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ABSTRACT:

Asset management systems are beneficial for maintaining building infrastructure and can be used to keep up-to-date records of relevant
safety assets, such as smoke detectors, exit signs, and fire extinguishers. Existing methods for locating and identifying these assets in
buildings primarily rely on surveys and images, which only provide 2D locations and can be tedious for large-scale structures. Indoor
point clouds, which can be captured quickly for buildings using mobile scanning techniques, can provide us with 3D asset locations.
In this paper, we study the feasibility of using 3D point clouds of buildings combined with deep learning techniques to identify safety-
related assets, particularly small-sized assets like fire switches and exit signs. We adopt the state-of-the-art Deep Learning network,
Kernel Point-Fully Convolutional Network (KP-FCNN), to identify these assets through semantic segmentation. Using the obtained
results, we create a 3D-geometry model of the building with assets pinpointed, providing scene semantics and delivering more value.
Our method is tested using three different point cloud datasets obtained from a depth camera, a mobile laser scanner, and an iPhone
lidar sensor.

1. INTRODUCTION

Asset identification is essential for asset management systems
of buildings, which in particular must be performed regularly
to maintain up-to-date information (name and location) of rele-
vant safety-related assets. Existing methods like manual surveys
and automated techniques using images only provide 2D loca-
tions of assets, which are also tedious and time-consuming for
large-scale buildings [Warsop and Singh, 2010, Kostoeva et al.,
2019]. However, using point clouds, a de-facto data for three-
dimensional (3D) representation of the real world, we can obtain
precise 3D locations of the assets within a building [Chen, 2019].
Further, the availability of low-cost 3D sensors makes it easier
to acquire point clouds of large-scale buildings recurrently with
minimal difficulty [Lehtola et al., 2017].

In using deep learning (DL) methods with 3D point clouds, we
see the possibility of automating asset identification by learning
essential features through the colors and shapes of assets [Good-
fellow et al., 2016, p. 96]. In particular, object detection and
segmentation (instance or semantic) techniques can obtain both
the 3D location and name of assets from point clouds at once
[Guo et al., 2020]. In our case, the segmentation method would
identify assets and also provide scene semantics, delivering more
value than just object detection [Anjanappa, 2022]. Since the
safety-related assets are standalone objects, semantic segmenta-
tion would be enough to identify them and would not require in-
stance segmentation. Also, semantic segmentation fits well to
process large point clouds, which often have noise and other scan-
ning imperfections [Lehtola et al., 2017].

Existing DL networks for semantic segmentation [Qi et al., 2016,
Qi et al., 2017, Wang et al., 2019] for buildings mainly focus
on planar structures and big objects. Recently, [Hossain. et al.,
2021] used PointNet++ [Qi et al., 2017] and point clouds of build-
ings to identify safety-related assets. However, they were unsuc-
cessful in identifying small-sized assets directly, leading them to
use images first to detect assets and then transfer the labels to
point clouds to locate them in 3D.
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On the data level, the total safety-related assets present through-
out a building are limited, which likely constrains the points rep-
resenting them in the building’s point cloud, as shown in Figure 1.
The point counts for small assets like fire switches and exit signs
are further reduced due to their smaller physical sizes. While the
point cloud of a building can be huge and irregular [Lehtola et
al., 2017], for safety-related assets, we have the following chal-
lenges:

• ”Finding-the-needle-in-a-haystack”: Processing huge point
clouds of buildings (haystack) to find and identify various
small-sized assets (needles) as seen in Figure 1 [Anjanappa,
2022].

• ”Class-imbalanced” data: Point cloud of a building with
the majority (ceiling, floor, and wall) and minority (safety-
related assets) classes, affecting the performance of DL net-
works [Johnson and Khoshgoftaar, 2019].

Figure 1: Point cloud of a room with a fire switch (small asset) in
the yellow bounding box, measuring approximately 16cmx16cm.

