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ABSTRACT:

In this paper, we present a texture-based separation approach to refine building meshes, which aims to address the challenges of
detecting and isolating different objects in an indoor scene mesh. We propose a novel segmentation model based on the materials
of the different parts of the scene. The proposed approach uses factorization-based texture segmentation to separate the different
materials in the meshes and detect the edges on the segmented texture. To prevent large faces containing multiple materials from
being segmented wrongly, the mesh is cut along the texture boundaries and new faces with a single material are created. Finally,
we segment the new faces based on the material index and neighbouring faces using a region-growing algorithm. We evaluate the
proposed approach on the Matterport indoor dataset, which shows that our approach performs well on detecting boundaries between
distinct materials, but over-segments on complex shapes. Our proposed method improves the segmentation of large flat surfaces
like posters or rugs.

1. INTRODUCTION

Indoor scene segmentation of environments in the Architecture,
Engineering and Construction (AEC) industry is a field of on-
going research. Current state-of-the-art data acquisition tech-
niques can record highly detailed and dense 3D data but lack
the required information layers to efficiently use the building
data in applications (Geyter et al., 2022). One of these ex-
tra information layers is object segmentation, where the cap-
tured environment is split into distinct parts. This problem has
been approached from many angles before (Mao et al., 2022)
and although the majority of the scenes can be automatically
segmented, there are still a large number of edge cases where
the segmentation process returns invalid results. These excep-
tions require tedious and labour-intensive human intervention
to achieve good results.

Current segmentation methods largely rely on one of two data
types. The first data types are 2D images, where by using
trained networks, it is possible to find objects displayed on the
images (Zhang et al., 2021). While these methods can accu-
rately and precisely segment a scene, due to occlusions caused
by overlapping objects and limited 3D representations, they pro-
vide less reliable results in more complex environments. Be-
cause the segmentation is only performed on a 2D image, it
is difficult to accurately predict the 3D location of the object
boundaries.

The second group uses 3D information as a base to segment the
scene into 3D bounding boxes or regions. These mostly rely on
geometric features like point locations or normals (Schult et al.,
2022). Due to the need for a standardised input in neural net-
works, the 3D segmentation is mostly performed on normalised
point clouds or voxel occupancy grids. Using points allows the
data to be easily sub-sampled to the correct density, this is why
most datasets which do not use this format get converted before
the segmentation process. This is especially troublesome for
data types like meshes, where a large amount of detail is often
simplified in the geometry and only visible in the texture.

Meshes are an efficient way to store data compared to point

clouds and are better at representing surface and texture detail-
ing (fig.1). However, detecting and segmenting different objects
in an indoor scene mesh can be challenging due to the sparsity
of the faces. This sparsity can lead to ambiguity in large faces
which are supposed to be part of multiple objects (Bassier et al.,
2020).

The textures of a mesh are stored on a 2D image, where each
vertex contains a UV coordinate which can be mapped onto the
image (Heckbert, 1986). The colour of the face is then calcu-
lated based on the UV position of its three vertices. This em-
phasis on geometric abstraction is done to save on storage and
processing costs, something very desirable in most industries.
By sampling the mesh into a point cloud the texture detail gets
lost and is reduced to a single color per point. The point color
is often used as an extra parameter in geometry-based segmen-
tation. However, due to the complex patterns present in some
materials like bricks or wallpapers, this extra parameter can lead
to more confusion than clarity.

Figure 1: 3D mesh (left) and its corresponding texture map
(right)

Our goal is to create a texture-based segmentation model that
can cleanly segment a mesh. We propose using a texture-based
boundary detection method on a texture map to segment the dif-
ferent zones of the textured mesh. To ensure every face only be-
longs to a single element, new edges are created at the detected
boundaries. Each face is then assigned a material index and
connected faces are grouped together. This will create a num-
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ber of discrete zones, segmented solely by their similar texture
and adjacency.

The main contributions of this work are twofold: The first is a
novel segmentation model based on the individual materials of
the different objects in the scene. Second, the subsequent face
splitting based on the detected material patches prevents faces
from being part of multiple segments.

