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ABSTRACT:

Synthetic images have been used to mitigate the scarcity of annotated data for training deep learning approaches, followed by
domain adaptation that reduces the gap between synthetic and real images. One such approach is using Generative Adversarial
Networks (GANs) such as CycleGAN to bridge the domain gap where the synthetic images are translated into real-looking synthetic
images that are used to train the deep learning models. In this article, we explore the less intuitive alternate strategy for domain
adaption in the reverse direction; i.e., real-to-synthetic adaptation. We train the deep learning models with synthetic data directly, and
then during inference we apply domain adaptation to convert the real images to synthetic-looking real images using CycleGAN. This
strategy reduces the amount of data conversion required during the training, can potentially generate artefact-free images compared
to the harder synthetic-to-real case, and can improve the performance of deep learning models. We demonstrate the success of this
strategy in indoor localisation by experimenting with camera pose regression. The experimental results indicate an improvement in
localisation accuracy is observed with the proposed domain adaptation as compared to the synthetic-to-real adaptation.

1. INTRODUCTION

Deep learning has been successfully applied in several com-
puter vision tasks, where the success of these algorithms is de-
pendent on the availability of large volumes of manually annot-
ated training images. However, this requirement becomes the
major constraint where those annotated images are scarce. The
lack of annotated data has motivated researchers to use exist-
ing data from the source domain of synthetic images to perform
similar tasks in the target domain of real images. These syn-
thetic images are usually simulated from the virtual worlds that
are created using 3D object models (textured or texture-less).
However, due to the difference (gap) between the real and syn-
thetic images, the deep learning models trained with synthetic
images directly do not perform well on real images.

Domain adaptation in this context is the learning of the domain
gap, to reduce the dataset bias created due to the image differ-
ences. Generative models such as CycleGAN (Zhu et al., 2017)
have been used to reduce the gap between the real and the syn-
thetic images, without requiring correspondence between the
synthetic and real images. CycleGAN learns the data distribu-
tion of the two domains in an unsupervised manner to generate
novel samples and has been widely used for unpaired image-
image translation tasks, such as translating synthetic images to
real-looking synthetic images. This synthetic-to-real domain
adaptation approach has been applied in various tasks such as
object detection (Ramamonjison et al., 2021), depth prediction
(Zhao et al., 2020), scene understanding and camera pose es-
timation (Chen et al., 2022), image enhancement (Shao et al.,
2020), and medical science (Mahmood et al., 2018). Cycl-
eGAN uses cycle consistency using which the domain adapt-
ation is performed in both directions, i.e. from source to tar-
get and vice versa, and as such, two possible ways of domain
adaptation are possible: synthetic-to-real and real-to-synthetic
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(Nikolenko, 2021). Several studies have explored the reverse
domain adaptation, i.e. real-to-synthetic strategy, and reported
either comparable results or better results, highlighting advant-
ages over the synthetic-to-real strategy (Zhao et al., 2020; Pet-
siuk et al., 2022; Rojtberg et al., 2020; Shoman et al., 2020).
The improvement obtained by using real-to-synthetic adapta-
tion is due to the problem simplification, where the complex
real image is simplified into a synthetic image as compared to
synthetic-to-real adaptation, where CycleGAN has to hallucin-
ate textures derived from real images to fill synthetic images.
However, the real-to-synthetic adaptation strategy is an unex-
plored territory for approaches that perform camera pose re-
gression by learning completely from synthetic images that are
obtained from texture-less 3D models.

