation CNN and 
can efficiently segment a scene with high speed and low 
computational overhead while providing competitive 
performances on edge devices (Kumaar et al., 2021).  
It contains a context branch that efficiently details global and 
local context and a shallow spatial branch that captures spatial 
information rapidly and effectively. It reached a competitive 
mean Intersection over Union (mIoU) of 75.9% on the 
CityScapes dataset on an NVIDIA Xavier NX with 8 Frames Per 
Second (FPS). The model’s performance is described in mIoU.  
 
3.3 Vehicle Tracking 

The MOSSE tracker is used in this study because it was shown 
to detect object locations at high computational speeds while 
functioning on CPU rather than GPU at comparative performance 
to deep learning-derived trackers such as DeepSORT or 
GOTURN (Balamuralidhar et al., 2021). This allows the GPU 
resources on the edge device to be used by CABiNet, speeding 
up the overall approach while keeping competitive performance.  
The vehicle annotations obtained using CABiNet are used to 
initialise the tracking algorithm. The contours and enclosing 
bounding box are extracted from the detected vehicle regions. To 
account for localisation drift and the appearance and 
disappearance of new vehicles in the frame, the tracker was 
reinitialised every 15th frame using new vehicle regions derived 
from CABiNet. A lower refresh rate resulted in more 
segmentation inference operations, lowering the overall 
execution speed, while a higher rate failed to track all vehicles. 
A refresh rate of 15 was observed to result in most of the vehicles 
being tracked from time of appearance until time of 
disappearance while achieving a reasonably fast execution time.  
The tracking performance was analysed using the Multi-Object 
Tracking Precision (MOTP) metric (Milan et al., 2016). See 
Equation 1.  
 
                        𝑀𝑂𝑇𝑃 = ∑ "!,#!,#

∑ #!!
,                                   (1) 

 
where  𝑐$ = Number of matches in frame t 
 𝑑$,& = the bounding box overlap between the target i 
                         and the ground truth in frame t. 
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This metric is a notion of localisation accuracy and calculates the 
average overlap between the predicted object and the ground 
truth.  
 
3.4 Vehicle Speed Estimation 

 
Figure 1. Diagram showing the relation between the field of 

view and the camera tilt during data acquisition. 
 
Figure 1 is a schematic overview showing the difference between 
the field of view when acquiring a UAV video in a nadir or an 
oblique viewing angle. Using the camera tilt (θ) and angular tilt 
(Φ), the GSD can be calculated as follows: 
 
													𝐺𝑆𝐷 = '	×	*$

+
	×	 ,

-./	(12	3	)%
                                 (2) 

 
Where     H = the flight height in meters 
                𝑆5 = the camera’s sensor pixel width 
                F = the camera’s focal length 
                θ = the camera tilt in relation to the optical axis 
                Φ = the angular position of the pixels in the image in   
                       relation to the optical axis. 
 
Figure 2 is a schematic overview that shows how vehicle and 
UAV displacement is calculated between frames. Using these 
parameters, vehicle speed (V) is calculated as follows  
(Balamuralidhar et al., 2021): 
 
													𝑉 = 6788⃗ &'(:	;788⃗ )*+#,-*	×	<*7=6

>
                                 (3) 

 
where  𝐷//⃗ ?@A = is the UAV displacement in meters 
 𝐷//⃗ BCD&#EC= the displacement of the vehicle in pixels 
 𝐺𝑆𝐷	= the ground sampling distance 
 f = time interval 
 
The UAV displacement is derived from the UAV inflight speed 
log in real time. The vehicle's pixel displacement is derived by 
subtracting the object centres obtained from the tracking results. 
The time interval is derived from the FPS in which the video is 
recorded.  The assumption is that the vehicle and the UAV travel 
in the same direction, parallel to the road.  
 

 
Figure 2. Schematic overview of how displacement is 

calculated. 
 