As our first contribution, we present a study on the feasibility
of identifying small-sized assets in 3D point clouds of buildings
with deep learning, based on an MSc thesis work [Anjanappa,
2022]. We adopt KP-FCNN [Thomas et al., 2019] semantic seg-
mentation network to predict point-wise labels and then clus-
ter them to get asset instances. Our hypothesis is that the in-
troduction of kernels to unordered point clouds brings a neces-
sary amount of order to succeed. Specifically, the study focuses
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Figure 2: Methodology - Overall workflow.

on safety-related assets commonly found in buildings, like, ceil-
ing light, fire switch, fire extinguisher, exit sign, ceiling venti-
lation duct, window, and door. In our case, the smallest safety-
related asset identified is a fire switch measuring approximately
16cmx16cm in Stanford indoor dataset (S3DIS) [Armeni et al.,
2016] as shown in Figure 1.

As this is a feasibility study, we carefully evaluate the robustness
of the designed method on point cloud datasets obtained from
three different 3D sensors, namely, depth camera, mobile laser
scanner, and iPhone lidar sensor. Further, we estimate the accept-
able point cloud density (or sparsity) for the proposed method to
be able to detect small safety-related assets. So, we artificially
decreased the points on these assets by down-sampling the point
cloud and then tested the outcome.

As our second contribution, using the enriched point clouds from
test datasets, we build sample 3D geometry models with assets
pin-pointed. This delivers more value and provides contextual
information about the scene [Anjanappa, 2022]. As a result, for
example, the height of a fire switch from the floor is measurable,
and such 3D models are likely beneficial for (i) safety inspectors
or facility managers to monitor the safety infrastructure, and for
(ii) first responders during emergencies.

Additionally, our efforts include manual labeling work. Available
labeled point cloud datasets like ShapeNet Part [Yi et al., 2016]
and S3DIS [Armeni et al., 2016] do not have labels for safety-
related assets and, therefore, can not be directly used for deep
learning to identify these assets [Hossain. et al., 2021]. Hence,
we manually labeled the datasets used for training and testing the
network.

The paper is organized as follows: Section 2. presents the related
work. In Sections 3. and 4., we present our proposed method and
the data used for evaluating it, respectively. Section 5. describes
the experiments conducted with their results. The paper ends with
the discussion and conclusion in Sections 6. and 7..

2. RELATED WORK

Following the keywords on 3D point cloud processing methods
with deep learning, We review the works of object detection,
semantic segmentation, and instance segmentation. Based on
[Liu et al., 2019, Bello et al., 2020, Guo et al., 2020], for point
clouds, Object detection identifies and localizes objects through
3D bounding boxes and assigns labels to only the detected point
sets; Semantic segmentation is a process where each point in the
point cloud is assigned to a semantic class; Instance segmentation
distinguishes each point into different semantic class, and the se-
mantic classes are further separated into individual instances.

Object detection networks: They are mainly categorized into
single-shot [Lang et al., 2019] and region proposal (RP) based
[Shi et al., 2019] methods. RP-based networks sometimes use

point-wise classification networks as the first step to generate ob-
ject proposals [Guo et al., 2020]. Though object detection meth-
ods would identify safety-related assets, they would not provide
any information about the scene.

Semantic segmentation networks: Based on how the DL net-
works consume and process a point cloud, these networks can
broadly be of two types, indirect and direct methods. Indirect
methods like [Tchapmi et al., 2017] use transformations and in-
termediate representations of point clouds with DL networks re-
sulting in data loss and discretization errors [Guo et al., 2020].
In contrast, direct methods do not use data conversions, among
which the point-based methods work directly on 3D point clouds
[Qi et al., 2016, Qi et al., 2017, Wang et al., 2019, Thomas et al.,
2019, Hu et al., 2020] and hybrid methods use multi-modal 2D
and 3D information [Jaritz et al., 2019].

Point clouds of buildings are inherently huge and irregular with
sparse and dense regions, which also vary based on sensors and
acquisition methods [Lehtola et al., 2017]. As discussed in Sec-
tion 1., safety-related assets in point clouds have ”find-the-needle-
in-a-haystack” and ”class-imbalanced data” setbacks. Hence,
for this study, we would need a network that manages these sce-
narios efficiently, learns features of small-sized assets, and di-
rectly operates on point clouds. Thus, narrowing our focus to
point-based direct methods.