Camera pose regression involves the estimation of camera pose
from a single image and approaches like PoseNet (Kendall et
al., 2015) and its subsequent variants (Kendall and Cipolla, 2017;
Walch et al., 2017; Clark et al., 2017) have been successfully
used to perform the task using deep learning. Training PoseNet
requires images with known camera poses. Recent works have
used synthetic images obtained from existing texture-less 3D
building models to train PoseNet-like models and their variants,
and applied simple domain adaptation strategies utilizing im-
age edges (Acharya et al., 2019a,b), segmentation (Acharya et
al., 2022), shallow image features (Ha et al., 2018), adversarial
learning (Li et al., 2022), transformer models (Kim and Kim,
2022), and recently GANs (Chen et al., 2022). However, these
methods have not been shown to perform accurate localisa-
tion, and the reported accuracies (approximately 1 meter) are
far from comparable with approaches that use real images.

In this paper, we explore the synthetic-real domain adaptation
problem for indoor camera pose regression. Specifically, We
investigate the reverse real-to-synthetic adaptation strategy us-
ing CycleGAN and compare its performance for pose regres-
sion with the more common synthetic-to-real adaptation. The
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contributions of our work are the following:

1. We train CycleGAN to perform domain adaptation for cam-
era pose regression using three visualisations of synthetic
images that are obtained from a texture-less 3D model.

2. We evaluate the performance of reverse domain adaptation
strategy, i.e., real-to-synthetic, for camera pose regression
and compare it with the synthetic-to-real adaptation.

3. We improve the accuracy of camera pose regression by
two-fold as compared to the state-of-the-art results.

In the following, we describe the background of real-synthetic
domain adaptation and works related to camera pose estimation
in Section 2. In Section 3, we describe the methodology where
we use CycleGAN for adaptations in both directions. Section 4
presents the experiments and the results, which is followed by
a discussion of limitations and directions for future research in
Section 5. Conclusions are presented in Section 6.

2. BACKGROUND

CycleGAN has been used in the past to perform real-synthetic
translations for many computer vision tasks, including cam-
era pose estimation, where these synthetic images are usually
obtained by the graphical rendering of textured or texture-less
3D models of objects, or a 3D scene. However, in the field
of camera pose regression, very limited works exist that utilise
texture-less 3D building models for localisation. In the follow-
ing, we review the works that utilised CycleGAN and related
approaches that perform real-synthetic domain adaptation.

2.1 Real-synthetic domain adaptation using GANs

Several works have utilised real-to-synthetic conversion, and
some have reported improvements compared with the synthetic-
to-real adaptation. Zhao et al. (2020) remove clutter and novel
objects from the real images using CycleGAN and use the syn-
thetic images to predict depth, and conclude that cleaned real-
looking synthetic images are accurate for depth predictions.
Atapour-Abarghouei and Breckon (2018) transform real images
into synthetic depth maps using unpaired image stylisation sim-
ilar to CycleGAN utilising cycle consistency and report good
results compared to the current approaches. In medical science,
synthetic cystoscopic environments are used to generate syn-
thetic depth maps which are used to adapt the real images using
GANs (Mahmood et al., 2018). In the field of image enhance-
ment, de-raining (Chen and Wang, 2022) and dehazing (Shao et
al., 2020), real-to-synthetic translations have been used to im-
prove the estimations. Moreover, such reverse adaptation also
finds applications in object detection, such as detecting objects
in paintings (Ramamonjison et al., 2021) or identifying vehicles
at nighttime using daytime images (Lin et al., 2020), and in
point cloud classification (Cardace et al., 2023).

2.2 Synthetic image generation from 3D models

3D texture-less object models have also been used to generate
synthetic images, which have been stylised using CycleGAN
or related approaches using a real-to-synthetic strategy. Petsiuk
et al. (2022) use of synthetic images generated from 3D ob-
ject models for performing semantic segmentation using Cycl-
eGAN for applications in additive manufacturing. The authors
reported that utilising real-to-synthetic translation resulted in

better results as the translation reduced the effects of saturation
and the reflections of the real images and incidental filament
strings. Planche et al. (2019) propose SynDA, an encoder-
decoder network that maps real to the synthetic images that
are generated from texture-less synthetic CAD models, and can
perform tasks such as image segmentation. Pasqualino et al.
(2021) used a CycleGAN and 3D model of the museum to gen-
erate synthetic images, and subsequently used translated images
for object detection in cultural sites, experimenting both adapt-
ation strategies. Rojtberg et al. (2020) use a CycleGAN-based
pipeline for object pose detection, and report better accuracy
for the reverse domain adaptation (real-to-synthetic case), and
the reported accuracies comparable with a baseline experiment
using augmented real image backgrounds. Likewise, Rad et al.
(2018) use a feature mapping network using real-synthetic im-
age pairs for 3D object pose detection from real images.