The remainder of this work is structured as follows. The back-
ground and related work is presented in Section 2. Following is
the explanation of the proposed method in Section 3. In Section
4, an overview of the used datasets and their results is presented.
Finally, the conclusions are presented in Section 5

2. BACKGROUND AND RELATED WORK

2.1 Instance Segmentation

Most of the state-of-the-art mesh segmentation models rely on
the conversion to a normalized point cloud to perform the ac-
tual segmentation and return an oriented bounding box or point
mask (Schult et al., 2022). While these data formats are suf-
ficient for point clouds, these can lead to inconsistent results
when converted back to meshes. Meshes require a vertex or
face-based segmentation to determine the boundaries between
objects (Kaplansky and Tal, 2009).

Existing texture-based segmentation models rely on 2D images
of the scene (Zhang et al., 2021). These do provide good and
accurate results when the resulting masks are projected on the
mesh, but due to the limited coverage of a single image, there
are still some drawbacks. The single viewpoint of an image
leads to a lot of occlusions which the segmentation model can-
not predict. This can lead to either unsegmented parts, or wrongly
segmented parts due to projecting through the geometry. To
combat these occlusions, multiple images are used that are taken
from different angles. While this solves the occlusion problem
for the most part, it becomes very difficult to get a consistent
segmentation index throughout the set due to variations in an-
gles and lighting conditions. These problems do not arise when
trying to segment a texture map, since every face is uniquely
represented on the map. It is, however, much more difficult to
detect objects in a randomly distributed patchwork of textures.

2.2 Texture Segmentation

Aside from image-based object segmentation, it is also possi-
ble to perform segmentation based on different types of tex-
tures or materials. Rather than trying to find each instance of
a type of texture, these texture segmentation models find all
similar patches of a single texture and group them. The field
of texture segmentation has been researched thoroughly and al-
ready gives good results. Factorisation-based texture segmenta-
tion (FTS) (Yuan et al., 2015) can efficiently segment different
textures in images. By using local spectral histograms as fea-
tures, this method relies on singular value decomposition and
non-negative matrix factorisation to discriminate region bound-
aries. The resulting masks provide a great starting point for
edge detection.

When trying to find the boundaries of objects in a 2D image, a
common technique used is edge detection. It can be performed
by a number of performant detection methods like Canny (Ding
and Goshtasby, 2001) or Holistic Edge Detection (HED) (Xie

and Tu, 2015). While these work great to detect all the edges in
an image, that may not always be the end goal. This is where the
Factorisation-based texture segmentation can provide a solution
with its simple mask representation.

2.3 Mesh Slicing

Cutting meshes using lines can be performed in several ways.
Popular methods rely on using planes as a virtual knife (Minetto
et al., 2017). By determining which points of the face are in
front or behind the section plane, new vertices can be created at
the intersecting lines. Using a 2D pixel line however becomes
a bit more complex, because it is no longer possible to easily
determine which points are in front or behind a pixel line.

Cutting a plane with a line requires a parameterised represen-
tation of pixel-based lines. Hough lines (Illingworth and Kit-
tler, 1988) can simplify the detected edges by finding straight
lines through the selected pixels. There are a couple of vari-
ations, each with distinct advantages. Hough lines are deter-
mined by finding a range of pixels that are close to forming a
straight line. Hough lines are always looking for lines that cover
the entire image, so smaller lines are harder to detect. This is
where PHough lines can provide better results. These can de-
tect smaller line segments in an image and provide a start and
end point.

2.4 Clustering

Clustering a collection of similar objects can be achieved us-
ing different methods like k-means, DBScan or region grow-
ing clustering (Xu and Tian, 2015). k-means clustering (Xu
and Tian, 2015) finds an optimal grouping with a set amount of
clusters with the lowest total point-to-centroid distance. While
this method is often used to find a set amount of clusters in a
collection, we do not know the amount of needed clusters be-
forehand. DBSCAN clustering (Xu and Tian, 2015) does not
rely on a predefined amount of clusters, rather, it tries to group
objects based on their density. Due to its focus on density, it is
able to non-linearly separate different clusters.