In this context, we use KP-FCNN, a point-based method that
uses a robust kernel-point convolution (KPConv) method and di-
rectly processes huge point clouds. KP-FCNN processes point
clouds on multiple levels using different kernel points for each
level capturing fine-grained features, helping feature learning for
small-sized assets [Thomas et al., 2019]. Further, it uses grid sub-
sampling and radius neighborhoods strategies to manage varying
point densities, reducing the computational cost without compro-
mising feature learning [Thomas et al., 2019]. In addition, the
random-picking sampling strategy of KP-FCNN gives equal im-
portance to all semantic classes during training, hence tackling
class-imbalanced data issues with deep learning.

Instance segmentation networks: They are mainly categorized
into proposal-based [Yang et al., 2019] and proposal-free [Wang
et al., 2018, Vu et al., 2022] methods. Proposal-based methods
use 3D object detection techniques to generate proposals and then
predict masks to separate instances, whereas proposal-free meth-
ods use semantic segmentation techniques to extract instances
based on feature similarities of points [Guo et al., 2020]. In our
case, the safety-related assets are clearly standalone objects and
in distinct locations; hence there is no risk of instance confusion.

3. METHOD

We use KP-FCNN and 3D point cloud datasets to identify safety-
related assets within a building through steps illustrated in Fig-
ure 2. First, we define semantic classes and prepare the data for
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Figure 3: Screenshots of safety-related assets from the datasets in section 4. including, exit sign; fire switch; ceiling lights; ceiling
ventilation ducts; fire extinguisher (Image Source: [Armeni et al., 2017, Guzov et al., 2021]. Here, areas within S3DIS have different
assets, and further assets among the three datasets also have visual variations like wall-embedded and hand-useable fire extinguishers.

the DL network. Next, we choose parameters and strategies to
perform semantic segmentation with KP-FCNN. Lastly, we post-
process the results to refine them and build 3D-geometry models.

3.1 Data preparation

Buildings have various safety-related assets based on access, util-
ities, and fire suppression functionalities [NAPSG, 2020,Hossain.
et al., 2021]. For this study, we chose semantic classes from com-
monly found assets in buildings, namely, ceiling light, fire switch,
fire extinguisher, exit sign, ceiling ventilation duct, door, and win-
dow. Further, to provide complete scene semantics and build 3D
models, we have ceiling, floor, wall, stairway, furniture, and clut-
ter classes. Here, the clutter includes any object that does not
belong to any other chosen semantic class. Therefore, in total,
we have 13 semantic classes. Using CloudCompare [GPL soft-
ware, 2022], we manually labeled the point clouds for the chosen
semantic classes. Figure 3 shows some examples of the chosen
safety-related assets.

For training and testing, the labeled datasets are divided based on
visual representations of assets. For testing the network’s gener-
alization ability, we perform experiments with train-test sets hav-
ing buildings from different areas with visually different-looking
assets [Goodfellow et al., 2016, p. 108]. Further, we demonstrate
domain adaptation, a transfer learning approach, where data from
different domains are used to adapt network’s learning for im-
proved generalization [Goodfellow et al., 2016, p. 534]. We dis-
cuss this in detail in Section 5.

3.2 Semantic segmentation

We use KP-FCNN, a fully convolutional neural network (CNN)
with connected and multi-layered encoder and decoder modules.
The encoder has five layers with two convolutional blocks per
layer consisting of a strided KPConv (a KPConv block used for
pooling) as the first block, except the first layer. The other con-
volutional block consists of a KPConv, batch normalization, and
leaky ReLu activation modules. The features between the inter-
mediate layers of the encoder and decoder are passed using skip
links. The decoder derives the point-wise features using the near-
est upsampling method. The upsampled features are combined
with those obtained from the skip links and are further processed
using a unary convolution.

The open-source PyTorch implementation of KP-FCNN is used
for this study with area-wise point clouds with geometry, color,
and class fields as input [Thomas, 2020]. We chose five input
features (Din=5), having a constant feature encoding input’s ge-
ometry, color (Red-Green-Blue), and Z geometry field. In our
case, using the XY position of assets as a feature is not helpful,
as assets like an exit sign or a fire switch could be anywhere in the
building and have no fixed XY location. However, the Z values
can provide a spatial context of the assets through information
like height above ground [Anjanappa, 2022].

