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ABSTRACT:
This paper presents a GPS constrained SLAM solution, which adds reliable GPS observations as key frames to the state-of-the-art
SLAM algorithm Lightweight and Ground-Optimized Lidar Odometry and Mapping (LeGO-LOAM). As the GPS has a much higher
frequency than that of lidar, we first assign each lidar frame with GPS time, then every 5 seconds, a reliable GPS observation is
inserted as a key frame to the pose graph, then optimizes the pose estimation and updates the old key frames. We test our method
with two platforms in real driving scene, and compare its performance with LeGO-LOAM, where LeGO-LOAM cannot acquire real-
time efficiency. The difference of lidar odometry of our solution with compare to RTK-GPS is less than 0.4m, with the globally
referenced map can be used for relocalization.

1. INTRODUCTION

While the concept of fully automated vehicles has been widely
reported worldwide, there is still no companies or institutes who
have made it possible. Much challenges remaining for this task,
one of them is to localize vehicles globally in almost all the
scenarios, on the city roads, country lanes or in the tunnels.
Accurate position can be obtained by using GPS in open areas,
however, in a complex environment, a variety of sensors need to
be utilized to complement GPS blackouts or multipath problems.
Light Detection and Ranging (LiDAR)s and video cameras are
among the popular sensors mounted on cars. The typical
application of these sensors is generating digital maps from a set
of point clouds with the help of Simultaneous Localization and
Mapping (SLAM), and great efforts have been devoted to
achieving real-time SLAM on small car-like platforms or robots
[1-3]. However, lots of unexpected problems will be
encountered if we employ the mature algorithm on our vehicle
within real-road environment. Firstly, the sensors on the small
platform are usually cheaper and the output data rate is smaller,
as some of the algorithms are designed for these low-
performance sensors, they cannot deal with tremendous
amounts of data in real case. Secondly, some of the solutions
are only tested on robots with a low and almost constant speed,
for example, results are only tested with an average speed of
1.3m/s in [1] and around 5 km/h in [3], while for the actual
situation, vehicles are running much more faster, this is why
some solutions cannot achieve the same accurate results on
vehicles. Thirdly, as SLAM mainly targeted for indoor case
without GPS aiding, many solutions are only tested indoor or
within campus, the map are orders of magnitude smaller than
the vehicles’, besides, without the GPS constraint, the robots’
maps are meaningless for vehicles. Therefore, our goal is to
bring SLAM into actual autonomous driving scenes, which is to
say, to satisfy the sensors with huge amounts of data, to achieve
real-time solution in relatively high-speed case and to generate
the 3D map with GPS constraint.
To tackle these limitations, the fusion of the SLAM with geo-
referenced information has been widely studied. Cameras are
widely accepted for cheap price and advantages for loop closure
detection, as Bundle Adjustment (BA) is a refinement of the
coordinates of a set of images from different viewpoints, several
solutions [4-6] introduce additional information in the BA
process. In [4] and [5], the BA error accumulation is reduced by
fusion of GPS thus highly increase the location accuracy as well