2.3 Camera pose estimation using textured 3D models

CycleGAN and related approaches have been used for cam-
era pose estimation using synthetic images from ‘textured’ 3D
models, which are derived from Structure-from-motion (SfM).
Yang et al. (2021a) propose frustum intersection over union to
calculate real-synthetic pairs similarity, and then use relative
camera pose regression for estimating the absolute camera pose.
CycleGAN was utilised for increasing the number of synthetic
images using a 3D textured model. Langerman et al. (2021)
propose the use of Contrastive Unpaired Translation (CUT)
for performing unpaired image-image translation of synthetic
images that are generated from coloured point clouds of the
scene, and report their approach’s performance is comparable
with existing fully supervised techniques. Some works have
reported that the real-synthetic strategy resulted in better per-
formance for camera pose estimation. Yang et al. (2021b) train
RCPNet using real and real-looking synthetic images derived
from an outdoor SfM model and CycleGAN for relative cam-
era pose estimation, and demonstrate a single trained model can
be used across scenes, without requiring retraining. Shoman et
al. (2020) propose CNN-based feature alignment called real-to-
synthetic feature transformation (REST) where they convert the
real features to synthetic features and then match them against
the accumulated database of synthetic images. The authors
experimented with different lighting conditions and concluded
that real-to-synthetic is a better adaptation strategy as the syn-
thetic scene is a simplification of the real scene, and hence easy
to synthesize, and can be performed using a simple network.

2.4 Camera pose regression using texture-less 3D models

PoseNet is a popular camera pose regression approach which
utilises images with known camera poses estimated using SfM
approaches. Although several improvements to PoseNet have
been proposed (Clark et al., 2017; Kendall and Cipolla, 2017),
the primary challenge of the approach is the requirement of per-
forming SfM reconstruction of the scene. The widespread avail-
ability of 3D building models that can be derived from Build-
ing Information Modelling (BIM) has motivated some works to
generate synthetic images from those texture-less models and
utilise them to perform camera pose regression by domain ad-
aptation. Ha et al. (2018) utilise shallow CNN features for
synthetic-real domain adaptation, and perform retrieval of the
nearest synthetic image to estimate a coarse camera pose. Baek
et al. (2019) extend the work of Ha et al. (2018) for and de-
velop a facility management interface using augmented reality.
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Figure 1. Workflow of the proposed method.

Acharya et al. (2019a) use edge maps for performing synthetic-
real domain adaptation. Their subsequent works involved mod-
elling the uncertainty (Acharya et al., 2019b), utilising spati-
otemporal information utilising LSTM (Acharya et al., 2020),
and intermediate domain representation using segmented im-
ages (Acharya et al., 2022). Li et al. (2022) utilised adversarial
learning to align the synthetic and the real features derived from
CNN. Kim and Kim (2022) perform the domain adaptation
utilising the attention property of the recent transformer-based
models to identify the most relevant features for performing the
task. Chen et al. (2022) perform synthetic-real domain adapt-
ation using CycleGAN, use point features such as HOG and
SIFT for matching the real and the synthetic images, and sub-
sequently use the 3D depth information from the BIM to per-
form a Perspective-n-Point (PnP) camera pose estimation. This
is the only work that used CycleGAN for translating synthetic
images (obtained from a texture-less 3D model) to real images
for the task. The best-reported accuracy of the state-of-the-art
approach is 1.12 meters (Acharya et al., 2022).