3.5 Data 

CABiNet is first trained using the UAVid dataset (Lyu et al., 
2020). This dataset consists of 30 video sequences of realistic 
urban scenes and over 300 high-resolution images annotated with 
the eight classes “Buildings”, “Road”, “Static Car”, “Moving 
Car”, “Tree”, “Low Vegetation”, “Humans” and “Background” 
(Figure 3). Then CABiNet is finetuned on a UAV dataset 
collected on the University of Twente campus at a flying height 
of 50 meters in nadir. The dataset consists of 242 images with a 
resolution of 5472 × 3648 that are manually annotated with the 
classes “Background”, “Vehicle” and “Road” (Figure 4). 
The performance of our tracking algorithm is evaluated using the 
VisDrone dataset (Du et al., 2019). It is a vehicle detection and 
tracking benchmark dataset containing over 300 video sequences 
of urban scenes annotated with ten classes, of which the class 
“car” was used for testing purposes (Figure 5). The inflight 
parameters, such as UAV speed and flight height, are unknown 
for the VisDrone dataset. Therefore, reasonable static values 
were manually set based on the perceived flight direction, height, 
and camera angle. The FPS of the VisDrone dataset was 30 FPS.  
A second dataset with vehicle speed ground truths was collected 
on the campus of the University of Twente. A vehicle was driven 
back and forth across a road while recording the per-second speed 
using a bike computer, the Wahoo Elemnt Bolt V2. It calculates 
speed from the Global Position System (GPS) derived 
displacement information and has an average speed error of 
3.53% (Siddiqui et al., 2021). The vehicle aimed to drive at 
different average target speeds of 15, 30 and 50 km/hr. In the 
meantime, a Mavic Enterprise drone was flown at 50 m height 
above the road in 4 different configurations. It was positioned 
stationary and in motion, moving in the same direction as the 
vehicle, with the camera in nadir or oblique perspective at a 30-
degree angle. The acquired videos are in 4K Ultra HD 
(3840 × 2160) resolution at 30 FPS. In total, 12 videos were 
collected, resulting in approximately 11 minutes of footage. An 
overview is given in Table 1 and an example video frame is 
shown in Figure 6.  
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Figure 3. Example of the UAVID dataset (Lyu et al., 2020). 

 

  

 
 

Figure 4. Example of the campus dataset. 
 

 
Figure 5. VisDrone Multi-Object Tracking annotations (Zhu et 

al., 2018). 
 

Table 1. Configurations for ground truth data collection. 
 Stationary In 

motion 
Stationary In 

motion 
Vehicle 
speed 

Nadir Nadir Oblique  Oblique  

15 km/hr Flight 1 Flight 4 Flight 7 Flight 10 
30 km/hr Flight 2 Flight 5 Flight 8 Flight 11 
50 km/hr Flight 3 Flight 6 Flight 9 Flight 12 

 

 
Figure 6. Example frame from Flight 5. The caption shows the 

vehicle speed, time and frame nr.  
 
 

3.6 Training, deployment and testing 

Our approach is applied and tested threefold to judge the 
performance of the segmentation, vehicle tracking and vehicle 
speed estimation method. First, CABiNet was tested by training 
it on the UAVid dataset. The hyperparameters for training 
CABiNet were found using grid-search. It was trained on an 
NVIDIA 2080ti for 100 epochs with a learning rate of 0.005, a 
gradient decay of 0.005 and a CrossEntropy optimiser. Then, the 
model was finetuned on the campus dataset for 20 epochs.  
Second, the tracking algorithm was initialised by segmenting the 
VisDrone video frames using the CABiNet model that was 
trained on the UAVid dataset because this dataset represented the 
VisDrone scenes more closely. The tracking algorithm was 
evaluated using only the vehicle trajectory ground truth values. 
To assess the effect of tracker initialisation using segmented 
vehicle regions, we evaluated the performance of our tracker 
when the trackers were evaluated using object detections 
obtained using YOLOv4 or when the tracker was initialised using 
the ground truth values within the VisDrone dataset.  
Finally, the vehicle speed approach was tested by segmenting the 
campus vehicle videos using the CABiNet model that was 
finetuned on the campus dataset by tracking the vehicle across 
frames and calculating the vehicle speed according to the 
approach explained in section 3.4. 
Finally, the complete approach, including scene segmentation, 
vehicle tracking and speed estimation, was deployed on an 
NVIDIA Jetson Xavier NX. The trained CABiNet model was 
optimised for deployment on the edge device using NVIDIA 
Tensor RT optimisation library. This prunes weights and 
parameters not required for inference, resulting in a lightweight 
model that runs more efficiently on NVIDIA edge devices. The 
real-time performance of our approach was evaluated in terms of 
FPS. 
 