as maintaining a globally referenced map. Owing to the bad
output of the altitude from some low-cost GPS, [6] merge both
GPS measurement and Digital Elevation Model (DEM) data
into BA, and produces better result, the drawback is significant,
DEM data is only available at certain areas. On the other hand,
some solutions focus on eliminating long-term drifts in Visual
Odometry (VO) part [7,8], the first one is a hierarchical system
with local map aiding, also this method is only restricted to
some certain areas like [6], the latter one modifies the VO pose
using GPS measurement by means of a Kalman filter.
However, considering their extreme sensitivity to illumination
and unreliable capabilities for lack of discriminant texture, this
dissertation focuses on using lidar for perception and mapping.
When without GPS assistance, some algorithms concentrate on
localization and mapping locally like [9], with relocation of the
vehicle on the map generated by the previous scans. As this
process is done by matching of the current scan with the map, it
is strictly limited by the resolution of the map, besides, the
resulted dynamic map is only a surrounding over 100m around
the vehicle, this solution is unable to produce a highly accurate
positioning and globally mapping. Therefore, additional geo-
information is introduced similar with above. A theoretical
background of GPS-SLAM fusion is presented in [10], by
means of Smoothing and Mapping (SAM), the GPS errors are
used to augment SLAM, finally a probabilistic urban map based
on landmarks is created with improved accuracy and robustness.
As this solution highly relied on good and stable landmarks,
much time will be taken before this process and it is not suitable
for large-scale map generation. Therefore, [11] matches the
specific wall information from point cloud with additional
digital map information for localization and fuses DEM
information to make a full 3D mapping, despite the sub-meter
accuracy evaluated with RTK-GPS, need of prior knowledge
making this method not sufficient for common application.
A Lightweight and Ground-Optimized Lidar Odometry and
Mapping(LeGO-LOAM) is proposed in [1], as a modification of
the state-of-the-art method LOAM [2], this method uses a two-
step optimization for pose estimation. Planar features from the
ground are first extracted, which is a good news for the flat
cement or asphalt road, then the edge features are extracted
from the segmented point cloud.
In this paper, an efficient strategy based on introducing GPS
constraints into the LeGO-LOAM algorithm is purposed. The
solution was examined with two different kinds of testing
vehicles in real driving scenes, the positioning accuracy was
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evaluated with RTK-GPS, while the map consistency was
examined by means of Normal Distribution
Transformation(NDT) [12]. The results indicate that our method
can not only achieve the real-time efficiency but also a lane-
level accuracy for autonomous vehicles.

2. SYSTEM HARDWARE

Two kinds of testing vehicles from a company called IN-
Driving Tech were used with similar sensors, one is a normal
passenger car as in Figure 1(a), the other is a container truck
usually seen in ports, the container is always with the truck
during the whole examination process.

(a) (b)
Figure 1. Two kinds of testing vehicles

Identical 40 channel lidar Pandar40 from Hesai is fixed on the
roof of the two vehicles, some important specifications are
listed in Table 1.
The state and position measurement are from a intergeted IMU-
RTK GNSS M39 from MPSTNAV, with the horizontal
positioning accuracy less than 0.05m, vertical accuracy less than
0.1m, and the heading angle accuracy less than 0.5°. The GNSS
measurement output rate is up to 200Hz, the working status of
the GPS can be directly found from the output.
All the raw data and the algorithm itself are being processd in
real time by a controller TITAN III made by IN-Driving Tech,
with one AURIX MCU from Infineon and two Nvidia Jetson
TX2.
Rotation Rate 10Hz
FOV(Vertical)
FOV(Horizontal)
Measurement Range Up to 200 m
Measurement Accuracy
Angular Resolution(Vertical)

Table 1. Important specifications of Pandar40

3. GPS AIDED SLAM

3.1 System Overview

The diagram of the system framework is described in Figure 2.
The system receives input from 10Hz lidar and 50Hz IMU-RTK
GNSS and outputs 10Hz pose estimation. The input GNSS
signal is first transformed into a pseudo global coordinate, then
a new thread is adding to the original LeGO-LOAM algorithm,
with this thread constantly match every point cloud frame with
GPS-IMU frame. A new key frame with GPS information is
acceded to the factor graph every 5 seconds, optimizing the
pose-graph and updating the locations of old key frames.

Figure 2. System Overview

3.2 Coordinate Transformation

As the transformation between coordinates is always the first
issue to think over regarding autonomous driving, we choose
same sensors with similar installation methods for different
platforms for sake of saving efforts. Lidar provides the 3D
representation of the surrounding environment with a lidar
center based local coordinate, while the GNSS gives an absolute
description in the global coordinate. The global position of lidar
is the bridge for transforming the locally feature location into
global coordinates. On account of the data rate of GPS-IMU is
much higher than that of lidar, we can assign the nearest GPS
position to lidar by means of time matching. We assume a lidar
scan has the same position with a GPS epoch if the time
difference between these two is smaller than 0.05s, then we can
transform every point cloud into global coordinates with this
information.
However, this will significantly increase the computational
complexity with respect to the earth-centered coordinate.
Therefore, we decided to use a pseudo global coordinate
centered at the starting point of the vehicle, which also makes
more convenience for vehicle based controlling and monitoring
in a 2D coordinate. But this method is still not robust, as the
following points compute the relative position to the origin, if
this initial position is not correct, the errors will propagate to the
entire estimation. Thus we choose a benchmark point to
eliminate the possible deviations, we set the same benchmark
point for the two platforms, and we transform the raw 3D GPS
data to a 2D benchmark point centered coordinate at the very
beginning of the algorithm, with x axis pointing the east, and y
axis pointing the north. The z axis stays the same with RTK-
GPS, which indicates the absolute height information.