Existing region growing implementations largely focus group-
ing elements based on a single parameter like pixel color of
surface normal (Fan et al., 2005). Region growing is performed
by choosing a random starting seed and making a comparison
against neighbouring elements. If those elements are similar,
they are grouped together. This method works great to detect
connected components, since different objects in a scene could
have a similar material, but they should not be part of the same
group.

3. METHODOLOGY

The proposed texture based segmentation is performed in a se-
ries of steps outlined in figure 2. Where first, the UV texture
map is extracted, then the different materials are segmented.
After which the edges are extracted, from which the Hough
lines can be determined, those are then used to slice the faces of
the mesh to create clear boundaries. Finally the texture zones
are used to segment the 3D mesh with the use of a region grow-
ing algorithm.

To illustrate the full methodology, a simplified textured mesh
is used with a clear boundary as seen in fig. 3. The mesh rep-
resents a wall-floor connection where the edge between them
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Figure 2: An overview of the proposed workflow.

does not align with any existing geometry. Something which is
encountered frequently in large datasets and will be evaluated
in the experiments section.

Figure 3: 3D mesh (left) and its corresponding texture map
(right)

3.1 Texture Segmentation

The full texture map of the mesh is rarely used to segment the
scene, mostly because of the lack of a one-to-one relationship
between the object’s location in 3D space and on the 2D tex-
ture map. This often leads to disjointed parts of a single object
spread around on the UV plane. Instead of mainly focusing on
the specific object’s boundaries, it is much easier to search for
patches of similar materials on the texture map. The segmented
objects can then be detected by their material instead of geo-
metric shape.

We use factorization-based texture segmentation (FTS) (Yuan
et al., 2015) to detect the different materials in the meshes. The
algorithm is fine-tuned with a number of parameters: the win-
dow size, segmentation number, the omega value and the non-
negative constraint. The window size determines the sample
area to group textures, for our purpose, a window size of 10px
was chosen to allow for the most common construction textures
to be properly segmented. Fig. 4 shows an overview of the
different window sizes and their accuracy. The segmentation
number was left at �1 to allow the algorithm to dynamically
chose the number of texture segments. The omega value was
set to 0.2, to allow it to distinguish between the the different
types of homogeneous materials, while still being able to prop-
erly group the heavily patterned materials.

FTS is run on a grey-scale image, leading to some false matches
between materials. To prevent similar patches of different colours
from being grouped, all detected patches Fi, Fj , ... with the
same label are compared using the average patch hue hFi , hFj , ....
When the patch hues are less than a certain threshold th apart,
they are considered as the same material and grouped as patch
F 0
i as outlined in eq. 1. For our purpose, a th value of 0.1

was chosen, this can split the mesh more accurately and creates
more distinct patches.

Fi‘ =
n
Fi, Fj

���8Fi, Fj 2 F : |hFi � hFj |  th
o

(1)

Figure 4: FTS segmentation results: (top-left) the original tex-
ture, (top-right) over-segmented texture, (bottom-left) under-
segmented texture, (bottom-right) correctly segmented texture.

3.2 Edge Detection

Once the texture boundaries are defined, the edges can be de-
tected. The Canny edge detector (Ding and Goshtasby, 2001)
was chosen for its reliability and good results in similar appli-
cations. The segmented image is a collection of single-colour
zones with very distinct edges, so the edge detector returns all
the boundaries with near-perfect accuracy. Figure 5 Shows ex-
amples of the detected edges from the segmented texture. A
comparison is also made with the original textures to validate
the accuracy of the texture boundaries.

It is important to note that due to the texture baking process, a
small amount of texture spill can be present on the UV map at
the edges of face groups as shown in figure 6. This problem
can be avoided by only making use of detected edges that cross
existing faces since there is no spill present there.

Figure 5: (left) The segmented Image, (right) Canny edge de-
tection results.

The above-mentioned edge detection algorithm provides a bi-
nary raster image to represent the edges. Because our end goal
is slicing the faces of the mesh with the detected edges, the
edges need to be parameterized into straight-line equations. We
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Figure 6: A zoomed in view of texture spill as a result from the
texture baking process.

can determine these straight lines by applying a Hough trans-
form detection to the binary edge image (Illingworth and Kit-
tler, 1988). These lines l are defined by their polar coordinates
(r✓, ✓)

Because Hough lines are always represented as lines, they cross
the whole image. Using the whole line to slice the faces of
the mesh would create a large number of unnecessary faces.
This is why Probabilistic Hough Line Transforms are chosen
for smaller line segments which are defined by a couple of co-
ordinates (x0, y0, x1, y1). Both methods are compared in fig.
7.