4. RESULTS 

4.1 Scene Segmentation 

CABiNet reaches an average mIoU of 0.598 for the UAVid 
dataset (Table 2). These results align with the mIoU of 0.635 
reported in the code repository of the original authors of 
CABiNet. The class “human” is the most significant influencer 
on the obtained average mIoU. Its low score can be explained by 
the scale in which persons are perceived compared to other 
objects in the dataset. Notably, “moving vehicles” are better 
detected than “static vehicles”. This could be explained by 
differences in headings, locations, illumination and shadows in 
which static cars are situated.  In contrast, moving vehicles are 
less influenced by shadows from nearby objects while their 
background consists largely homogenous of the road class.   
 

Table 2. Performance of CABiNet on the UAVid dataset. 
Class mIoU 
Building 0.881 
Road 0.705 
Vehicle (static) 0.501 
Vehicle (moving) 0.605 
Tree 0.717 
Low Vegetation 0.639 
Human 0.160 
Background 0.573 
Average 0.598 

 
After finetuning, CABiNet reaches an average mIoU of 0.869 on 
the campus dataset (Table 3). The “Vehicle” class reaches a 
mIoU of 0.733. Example output is shown in Figure 7. Although 
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the shape of vehicles is not always precisely delineated, the 
model performs sufficiently enough not to miss vehicle instances.  
 

Table 3. Performance of CABiNet when finetuned on the 
campus dataset. 

Class mIoU 
Background 0.983 
Road 0.890 
Vehicle 0.733 
Average 0.869 

 
 

  

  

  
Figure 7. Original image (top), ground truth (middle), and 
segmentation predictions (bottom) for the campus dataset. 

 
4.2 Vehicle Tracking 

The segmentation initialised MOSSE tracker reaches 0.872 
MOTP at 8 FPS when deployed on the NVIDIA Xavier NX 
(Table 4). We compare this value against a traditional approach 
where the tracker is initialised from object detections obtained 
using a YOLOv4 model. YOLOv4 is trained on the bounding 
boxes within the VisDrone dataset, reaching a mean Average 
Precision (mAP) at 50% of 0.856 (Bochkovskiy et al., 2020; 
Wang et al., 2022). When using YOLOv4 obtained object 
detections for tracker initialisation, a MOTP of 0.830 is reached 
at 9 FPS. When the MOSSE tracker is initialised with the regions 
obtained from the ground truth files, a MOTP of 0.842 is obtained 
at 9 FPS. These results show that our proposed method reaches a 
higher MOTP at comparable speeds compared to traditional 
object detection initialised MOSSE tracker while providing 
valuable semantic information that can be further utilised in other 
road operator tasks.  
 
Table 4. Multi-Object Tracking Precision (MOTP) and FPS for 
our proposed method compared to object detection and ground 

truth initialised MOSSE tracker. 
 MOTP FPS 
CABiNet  
(segmentation) 

0.872 8 

YOLOv4 (object 
detection) 

0.830 9 

Ground truth 0.842 9 
 

Figure 8 shows a screenshot of the tracking results on the 
VisDrone dataset. The segmentation output is overlaid on the 
video frame. The tracked vehicles are annotated with green 
boxes, while the ground truth is annotated with black boxes. 
Parked vehicles are not tracked, which can be explained by false 
negatives in the segmentation step. Vehicles that just have 
entered the frame, like the vehicle at the bottom centre, are also 
not tracked, which can be explained by the tracker re-
initialisation rate of 15 frames. 
 

 
 

 
Figure 8. Tracked vehicles (green boxes) versus the ground 

truth (gt; black boxes) in the VisDrone dataset. 
 
4.3 Vehicle Speed Estimation 

Table 5 shows the average ground truth speed, average predicted 
speed, and the Root Mean Square Error (RMSE) obtained for the 
campus dataset acquired in different flight configurations. For the 
flight configuration where the UAV was stationary with an 
oblique viewing angle and the vehicle was driving at 50 km/hr, 
our segmentation model failed to recognise the vehicle, and no 
tracking and speed measurements could be provided. For the 
other flight configurations, the RMSE is lower when the vehicle 
is driving at lower speeds. A possible explanation is that the 
vehicle appears in more frames, leading to a better ability to track 
the vehicle across frames and estimate the vehicle displacement. 
In addition, a lower RMSE is obtained when the UAV is 
stationary compared to when the UAV is in motion. Less UAV 
motion could reduce the accumulation of potential erroneous or 
drifting GPS values obtained from the UAV board computer, 
leading to erroneous UAV displacement values. Since the 
segmentation model was finetuned on data in the nadir viewing 
angle, it was expected that our approach would have difficulties 
segmenting and tracking vehicles in oblique mode. Missing 
vehicle segmentation was the main reason for missed tracking 
and speed estimations in the stationary and oblique flight 
configuration (Flight 9). However, when vehicle tracking works, 
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the RMSE for speed estimation varies equally across the two 
viewing angles.  
 