Figure 3. Coordinate transformation diagram

As shown in Figure 3, the latitude and longitude
information of GPS raw data of the benchmark point is
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first transformed into the Earth Centered Earth Fixed (ECEF)
frame.

(1)

where a is the equatorial radius, b is the polar radius.
Unlike the local ENU coordinate, the pseudo global coordinate
is the difference between the position output the
benchmark point ,

(2)

3.3 Key Frames Adding and Optimization

Iterative closet point (ICP) is the common algorithm for
aligning two lidar scans at a point-wise level, also called
registration. This method is used for adding new constraints
after the two step Levenberg-Marquardt (L-M) optimization
thus further eliminating estimation drift through pose-graph
SLAM in LeGO-LOAM [1]. Besides, this is also very important
for loop closure detection, with a successful loop closure test
adding a loop closing constraint to the factor graph, updating
the variables and reducing the estimation drift.
Our aim is to make the SLAM trajectory in a global sense, this
is to say, every trajectory point should have a globally
referenced coordinate, instead of the odometry frame. In light of
the loop closure test process, which adds a constraint to the
factor graph and carries out a constraint-based optimizing
method, we add GPS constraints to the factor graph hence the
pose estimation is moving towards the absolute position.
We can achieve our goal by adding keyframes, which works

as the global constraint in the map optimization procedure in
LeGO-LOAM. Along the vehicle trajectory, we add some
reference frames with GPS location as keyframes, with some of
these selected composing local maps (50m * 50m) for ICP
algorithm, the others are stored and may be used for loop
closure test.
(1) The first keyframe F_0 is assigned with the starting GPS
position, and the transformation between this position and the
benchmark point is added to the factor graph.
(2) Every five seconds, a new GPS position (good) will be
added to the graph, containing the factor representing the new
position with respect to the former keyframes. After that, the
pose estimation is updated, and all the stored keyframes are
relocated using the optimization result.
A factor graph describes the factorization of a function using
variables and factors, pose graph is a special form of factor
graph, where the variables are vehicle poses and the factors are
corresponding pose transformation between these poses. Adding
a new keyframe also adds a variable to the pose graph, and the
new factor is the last transformation in company with estimated
covariance.
The original LeGO-LOAM only uses a sliding window
approach for holding the accumulated point cloud map around
the vehicle, every time only a fixed-size sub map is visualable
in rviz, which is not ideal for monitoring purpose. This is
because LeGO-LOAM only updates a small region around its
current position, we can modify this by concatenating this
updated region into one big point cloud and publishing the
complete map.

4. EXPERIMENTS

Two testing vehicle platforms are presented in this paper, with a
normal passenger car and a container truck, the container is
attached to the truck throughout every stage of the experiments.
The algorithm is tested on the controller TITAN III using the
robot operation system (ROS) [13] in Ubuntu-Linux.
In order to conveniently evaluate the accuracy of the algorithm
and project the 3D point cloud into planar graph, we introduce a
pseudo global coordinate system. However, as the accuracy of
the origin of the coordinate will highly influence the whole
process, we adopt a same benchmark point for the two
experiments.
4.1 Passenger Car Test

We manually drive our vehicle on one of the main roads here,
about 7 km, with traffic lights, buildings, lakes, vegetations and
several viaducts around, and we choose to test at noon in
weekdays to avoid congestions. The elapsed time is 503 s, with
an average speed of 51 km/h. Figure 4(b) is the overall point
cloud map generated by the algorithm.

(a) (b)

(c) (d)
Figure 4. The testing scenario of the algorithm,(a) is the satellite
map from Baidu map, (b) is the point cloud map generated by the
algorithm,with the red line represented the trajectory from RTK-
GPS. (c) is a planar image in (a), and (d) is the point cloud image
of (c), with the road lamps clearly visualizable.