Figure 7: (left) The standard Hough lines, (right) the Proba-
bilistic Hough lines indicated in blue.

3.3 Triangle Mesh Slicing

After detecting the edges, we need to create new triangles at
the boundaries of the different materials. To do this, we first
project the faces fi of the mesh onto the UV plane as seen in
fig. 8. We then use the detected lines l from the previous step
to slice the faces. We define the new faces f 0

i with the newly
created edge boundaries el and assigned them to the appropriate
material index i.

The slicing process is performed in a series of steps. First, we
check which faces f are intersecting with the lines l, this is per-
formed by a 2D raycast rl in the direction of the line. Once the
intersected triangles fr are determined we perform a second in-
tersection test, now on a per-edge basis to determine how many
edges e are intersecting.

There are 4 cases when checking for an intersection between
a triangle and a line as seen in figure 9. Each case creates a
different amount of new triangles:

• No intersection: The line and triangle do not intersect, so
no slicing is required.

• Point intersection: When the line intersects with one or 2
points and no edges, the original geometry does not need
to be altered.

Figure 8: An Image of the projected faces of the mesh on the
UV plane. The orange lines indicate the edges of the mesh.

• Point-edge intersection: In this case, the line p intersects
the face fi with one point pi and the opposite edge ei. This
will result in 2 new triangles fi1, fi2, where the new point
pei is the intersection between l and ei. Both triangles are
then defined by eq. 2

fi1 = {pi, pei, pi1}
fi2 = {pi, pei, pi2}

(2)

• Edge-edge intersection: When the line intersects with 2
edgesei, ej , 2 new points Pei, pej are created. This results
in 3 new triangles fi1, fi2, fi3. The first triangle fi1 con-
sists of the 2 new points pei, pej and the single existing
point from the corner side pi1. The second triangle fi2
is created with the 2 new points pei, pej and one of the
existing edge points pi2 on the edge side of the triangle.
The last triangle is created with the 2 existing edge points
pi2, pi3 and one new point pei. The order of the point allo-
cation is critical to prevent a wrong combination of points.
The new triangles are then defined by eq. 3

fi1 = {pei, pej , pi1}
fi2 = {pei, pej , pi2}
fi3 = {pi2, pi3, pei}

(3)

After the new triangles are created on the UV plane as seen
in figure 10, they need to be transferred to 3D. Since the new
triangles are subdivided from an existing triangle. only the
new points need to be interpolated to their new 3D position.
This is done though linear interpolation where p1, p2 are ex-
isting points with 2D coordinates pi(x, y) and 3D coordinates
pi,3D(x, y, z). The new point pe is only defined by its 2D co-
ordinate pe(x, y) and its 3D coordinate pe,3D(x, y, z) can be
determined according to eq. 4. The new normals ~npe are deter-
mined in a similar way.

pe,3D = p1,3D +
pe � p1
p2 � p1

(p2,3D � p1,3D) (4)
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Figure 9: The four cases of a line-triangle intersection. Top-
left shows no intersection, top-right shows a point intersection,
bottom-left shows a point-edge intersection and bottom-right
shows an edge-edge intersection.

Figure 10: The resulting faces after the pHough lines are used
to slice the faces which were overlapping with the lines. The
rest of the faces remain unaffected.

3.4 Segmentation

After the new faces are constructed, the segmentation can be
performed without any risk of multiple labels on a single face.
The segmentation is performed by a region-growing technique
where each face is given a segmentation index i. This index is
based on the FTS detection from 3.1. Because the segmented
patches do not take adjacency into account, if we were to sim-
ply group the faces based on that index alone, different objects
with the same material would also be grouped. To prevent this,
we start by choosing a random face fi from the mesh and com-
paring each adjacent face fi,adj for an identical segmentation
index i. This process is repeated recursively for each adjacent

matching face. Once no more matching faces can be found, the
patch is complete and another random, un-grouped, face fj is
chosen.