2.5 Limitations of existing methods

The review of the literature reveals two research gaps. Firstly,
the reverse domain adaptation, i.e. the conversion of real im-
ages to synthetic has been explored for camera pose estima-
tion, but using ‘textured’ 3D models derived from SfM (Yang
et al., 2021a; Langerman et al., 2021; Yang et al., 2021b; Sho-
man et al., 2020). Therefore, the synthetic images used in those
experiments, contain texture from the real world. Moreover,
the reverse domain adaptation strategy is not explored with ap-
proaches that perform camera pose regression using synthetic
images obtained from texture-less 3D building models (Ha et
al., 2018; Acharya et al., 2019a; Li et al., 2022; Kim and Kim,
2022; Chen et al., 2022). Secondly, the reviewed works on
camera pose regression using synthetic images suffer from low
accuracy. The best-reported accuracy is 1.12 meters (Acharya
et al., 2022), which is nowhere near the accuracy of PoseNet
trained on real images, which is approximately 0.4 meters for
the 7Scenes indoor dataset (Kendall et al., 2015). This indicates
that in the existing works, the domain adaptation is not achieved
properly, or the synthetic images are not effective for the task.

3. METHODOLOGY

Figure 1 shows the workflow of the proposed approach where
we use CycleGAN for synthetic-to-real adaptation. This pro-

cess generates real-looking synthetic images. We also perform
real-to-synthetic adaptation, which generates synthetic-looking
real images. We train two PoseNets, one for the synthetic-to-
real adaptation and one for the reverse real-to-synthetic adapta-
tion. We train Synthetic-to-real PoseNet with real-looking syn-
thetic images and test it with real images, whereas for the Real-
to-synthetic PoseNet, we train the network directly with syn-
thetic images, and test it with real-looking synthetic images.

3.1 Image-image translation using CycleGAN

CycleGAN consists of a generator and a discriminator, where
the generators generate the fake real images (real-looking syn-
thetic images) and the discriminator distinguishes the fake from
real images. However, to encode the outputs in a meaning-
ful way, CycleGAN utilises cycle consistency that uses real-
looking synthetic images to reconstruct back the synthetic im-
ages using another generator and a discriminator, and ad-
versarial loss is used to train the model. At the end of the
training, the generators learn to generate real-looking synthetic
images and synthetic-looking real images.

CycleGAN is a generative model that has been widely used
for translating synthetic images to real-looking synthetic im-
ages (and vice versa). A relevant question in this aspect will
be whether the images generated by CycleGAN reduce the do-
main gap between the synthetic images that are generated from
a texture-less 3D building model, and real images containing
building structures, novel objects and repeating texture. There-
fore, we used deep CNN features and visualised the domain gap
using t-distributed stochastic neighbour embedding or t-SNE
(Van der Maaten and Hinton, 2008).

Another relevant question is whether the direction of domain
adaptation (synthetic-real vs real-synthetic) has an effect on re-
ducing the domain gap, as several studies have reported the
reverse direction is more efficient. Therefore, to quantify the
measure of the similarity of the translated images in both dir-
ections, we use Fréchet inception distance or FID Heusel et al.
(2017) which is a widely used measure of the similarity of two
image domains using deep CNN image features.

3.2 Training PoseNet with translated images

PoseNet follows the idea of fine-tuning a pre-trained GoogleNet
model with real images and known camera poses, and during in-
ference, it maps a test image to its corresponding camera pose.
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Previous studies have established that synthetic images or their
intermediate representations such as edge maps and segmented
images, or adversarial learning can be used to train PoseNet,
and during inference, real test images can be used for pose re-
gression. Chen et al. (2022) used CycleGAN to reduce the do-
main gap between the synthetic and the real images. However,
we believe that the synthetic to real image translation results in
more image artefacts that are not suitable for matching using
point features, such as HOG or SIFT. Therefore, we propose
fine-tuning PoseNet with real-looking synthetic images directly
(Figure 2 third row) and testing with real images (Figure 2 (a)),
as we believe the image features derived from the ‘deep’ layers
of the CNN will be robust to the artefacts generated by real-
looking synthetic images obtained from CycleGAN.