We also analyzed the LeGO-LOAM with the same datasets,
with a comparison of the two results in Figure 5. Unlike the
original LOAM which runs 10% of the real-time speed, both
method is analyzed with full speed. We can notice the map is
kind of blurred in Figure 5(b) compared with Figure 5(a), which
is to say, some features are missing. Because when there is no
GPS aiding, it is hard to find feature correspondences between
two consecutive scans with limited overlap.

(a) (b)
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(c) (d)

Figure 5. Results compared with LeGO-LOAM using the same
dataset, (a) is the modified algorithm, and (b) is the output from
Lego-LOAM. (c) is a little zoom in of (a), and (d) is the same part
as (c) in (b).

Considering the extremely low possibilities for carrying out a
loop closure test on the real roads and comparing the
translational and rotational difference between the initial pose
and final pose like what was done in [1]. We directly calculate
the pose difference from SLAM result and RTK-GPS, and 10
tests were performed for examining the consistency, shown in
Figure 6.

Figure 6. The 10 tests’ error with compared to RTK-GPS, as the
height information from GPS is straightly allocated to point cloud,
we only take the planar errors into consider, with (above) the
difference in X direction and (below) the difference in Y direction.

We can find from the Figure 6 that the errors in every direction
is below 35cm, both the figure has some vibrations, which is
because the periodic GPS intervention. Table 2 is a description
of the mean error and the root mean square error (RMSE) of
different tests. The errors between tests are caused from
different feature extraction processes.

TEST 1 0.0647 0.0952 -0.0125 0.0696
TEST 2 0.0400 0.0785 -0.0078 0.0490
TEST 3 0.0930 0.0822 -0.0445 0.0466
TEST 4 0.0376 0.0854 -0.0114 0.0500
TEST 5 0.0556 0.1110 -0.0159 0.0669
TEST 6 -0.0039 0.1163 0.0303 0.0817

TEST 7 0.0604 0.0639 -0.0192 0.0418
TEST 8 0.0607 0.1172 -0.0046 0.0666
TEST 9 -0.0037 0.1115 0.0126 0.0589
TEST
10

0.0194 0.0648 -0.0023 0.0353

Table 2.Mean errors (m) and the root mean square errors (RMSE)
of the passenger car 10 tests

We can find from Table 2 that mean error in both direction is
below 10cm, and the RMSE in Y direction is slightly smaller
than that in X direction. The results indicate this system is able
to provide sub-meter pose estimation with high consistency.

4.2 Container Truck Test

Different from the passenger car test which simulates the urban
environment with many vehicles, we now test its performance
in the outskirts with higher velocity. We drive the container
truck on a suburb freeway connected to several country roads,
with mountains, lakes, buildings around, and the GPS signal is
not always good. The total length is approximately 15km, the
time in all is 804s.

(a) (b) (c)
Figure 7. The testing scenario of the container truck, (a) is the
overall length we have driven, with the blue lines indicated path
with good GPS signals, red lines for bad signals. (b) is a partial
sketch with good GPS signals, and (c) is the output map from the
algorithm.

As this method omits the GPS constraints in poor signal areas,
thus the system only relies Lego-LOAM for positioning and
mapping in these environments, but with a view to the speed
limit performance of the original algorithm, we only take a part
of this scene shown in Figure 7(b) for analysis. This scene
included a path about 7km, the time cost is 414s, the average
speed is 61km/h, a little faster than the passenger car.
Similar with the passenger car experiment, we compute the
difference of the SLAM trajectory with respect to the RTK-GPS,
also 10 tests are performed to justify the consistency on
different platforms.
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Figure 8. The container truck’s 10 tests error with compared to
RTK-GPS, with (above) the difference in X direction and (below)
the difference in Y direction.

TEST 1 0.0360 0.0814 -0.0096 0.0566
TEST 2 0.0269 0.0792 -0.0068 0.0383
TEST 3 0.0800 0.0924 -0.0455 0.0489
TEST 4 0.0259 0.0861 -0.0097 0.0400
TEST 5 0.0439 0.1121 -0.0122 0.0583
TEST 6 -0.0258 0.1139 0.0423 0.0735
TEST 7 0.0419 0.0693 -0.0216 0.0357
TEST 8 0.0217 0.0890 0.0039 0.0484
TEST 9 0.0175 0.0970 0.0075 0.0525
TEST
10

-0.0013 0.0462 -0.0029 0.0314

Table 3.Mean errors (m) and the root mean square errors (RMSE)
of the container truck 10 tests

The result of the container truck experiment shows a similar
pattern with car experiment, all the mean errors are below 10cm,
and the RMSE in Y direction is smaller than that in X direction.
This is probably due to the not tremendous speed difference,
only 10km/h. Thus we can say that our method has similar
performance on different platforms if equipped with the same
sensors.