By design, KP-FCNN uses random or regular picking strategies
to choose small spherical sub-clouds across the scenes to pro-
cess the point clouds [Thomas et al., 2019]. For training, we use
the random picking strategy to tackle the class imbalances in the
used datasets. This strategy chooses the same number of spheres
centered on each semantic class, ensuring the network sees mi-
nority classes (small-sized assets) more often, ensuring efficient
feature learning. For testing, we pick the spheres regularly for
spatial regularity so that each point is evaluated multiple times at
different sphere locations.

Parameter Description Value
Din Input feature dimension. 5
R Spherical sub cloud radius (m) 0.7

dl0 First subsampling grid size (m) 0.01

Table 1: Chosen KP-FCNN parameters for training.

Further, to boost the sensitivity of the network for minority classes,
we use class weights in training to reshape the cross-entropy loss
[Johnson and Khoshgoftaar, 2019]. These weights are dynam-
ically calculated using Equation 1 based on KP-FCNN’s origi-
nal work, where P is the total point proportions for all semantic
classes per training data batch chosen.

Class Weights =

√
100

P
(1)

We use a batch size of 6, a learning rate of 0.001, and train the
network for 500 epochs with a 500-optimizer step for all the ex-
periments. To increase the data variability during training, we
utilize the data augmentation strategies available in KP-FCNN,
like scaling, rotation, flipping, noise addition, and color anneal-
ing. In particular, we use the color annealing probability of 0.8,
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which erases color features of input clouds, occasionally using
only geometry for feature learning.

3.3 Post-processing and 3D-geometry models

For post-processing, we adopt the detection workflow of Point-
Net [Qi et al., 2016]. For all the safety-related asset classes,
we generate sub-clouds based on the predicted labels from KP-
FCNN. Using the Connected Component Algorithm in Cloud-
Compare, we generate asset instances with minimum points of
50. These instances are then merged with the indexes enabled
to generate a cluster for each class with a unique segment num-
ber per instance as a scalar field. Therefore, all the points for a
given instance in the cluster will have the same segment number.
Further, the minimum number of points criteria removes random
noisy predictions from the results.

From the processed point clouds, we separate wall, floor, and
ceiling classes to reconstruct planar geometries as polyhedrons
using Polyfit [Nan and Wonka, 2017], a polygonal surface re-
construction tool [Nikoohemat et al., 2021]. Then the identified
safety-related assets are added to the obtained mesh to construct
the final 3D-geometry model. For constructing models for an en-
tire test area, we recommend generating per-room models first
and then combining them to obtain an area-wise model.

3.4 Evaluation Metrics

Metrics to evaluate semantic segmentation on point clouds gener-
ally use per-point labels. For example, the widely used metric In-
tersection over Union (IoU) uses per-point labels to measure the
overlap between the prediction and ground truth bounding boxes
of objects [Liu et al., 2019,Guo et al., 2020]. However, per-point
metrics derive less meaning for an asset management system or
a prospect operator using the system. Instead, they would benefit
from finding the asset as an object within the building, like

• Total assets as true positives (TP) + false negatives (FN).
• The presence or absence of an asset at a location.
• Reduced false asset locations as False Positives (FP).

Therefore, we utilize conventional metrics based on per-point la-
bels to compute object-level metrics for each asset class to evalu-
ate the performance of our method.

Figure 4: Example Door Instance (left to right): RGB, ground
truth, and predictions from KP-FCNN with correctly identified
points in brown and others in yellow.

For asset identification, We focus on finding whether or not an as-
set is correctly identified rather than the accuracy of its predicted
shape, like the door example in Figure 4. Hence, the recall rate
would be a suitable metric to categorize the instances into TP, FP,
or FN. For all the safety-related asset classes, we calculate the
recall rate per instance using Equation 2 using the clustered sub-
clouds from the post-processing step. Using a threshold-based
method on the calculated recall rates, we group the asset instances
into TP, FP, or FN.