Additionally, we believe the effects of the artefacts and other
novel objects in the scene will be reduced during the reverse do-
main adaptation. Consequently, we fine-tune PoseNet directly
with synthetic images (Figure 2 second row), and during infer-
ence, we used synthetic-looking real images (Figure 2 fourth
row). We selected the Syn-Car images for our experiments
with synthetic-real adaptations, whereas Syn-pho-real-tex im-
ages for real-synthetic adaptations based on the best FID scores
of the image translations by CycleGAN.

4. EXPERIMENTS AND RESULTS

We used the publicly available PyTorch implementation of
CycleGAN1 and used all the default setting, except for turning
off the image flipping, which improved the quality of the trans-
lated images. We trained the CycleGAN and PoseNet models
on a Tesla P100 GPU having 12GB memory.

4.1 Dataset details

We use the only available indoor cross-domain dataset called
Unimelb Corridor that has been used by the previous studies
(Acharya et al., 2019a; Li et al., 2022; Kim and Kim, 2022).
As shown in Figure 1 (a) - (d), this dataset contains real im-
ages of a university corridor and synthetic images of the same
corridor obtained from a texture-less 3D building model of the
corridor. Three different visualisations of synthetic images are
generated by moving a virtual camera: Syn-car visualisation
stands for Synthetic Cartoonish, Syn-pho-real stands for Syn-
thetic Photorealistic, and Syn-pho-real-tex stands for Synthetic
Photorealistic Textured, where Syn-pho-real-tex contains syn-
thetic repeating textures. The other cross-domain datasets such
as VKITTI are not suitable for the task, as they are paired
synthetic-real pairs in addition to being outdoors. We used a
subset of the dataset and removed some of the redundant frames
both from the real and synthetic images towards the end, and
added some real images throughout the trajectory.

4.2 Exploring domain adaptation using CycleGAN

We trained three CycleGAN models with Syn-car, Syn-pho-
real and Syn-pho-real-tex datasets and real images. We did
not use any real-synthetic image pairs for training, nor did we
use the ground truth of the real images during training, thereby
performing unsupervised image-image translations. As in the
CycleGAN framework, there is no objective measure to identify
the best model during training, we utilised t-SNE plots of the
test images that were not used during the training to qualitat-
ively understand the progress of domain adaptation.
1 https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix

RMIT Classification: Trusted

(a)

(b) (c) (d)

(e) (f) (g)

(h) (i) (j)

Figure 2. Dataset description. (a) Real image (b) - (d) Synthetic
images obtained from the 3D building model called Syn-Car,

Syn-pho-real and Syn-pho-real- tex respectively. (e) - (g)
Real-looking synthetic images generated by CycleGAN using

Syn- Car, Syn- pho-real and Syn-pho-real-tex respectively. (h) -
(j) Synthetic-looking real images generated from the real image.

Figure 3 shows the t-SNE plots of the three synthetic im-
age visualisations before and after domain adaptation by Cycl-
eGAN, where the blue and red filled points represent the real
and synthetic images respectively. We observe for all three
visualisations, the real and the synthetic images are well separ-
ated, therefore, demonstrating the initial domain gap before ad-
aptation. We also plot the real-looking synthetic images during
different epochs of training for the synthetic-to-real adaptation
represented by triangles for different epochs of training. We ob-
serve that the real-looking synthetic images move closer to the
real images in the embedding space, demonstrating the domain
adaptation. Additionally, we notice the images generated from
the later epochs (e.g. green and black triangles) are closer to the
blue points compared to the early epochs. For the reverse do-
main adaptation, we plot the synthetic-looking real images for
different epochs of training represented by diamonds. Likewise
the synthetic-to-real case, we observe that the images generated
from the CycleGAN model at later epochs are closer to the red
synthetic points. Interestingly, the distribution of the points for
the reverse domain adaptation case is closer compared to the
synthetic images (red points), compared to the distribution of
the points for the synthetic-to-real case, the spread of which is
wider. These distribution patterns in the t-SNE figures show a
correlation between what is observed in Table 1, and show that
reverse domain adaptation is better compared to the synthetic-
to-real case, although does not provide any quantitative insights
regarding which synthetic image visualisation is better.