4.3 Map Verification

The accuracy of lidar odometry has been presented above, and
then we use two methods to validate the correctness and
usability of the SLAM map.
Except from lidar and IMU-RTK GNSS, both platforms are also
equipped with several video cameras for object recognition, so
we can test the map accuracy by projecting the objects onto it
and seeing if they stay the same with real world.

Figure 9. Projecting the lane markings recognized by the camera
onto the generated map, (above) is the map from experiment 1
while (below) is the map from experiment 2, with the green line
the GPS trajectory and red dots the lane markings.

This Pandar40 lidar is not capable of recognizing lane markings
on the test road, so we project the lane marking output from
cameras onto the map as shown in Figure 9, obviously, one line
of red dots matches well with the road boundary consists of
point clouds. Thus, we can perform a further test with qualitive
and quantitative analysis.
One big advantage of adding GPS constraints to map is making
global positioning possible when using map-relative
localization methods, which is done by registering the features
from online scans with an offline map [14], the result is a rigid-
body six DOF transformation parameters of the vehicle pose
relative to the known map. As the map is globally referenced,
we can acquire the vehicle position in the geodetic coordinate
immediately.
Here we use a ROS package hdl_localization, this package first
executes the sensor pose with Unscented Kalman Filter (UKF),
then a multi-threaded NDT scan matching is implemented
between input point clouds and a global map. We have tested
the two maps with the datasets accordingly. The fitness score
starting from 0.1450, and always stay below 1 along the testing
process.

(a)

(b) (c)
Figure 10. The result of multi-threaded NDT matching of the
passenger car test. The black circle in (a) indicates the area of (b)
and (c), while (b) is the vertical view and (c) is a horizontal view

We also compare the trajectory from hdl_localization with
RTK-GPS, the mean error in both directions is below 10 cm,
which is good enough for lane-level localization.
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5. CONCLUSIONS AND FUTURE WORK

We have proposed a GPS constrained SLAM algorithm in this
dissertation. Real time odometry in the real-world scene can be
achieved, with a lane-level accuracy which can be applied on
intelligent vehicles. Besides that, this method can also provide a
map with global constraints, thus can be used for relocalization.
The results show this approach can achieve better map and
odometry when compared with the state-of-the-art algorithm
LeGO-LOAM. Future works including its application with
different sensors, also with huge maps.
(1) We find that the 40-channnel lidar is not sufficient to
provide safe-enough data due to limited resolution in high speed
case (>100km/h), an adult 30 meter away from the vehicle can
be detected by at least 6 channels, while only less than 2
channels for a child because of its special design. So we are
employing a new 300-channel lidar from Innovusion on our
container truck. As its structure is quite different from any
electromechanical lidars we are using nowadays, we need to
modify our algorithm first.
(2) The two experiments only cover some certain roads shorter
than 10km, the raw data is about 3.5GB per 100s, and the
generated map is about 40MB per kilometer. This seems to have
not much influence when driving downtown, but the real
driving scenario requires at least a coverage of big cities, which
might involves a thousands of kilometers journey.
Concatenating such a huge map is a great challenge for our
system, and further tests should be designed. We want to build
the big map using small maps along the path, and with the help
of some pre-set points, we use only the nearest part of map for
map-based relocalization. Besides, we want to store only the
corner feature for saving storage and efficient NDT matching.
(3) As this method connects the local SLAM mapping with the
world geodetic coordinate, we can link the GPS-denied areas
with the open areas, thus give the whole scenario a specific
world coordinate. We decide to manually select certain points
near the GPS-denied areas at first, such as tunnels, viaducts and
underground garages. When in open areas, the vehicle
continuously computes the distance to the certain points, once
below a threshold, the vehicle then turns to the map-based
localization. Because the NDT algorithm is limited to the
amounts of features, and wrong matches are unavoidable, we
intend to use deep learning-based feature matching and add
visual features for secondary confirmation.
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