Instance Recall Rate =
Correct Point Predictions

Total Points
(2)

For assets that require the highest reliability, like the fire switches
and extinguishers, we use a threshold of recall>70% to cate-
gorize an asset as TP. For other classes, we use a threshold of
recall>50%. Using the obtained TP, FP, and FN counts for all the
asset classes, we calculate instance-level precision, recall, and F1
score per class.

4. DATA

We use colored point cloud datasets acquired from three different
3D sensors: depth camera, mobile laser scanner, and consumer-
grade lidar.

1. Stanford 3D Indoor Scene Dataset (S3DIS), a benchmark
dataset with point clouds generated using images from a
depth camera [Armeni et al., 2016, Armeni et al., 2017].
It covers six large-scale indoor areas from different educa-
tional and office buildings, namely Areas 1 to 6. Architec-
turally, Areas 1, 3, and 6 and Areas 2 and 4 are similar-
looking. However, Area-5 is captured from a different build-
ing compared to the other areas.

2. Human POSEitioning System (HPS) Dataset contains six
3D indoor scans covering large working spaces, namely,
Mpi-biblio-ug, Mpi-biblio-eg, Mpi-biblio-og, Mpi-Etage6,
Mpi-kino, and Mpi-eg. Acquired with a mobile laser scan-
ner, these point clouds are huge and dense with geometry,
colors, surface normals, curvature, and camera-specific at-
tributes [Guzov et al., 2021].

3. iPhone Dataset was acquired with an iPhone 12 Pro embed-
ded with a lidar sensor [Apple, 2020]. We used Scaniverse
[Toolbox AI, 2022] and Polycam [Polycam, 2022] mobile
applications to scan different areas of a university building
covering lecture rooms, hallways, and lobby.

All the above datasets contain various safety-related assets like
temperature controllers, smoke detectors, lights, exit signs, fire
alarms, sprinklers, and extinguishers. Out of the 13 chosen se-
mantic classes in section 3.1, the S3DIS dataset had labels for the
permanent structures and some safety-related assets like doors
and windows. However, the remaining asset classes were labeled
manually. For HPS dataset, we manually labeled the point clouds
for all 13 classes. Further, the iPhone dataset is not labeled, as
we used it only for qualitative assessment.

5. EXPERIMENTS AND RESULTS

5.1 Case-study: S3DIS

Experiments: We performed two experiments with Area-6 and
Area-5 as test areas, using the respective remaining areas for
training. As the main goal was to determine the feasibility of
identifying small assets, we first tested the method on Area-6,
which had assets similar to training Areas 1 and 3 (see Figure
3). Though the train and test areas here share a few similarities
among the assets, they are spatially non-overlapping. Next, we
use one of the S3DIS’s standard split with test Area-5 to evaluate
model generalization. [Armeni et al., 2017].

Further, to estimate the smallest feasible point cloud resolution
for the proposed network configurations discussed in Section 3.2,
we repeated the first experiment with sub-sampled point clouds
for both training and testing. We used the spatial sub-sample
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(a) S3DIS Area-6

(b) S3DIS Area-5

(c) HPS Scans

(d) iPhone - Hallway and Room

Figure 5: Point clouds with scene segmentation results for all three datasets. Ordering from left to right: (i) S3DIS (a) and (b) - RGB,
ground truth, and KP-FCNN predictions; (ii) iPhone (c) - RGB and KP-FCNN predictions; (iii) HPS scans (d) - RGB, ground truth,
and KP-FCNN predictions for model generalization and domain adaptation

(a) (b)

Figure 6: Polyhedron 3D-geometry model for selected part of S3DIS test Area-6. (a) Area-wise model showing structural semantics
of selected rooms and hallways (wall in pink and ceiling in dark blue) with safety-related assets. (b) Room-wise model with multiple
rooms in different colors containing safety-related assets. Safety-related assets in the models: lights (white), fire switches (bright red),
a fire extinguisher (dark red), ventilation ducts (grey), exit signs (green), doors (orange), and windows (light blue).
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Test Area-6

Class GT TP FP FN Prec Rec F1
Light 148 136 7 12 95.1 91.9 93.5
Fire Swi 10 10 2 0 83.3 100 91
Fire Ext 5 5 1 0 83.3 100 91
Ven Duct 116 112 0 4 100 96.6 98.2
Exit Sign 5 5 0 0 100 100 100
Door 48 48 4 0 92.3 100 96
Window 31 27 1 4 96.4 87.1 91.5