Consequently, to quantify the domain adaptation, we used FID
to measure the similarity of the translated images throughout
the training. We do this for both the synthetic-real adaptation
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Figure 3. Visualisation of the t-SNE using ResNet50 features
during the different epochs of the adaptation of (a) Syn-car (b)

Syn-pho-real and (c) Syn-pho-real-tex datasets.

and reverse adaptation as well as to identify the better domain
adaptation direction. Table 1 shows the results of the exper-
iments, where we perform the evaluation at an interval of 40
epochs for the 200 epochs training. Epoch 0 refers to the case
before domain adaptation was performed. From Table 1, we
observe that the lowest synthetic-to-real image similarity meas-
ured by FID is for Syn-Car images, achieved at 200 epochs,
and we use these real-looking synthetic images from this Cycl-
eGAN model for the synthetic-to-real experiments. Whereas
for the real-to-synthetic translations, the lowest FID is observed
for Syn-pho-real-tex images at 200 epochs, and we use these
synthetic-looking real images translated from this CycleGAN
model for the reverse domain adaptation experiments.

Figure 2 (e) - (g) shows the results of the synthetic-to-real
translations resulting in real-looking synthetic images gener-
ated from the corresponding images in the top row (Figure 2
(b) - (d)) using the CycleGAN models trained for 200 epochs.
From Figure 2 (e) - (g) we observe that all the translated syn-
thetic images look realistic, containing the textures from the
real images, but, containing some distortions and artefacts. For
instance, the posters on the walls are not reconstructed properly,
and the brick texture of the walls is noisy. Also, most of the
images are blurry, the translation for the Syn-pho-real-tex im-
ages being the most. Additionally, we observe the edges of the
building structures, especially the door frames are not straight.
Figure 2 (h) - (j) shows the real-to-synthetic translations res-
ulting in synthetic-looking real images generated from real im-
ages (Figure 2 (a)) using the CycleGAN model trained for 200
epochs. From Figure 2 (h) - (j) we observe that the real-to-
synthetic translations for all three visualisations are very similar
to the original synthetic images, and are sharp as compared to
the real images, with some distortions, specifically for Syn-pho-
real-tex images, where the brick textures are distorted. Similar
to the synthetic-to-real translations, we also observe some dis-
tortions near the door frames (see Figure 2 (i)).

4.3 Evaluation of Synthetic-to-real pose regression

The qualitative and quantitative analysis shows that good do-
main adaptation in terms of image similarity has been achieved,
and we believe this should improve the pose regression per-
formance of PoseNet when being trained with adapted images.
To identify the pose regression performance of the synthetic-to-
real domain adaptation, we trained PoseNet with real-looking
synthetic images that were generated from the CycleGAN
model trained for 200 epochs on Syn-car images (Figure 2 (e)),
and call it Synthetic-to-real PoseNet. The camera pose of the
synthetic images was used during training, and no camera pose
of real images was used. During inference, real test images
taken from the camera were used, which regressed the camera
pose in the coordinate system of the 3D building model.

Figure 4 (a) shows the estimated points by Synthetic-to-real
PoseNet for the real images, where the colour of the points rep-
resents the error magnitude. The red line shows the ground truth

Table 1. Fréchet inception distances (FID) of the different synthetic images during the training course of CycleGAN for both domain
adaptation directions (lower is better).