Table 5. Average ground truth and predicted speed, and the 
Root Mean Square Error (RMSE) in km/hr for the different 

flight configurations. 

 

Parameter Stationary  
 
Nadir 

Motion 
 

Nadir 

Stationary 
 

Oblique 

Motion 
 

Oblique 

15
 k

m
/h

r 

Avg. speed 
gt. 

14.68 16.56 16.58 18.11 

Avg. speed 
pred. 

17.97 11.37 26.57 8.29 

RMSE 4.80 6.03 3.42 10.19 

30
 k

m
/h

r 

Avg. speed 
gt. 

28.55 27.09 29.27 28.9 

Avg. speed 
pred. 

22.83 17.18 35.98 13.92 

RMSE 6.43 6.48 5.15 11.46 

50
 k

m
/h

r 

Avg. speed 
gt. 

42.09  39.46 43.11 39.66  

Avg. speed 
pred. 

44.50 21.48 NaN 17.2 

RMSE 5.83 16.12 NaN 7.04 
 
Figure 9 depicts speed estimations, overlaid on screenshots of the 
videos recorded during Flight 5 and Flight 12. 
 

 

 
Figure 9. Speed estimations and ground truths overlaid on 

Flight 5 (top) and Flight 12 (bottom) video frames. 
 
 

5. DISCUSSION 

We proposed a simple and efficient method to detect vehicle 
speeds from segmentation-initialised trackers. The disadvantage 
of using segmentations and maximum enclosed bounding boxes 
instead of directly using bounding boxes retrieved by object 
detection methods is that segmentations are prone to be 
inaccurate at the edges of the objects due to illumination 
differences or overlapping objects. Therefore, the minimum 
enclosing bounding box rarely represents the entirety of the 

object (Fernández Llorca et al., 2021), nor does the centre of the 
box, used to calculate the vehicle displacement, represent the 
actual centre of the car. However, erroneous box unalignment is 
also a problem when using object detectors. In fact, the results in 
Table 4 favour our approach. It shows that our method can more 
effectively delineate regions relevant to tracker performance than 
when initialising the tracker with YOLOv4 detected regions. 
Still, with a mIoU of 0.733 for the moving vehicle class, there is 
room for improvement in delineating vehicles more precisely. 
Future work will focus on improving these segmentation results. 
Due to the many parked vehicles in the VisDrone dataset, our 
tracking approach could not be fairly evaluated using other 
tracking accuracy performance metrics that indicate the number 
of missed targets, identity switches, or ghost trajectories because 
our tracker was initialised for moving vehicles only. Future 
experiments will consider removing the static vehicle objects 
from the VisDrone ground truth file to include these performance 
metrics. 
Finally, Table 5 shows that the flight configurations influence 
speed estimations. Further studies will investigate the influence 
of GPS accuracies on UAV displacement estimation. This study 
did not consider vehicles that travel in the opposite direction of 
the UAV. Equation 3 could be adapted to this case by replacing 
the minus sign with an addition sign. Future studies will 
implement this by developing an additional function that detects 
the travel direction of individual vehicles in relation to the UAV 
such that Equation 3 can be appropriately adjusted per car in real 
time.  
In this study, and other studies conducted towards UAV-based 
vehicle speed detections, the lack of a unified UAV-based vehicle 
segmentation, tracking and speed benchmark dataset is the main 
limitation and, as was done in this study, requires a patchwork of 
datasets to develop and evaluate the different steps in the 
segmentation, tracking and speed detection process. As a result, 
the performance of the complete pipeline for a single study site 
could not be investigated. With the maturation of simulation 
software, such as AirSim, the usage of synthetic datasets will 
become a probable alternative.  
 
 

6. CONCLUSION 

We proposed a simple tracker initialisation method from 
segmentations instead of traditional object detection methods that 
could function onboard an edge device. Our method performs on 
par with trackers initialised with regions derived from object 
detectors. The main advantage of our approach is that the single 
multipurpose segmentation layer reduces the number of 
information products needed to carry out multiple tasks 
simultaneously.   
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