Model Generalization - Test Area-5

Class GT TP FP FN Prec Rec F1
Light 210 162 43 48 79 77.1 78.1
Fire Swi 32 31 8 1 79.5 96.9 87.3
Fire Ext 6 0 4 6 0 0 -
Ven Duct 124 117 3 7 97.5 94.4 95.9
Exit Sign 14 1 0 13 100 7.1 13.3
Door 69 60 5 9 92.3 87 89.6
Window 48 40 2 8 95.2 83.3 88.9

Table 2: Precision, Recall and F1-score of safety-related assets
on test areas from S3DIS dataset (in %).

method from CloudCompare to generate the sub-sampled point
clouds at an interval of 0.01m.

Results: The results for both experiments with S3DIS test areas
are shown in Table 2. Figures 5a and 5b show the segmentation
results and the reconstructed 3D polyhedron model for a part of
test Area-6 in Figure 6.

For test Area-6, Table 2 shows that all the assets achieved a recall
and precision rate greater than 80% as the network is familiar
with the asset representations due to its train-test setup. How-
ever, test Area-5 had visually different fire extinguishers and exit
signs compared to the areas used for training, as seen in Figure
3, making them unfamiliar to the network, which explains why
they are not detected in the dataset, as seen in Table 2. Further,
assets like lights are only identified partially in this experiment,
among which most unidentified lights are round-shaped that are
not prominently found in the training areas. The probability of
picking such samples during training using the random picking
method in KP-FCNN is unpredictable, affecting feature learning
for such cases.

Further, we were able to identify all the chosen safety-related as-
sets with sub-sampled point clouds with a point spacing of 0.01m
and 0.02m [Anjanappa, 2022]. However, when sub-sampled be-
yond 0.02m, the network failed to converge at neighborhood
computation during training because of insufficient points avail-
able per input batch [Thomas et al., 2019].

5.2 Case-study: HPS

Experiments: We performed one experiment each for model
generalization and domain adaptation using Mpi-biblio-og and
Mpi-eg as test areas. First, the S3DIS-only trained network was
used with test areas to evaluate the network’s ability to identify
assets when trained and tested on point clouds from different 3D
sensors. Next, for domain adaptation, we re-trained the S3DIS-
only network with the remaining HPS scans to examine the net-
work’s ability to adapt and improve on new buildings. In this
experiment, the HPS scans used as train-test areas are spatially
non-overlapping.

Results: Results for HPS experiments are shown in Table 3 and
Figure 5c. Though S3DIS and HPS datasets have varying point

Model Generalization - Mpi-biblio-og and Mpi-eg

Class GT TP FP FN Prec Rec F1
Light 217 140 78 77 64.2 64.5 64.4
Fire Swi 15 15 13 0 53.6 100 69.8
Fire Ext 10 1 1 9 50 10 16.7
Ven Duct 34 16 17 18 48.5 47.1 47.8
Exit Sign 19 13 13 6 50 68.4 57.8
Door 28 18 27 10 40 64.3 49.3
Window 8 6 23 2 20.7 75 32.4

Domain Adaptation - Mpi-biblio-og and Mpi-eg

Class GT TP FP FN Prec Rec F1
Light 217 177 71 40 71.4 81.6 76.1
Fire Swi 15 14 5 1 73.7 93.3 82.4
Fire Ext 10 10 0 0 100 100 100
Ven Duct 34 23 0 11 100 67.7 80.7
Exit Sign 19 15 3 4 83.3 79 81.1
Door 28 27 13 1 67.5 96.4 79.4
Window 8 5 0 3 100 62.5 76.9

Table 3: Precision, Recall, and F1-score of safety-related assets
on test areas from HPS dataset (in %).

densities and visually different assets (see Figure 3), for model
generalization, small-sized assets like fire switches and exit signs
are identified well. But from Table 3, these classes also have
higher false positive counts, where the S3DIS-only trained net-
work wrongly identified objects resembling safety-related assets
in HPS dataset, like objects shown in Figure 7. In addition, en-
tirely unfamiliar or different-looking assets, like cylindrical fire
extinguishers, are not identified in this experiment. But, with
domain adaptation, the S3DIS-only trained network learned and
adapted to the features of assets in HPS dataset, resulting in im-
proved predictions and reduced false positives and negatives, as
shown in Table 3.