Fréchet inception distance (FID) at
Adaptation direction Image visualization 0 epoch 40 epochs 80 epochs 120 epochs 160 epochs 200 epochs

Syn-car 210.76 108.15 77.30 66.70 64.04 59.20
Synthetic-to-real Syn-pho-real 187.83 104.34 80.42 65.28 63.29 59.29

Syn-pho-real-tex 112.89 110.58 87.77 72.06 69.29 65.84
Syn-car 210.76 88.13 58.30 51.02 44.58 43.68

Real-to-synthetic Syn-pho-real 187.83 63.72 48.42 39.67 37.43 38.50
Syn-pho-real-tex 112.89 54.86 42.94 36.49 33.24 30.47
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Figure 4. The estimated camera locations by (a) Synthetic-to-real PoseNet and (b) Real-to-synthetic PoseNet. The red line shows the
ground truth trajectory of the camera. The accuracies are shown in the top right, and the colour of the points shows the errors.

trajectory which was generated using SfM reconstruction of the
scene, and none of these camera poses was used during training
Synthetic-to-real PoseNet. The median error of localisation is
0.56 meters and 4.18°. From Figure 4 (a), we notice that most of
the points are predicted very close to the ground truth trajectory
having errors lower than 1 meter (dark blue points), whereas
some points were predicted wrongly (yellow points), contain-
ing high errors. We also notice slightly inconsistent results near
Points A, B and C of the trajectory, where the predicted loca-
tions are not precise. The larger errors near these points could
be a result of low lighting causing image blur and the differ-
ences between the real scene and the 3D building model.

4.4 Evaluation of Real-to-synthetic pose regression

To identify the pose regression performance of the reverse do-
main adaptation case, we trained PoseNet with Syn-pho-real-
tex synthetic images directly using the camera poses of these
synthetic images, and we call this model as Real-to-synthetic
PoseNet. During inference, we used the CycleGAN model
trained with Syn-pho-real-tex images trained for 200 epochs to
convert the real images to synthetic-looking real images. Figure
4 (b) shows the estimated points by Real-to-synthetic PoseNet,
and we observe there is a slight improvement in the accuracy of
camera pose regression observed, with median errors of local-
isation as 0.53 meters and 3.89°. Compared to the synthetic-to-
real case, we observe that the predictions are better near Point
A of the trajectory, indicating the better quality of the synthetic-
looking real images derived from the real images during infer-
ence. However, the distribution of the estimated points is worse
near Points B and C of the trajectory.

Motion blur due to low lighting and the structural differences
between the scene and the 3D building model are two main
factors influencing the performance of pose regression. For
the synthetic-to-real adaptation, the synthetic images are adap-
ted to look like real images, and this can to some extent cover
the gap between the structural difference between the scene and
the real world. However, for the reverse domain adaptation, as
PoseNet is trained directly with the synthetic images, it predicts
ambiguous results during inference when being tested with real-
looking synthetic images that have structural variations. In ad-
dition, in the synthetic-to-real adaptation case, the frames that

are close to the walls contain texture, which can help the net-
work in the pose regression task. But in the reverse domain ad-
aptation case, the absence of texture results in ambiguous pose
estimations. Nevertheless, the results of pose estimation with
reverse domain adaptation suggest that the cleaner synthetic-
looking real images achieve a higher localisation accuracy.
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Figure 5. The box plots of the two proposed strategies compared
to the existing domain approaches. We observe a significant
improvement in the accuracy and the distribution of errors.

Subsequently, to compare the results of the two domain adapt-
ation approaches, we plotted the box plots of the errors (shown
in Figure 5), and compared them with the existing approaches.
From Figure 5 we observe that both the domain adaptation

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-1/W1-2023 
ISPRS Geospatial Week 2023, 2–7 September 2023, Cairo, Egypt

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-1-W1-2023-453-2023 | © Author(s) 2023. CC BY 4.0 License.