To prevent over-segmenting small detailed objects with a too
sporadic texture that cannot be grouped by FTS, there is also a
minimal surface area check. For our purpose, we chose a mini-
mal surface area of 10cm2 which allowed our method to group
highly irregular textures while still being able to distinguish the
most common indoor objects.

Figure 11: Left: the new faces, each marked with their respec-
tive segmentation index based on the texture zone. Right: The
resulting segmented mesh.

4. EXPERIMENTS

In this section, we evaluate our segmentation algorithm. First,
the datasets and testing metrics are discussed. Then we eval-
uate the texture boundary detection and instance segmentation
separately.

4.1 Datasets and metrics

To evaluate the effectiveness of our proposed method, we con-
ducted experiments on the Matterport (Chang et al., 2017) dataset.
This was chosen because of its size and already available met-
rics and reference studies. The large scenes were subdivided
as seen in fig. 12 to increase the processing speed and reduce
the complexity. Each zone has +- 200.000 points and 350.00
triangles.

Figure 12: The Matterport dataset mesh

4.2 Texture boundary detection

Because our method heavily relies on clearly defined bound-
aries between the textures. The textures need to be segmented
accurately. The results show this method works well on large
surfaces with repeated or small texture detail (fig. 13). This is
mostly because of the way the UV maps are laid out. Because
large flat surfaces remain connected on the UV map, it becomes
easier to segment them.
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Figure 13: A close up example of a new edge generated by
the texture boundary detection. This allows us to clearly assign
each face with a unique label

Our method also performs well on large uniformly textured sur-
faces, like painted walls or floors, something which is also de-
tectable with only edge detection. Our method, however also
shows it is capable of segmenting more complex textures like
brick walls or wood textures. The newly created edges provide
a clear distinction between the different texture zones. Due to
the PHough lines, they do not add any useless cuts in irrelevant
areas. Fig. 14 shows a good result on a largely uniform texture.

Figure 14: Wall detail. (top-left) uv-texture, (bottom-left) orig-
inal mesh, (top-right) new detected edges, (bottom-right) sliced
mesh

Some patterns are hard to separate due to subtle colour shifts in
the image. This causes inconsistent boundaries in the detected
zones. The method also struggles with very dense texture maps,
where a lot of the faces are laid out separately and do not cover
a lot of surface area. fig. 15 shows our method struggling with
the clear boundaries that are still detected despite the texture
segmentation. The irregular large patterns are not detected as a
single texture, so the lines are still present in the final detected
lines.

4.3 Instance segmentation

The results of our method are outlined below. From the results
acquired in subsection 4.2 it became clear this method would
perform well on simple scenes where objects are largely com-
posed of single materials as seen in fig. 16.

Figure 15: Carpet detail. (top-left) uv-texture, (bottom-left)
original mesh, (top-right) new detected edges, (bottom-right)
sliced mesh

Figure 16: Door detail. (top-left) uv-texture, (bottom-left) orig-
inal mesh, (top-right) new detected edges, (bottom-right) sliced
mesh

The method can detect geometry-less details on flat surfaces,
something more traditional segmentation models struggle with
as seen in fig. 17.

The method still over-segments on highly varied objects. Find-
ing the balance between over-segmentation and mismatching
has proven tricky and has to be evaluated on a scene by scene
basis.

5. CONCLUSIONS

In this paper, we proposed a novel method for refining building
meshes using texture-based separation. Our method leverages
texture segmentation to segment the different materials in the
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Figure 17: A segmented example of a element that is only
present in the texture and not in the geometry

mesh and create new triangles at the boundaries of the materials
to refine the mesh. We also proposed a novel object segmenta-
tion method that uses region-growing to group faces based on
their common texture. Our method outperformed other state-
of-the-art mesh-based and point-based segmentation methods
on meshes with sparse geometric detail and high texture de-
tail. However, the method still performs worse on non-inform
objects. This method could be valuable as a supplementary
segmentation model to increase the overall accuracy. Future
work could include improved ways of unwrapping the textured
meshes for better grouping of similar faces.
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