5.3 Case-study: iPhone

As a model generalization experiment, we used the S3DIS-only
trained network with all the scans from iPhone data for this case
study. Since the iPhone data is unlabeled, evaluation metrics
are not calculated and results are only evaluated qualitatively.
Though the assets in S3DIS and iPhone look different (see Figure
3) and these datasets have different point densities, the results in
Figure 5d show that assets like doors, fire switches, and exit signs
are identified successfully by the network.

6. DISCUSSION

Despite our limited training datasets, when tested on new build-
ings, the network efficiently identified assets with slight visual
variations, like fire switches in S3DIS Area-5 and HPS scans.
However, it failed to identify entirely different-looking assets,
in particular the fire extinguishers. But, through domain adap-
tation using HPS scans, we demonstrated that the network effec-
tively learns and adapts to the new fire extinguishers achieving
improved recall rates.

Though we were able to identify the safety-related assets, relying
entirely on deep learning in the context of safety can be debatable
as the behavior of networks used can be unpredictable. In addi-
tion, indoor scenes from buildings may contain various objects
that may have visual resemblances to some of the safety-related
assets like in Figure 7. As deep learning networks learn features
using geometry and color, they could falsely identify such objects
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as safety-related assets, which is not ideal if the results are used
during emergencies.

Figure 7: Examples of objects resembling safety-related assets
(exit sign and fire switch) in the HPS dataset, for visualization
purposes. The first column shows the actual asset, while the sec-
ond and third column shows objects resembling them.

Detecting assets with a pathological placement is an expected
limitation of the proposed method, e.g., detecting fire extinguish-
ers placed inside casings that are not clearly visible. Further, ev-
ery building can have different-looking safety-related assets re-
sulting in a high intra-class variability. For example, the lights
can be of different shapes or be present on the ceiling or wall. The
fire extinguishers can be in the form of rolled pipes or cylindrical
and wall-mounted or placed on the floor. Such asset variations
affect the performance of the network and, thus, affect overall
asset identification rates, as seen in the model generalization ex-
periments.

One solution for large-scale buildings with new-looking assets
could be that the user can re-train the network with a part of the
dataset and use the resulting network on the remaining dataset
to identify the safety-related assets accurately. This is feasible
with commercial-off-the-shelf low-cost scanning techniques, as
we demonstrated by acquiring data of such a use case in the do-
main adaptation experiment.

7. CONCLUSION

Detection of safety-related assets could make a highly beneficial
by-product whenever point clouds for buildings are captured. If
done regularly, this process can facilitate maintaining up-to-date
records of the assets or detect changes over time. Therefore, we
focused on studying the feasibility of using deep learning meth-
ods to automate asset identification. In this regard, KP-FCNN
was our choice of DL network due to its ability to handle data-
level setbacks of safety-related assets and its robustness to varia-
tions in the point cloud density, which is common in indoor point
clouds generated with mobile scanning techniques.

The safety assets are small and need to be detected in large point
clouds, making the problem essentially a needle-in-the-haystack
problem. The obtained results in Tables 2 and 3 show that the
designed method is feasible to identify small-sized assets like fire
switches and exit signs in all the experiments. Also, the proposed
workflow proved rather robust and invariant with respect to vary-
ing point cloud quality for the data from different 3D sensors.

Even though the proposed method could detect certain assets with
100% recall rates in some cases, like with S3DIS Test Area 6,
these methods can not solely be reliable for autonomous opera-
tion due to the false positives seen in model generalization exper-
iments (Tables 2 and 3). In other words, the method’s precision
drops significantly when used with data from another environ-
ment or a new building. Regardless of this limitation, the pro-
posed method could serve as partial automation, which could be
used as an assistive tool for human operators to check, verify, and

correct (if necessary) the identified assets. This would lessen the
burden for the operators to navigate through the buildings man-
ually or sift through the complete data of buildings, both images
or point clouds.
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