 
458



strategy results in a lower error of localisation compared to the
existing approaches, where the results of the reverse domain
adaptation strategy are slightly better. We believe this improve-
ment is a result of the clean synthetic-looking real images con-
taining fewer artefacts that are used during the reverse domain
adaptation strategy.

4.5 Comparison with state-of-the-art

Compared to the state-of-the-art domain adaptation results, we
see a significant improvement in the accuracy of the proposed
approach for both strategies. Compared to Chen et al. (2022),
who use CycleGAN (accuracy of 1.34m and 10.29°), our res-
ults are improved approximately by 150% in terms of localisa-
tion accuracy. Also, compared to the leading results reported
by Acharya et al. (2022), we see an improvement of 111% and
55% for location and rotational errors, respectively. We sum-
marise the comparison results in Table 2.

Table 2. Comparison of the proposed Synthetic-to-real PoseNet
and Real-to-synthetic PoseNet with existing domain adaptation

methods.

Domain adaptation method Pose regression error
(meters, degrees)

Li et al., 2022 1.53, 11.00
Kim et al., 2022 1.37, 6.86
Chen et al., 2022 1.34, 10.29

Acharya et al., 2022 1.12, 6.06
Synthetic-to-real PoseNet (ours) 0.56, 4.18
Real-to-synthetic PoseNet (ours) 0.53, 3.89

5. DISCUSSIONS AND FUTURE DIRECTIONS

Artefacts generated in real-looking synthetic images are a ma-
jor limitation that restricts the applicability of approaches such
as Chen et al. (2022) for performing PnP camera pose estima-
tions, as such, using image features of the deep layers of CNN
can help to mitigate the challenge. Additionally, the experi-
ments suggested that the synthetic-to-real strategy is sensitive
to motion blur.

Using reverse domain adaptation can help us mitigate the chal-
lenges of the artefacts and motion blur as we generate a much
clean synthetic-looking real image, compared to a real-looking
synthetic image. Thus, the experiments indicate that we can
achieve a slightly better localisation accuracy with this strategy.
However, structural differences between the 3D building model
and the actual scene are a major limitation of using a reverse
domain adaptation strategy. Additionally, another limitation of
this strategy is the loss of the real texture of the scene which will
result in ambiguities for areas with similar structural geometry.

One of the possible future directions could be exploring the
use of spatiotemporal information (image sequences) instead
of performing pose regression with single images, as previous
studies have established that the accuracy of the pose regres-
sion improves utilising image sequences (Walch et al., 2017;
Clark et al., 2017; Acharya et al., 2020). Another possible dir-
ection could be exploring whether this domain adaptation can
be performed without the need for real images of the scene and
whether indoor images from other public datasets can be util-
ised to train CycleGAN. This framework will only require a 3D
building model for performing camera pose estimation. This
line of work will also address the challenge of the lack of public
datasets for the approaches performing camera pose regression
that utilises 3D texture-less building models.

6. CONCLUSIONS

We explore a reverse domain adaptation strategy utilising a
texture-less 3D building model by generating synthetic-looking
real images with CycleGAN, and compare it with the synthetic-
to-real strategy. The results of the experiments with camera
pose regression indicate that the generated synthetic-looking
real images contain fewer artefacts and are cleaner compared to
the real-looking synthetic images. However, some of the lim-
itations of the reverse strategy include the sensitivity to struc-
tural differences between the actual scene and the 3D building
model, in addition to the ambiguity due to the lack of texture
for the frames that are closer to the wall. Despite these limit-
ations, an improvement in the pose regression performance us-
ing PoseNet is observed, where the reverse adaptation tackles
the problem of motion blur well compared to the synthetic-
to-real adaptation. A significant improvement is observed for
camera pose regression by performing domain adaptation using
CycleGAN, and compared to the existing state-of-the-art do-
main adaptation approaches, we decrease the localisation errors
approximately by a factor of two.
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