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ABSTRACT: 

 

Confronting the dual challenges of air pollution control and carbon mitigation, China is seeking a "win-win" pathway to achieve the 

co-reduction of air pollution and CO2 emission. In this study, taking 31 provinces in China as research objects, a novel index system, 

characterized by total emission, emission intensity and emission per capita, was established to evaluate the coupling coordination 

degree between the air pollution control (AP) subsystem and carbon mitigation (CM) subsystem at the provincial scale from 2013 to 

2017. Local Geary’s C Index was performed to determine where the coupling coordination was correlated to its neighbour provinces. 

Considering the discrepancy of the socio-economic status, industrial and energy structure among provinces, Geographically and 

Temporally Weighted Regression (GTWR) was employed to measure the spatiotemporal heterogeneity of the influences of the driving 

factors on the coupling coordination degree, aiming to reduce uncertainty in the interpretation of spatial and temporal variability. 

Results show that: (1) Since the implementation of "Clean Air Action" in 2013, there has been an obvious improving trend of synergistic 

governance of air pollution control and carbon mitigation.  (2) The synergy of air pollution control and carbon mitigation did not 

achieve good joint governance, locally. (3) The influence of drivers presents significant spatiotemporal heterogeneity among provinces. 

Generally, the improvement of the coupling coordination is greatly affected by the local energy structure and economic level. This 

conclusion has propounded practical significance for synergistic governance of air quality improvement and low-carbon development 

in the context of carbon neutrality achievement.  

 

 

1. INTRODUCTION 

 

China, as the world’s largest carbon emitter with 11,472 Mt, 

account for 30.9 % of global CO2 emission in 2021 (Andrew and 

Peters, 2022). With the responsibility of stabilizing the Earth’s 

climate for sustainable development, China has implemented a 

series of carbon mitigation policies over the past decades. 

Generally, CO2 reduction rely on energy policies such as 

increasing the share of non-fossil fuel consumption, energy curb, 

and energy efficiency improvement (Shan et al., 2022). While a 

decline in the growth rate of carbon emission was observed from 

2013 to 2016, there is a clear rebound in 2017 with an 8% 

increase in coal consumption (Liu et al., 2022). This gives a hint 

to the Chinese government and authorities that a long-term 

deeper carbon mitigation plan is required to achieve the NDCs 

(Nationally Determined Contributions) of carbon neutrality by 

2060.  

 

China is also confronted with severe air quality issues, especially 

PM2.5 concentration and ozone pollution (Shi et al., 2021). 

Therefore, China is now faced with dual challenges, including air 

pollution control and carbon mitigation. The uniqueness of 

today’s atmospheric environment urges the Chinese government 

to explore a well-developed policy or governance strategy with 

aim of achieving a “win-win” situation of air pollutants and CO2 

emissions control (Wu et al., 2022). Identifying the mechanism 

behind various factors influencing the performance of synergistic 

governance is the key point to provide valuable suggestions for 

the further realization of carbon neutrality and air quality 

improvement in China.  

 

According to the existing literature regarding the evaluation on 

the co-benefit and co-control performance between air pollution 

and carbon mitigation, the synergistic effect was analysed from 

the perspective of comprehensive consideration of the respective 

relationship between carbon dioxide and air pollutant emission, 

or building one indicator or parameter to represent the degree of 

co-benefit or co-control (Dong et al., 2019a; Wu et al., 2022; Yi 

et al., 2022). In this paper, an index system approach is performed 

to measure the synergy degree, defined as the coupling 

coordination degree between two subsystems. A synergistic 

system involves several dynamics and interactions between 

components within a single subsystem, as well as between 

various subsystems within a larger system, which are complex 

and non-linear (Liu et al., 2021). By employing an index system 

approach, multiple factors that influence the subsystems can be 

integrated into a comprehensive indicator that considers a two-

way relationship. It could avoid the limitation of the application 

of the econometric model, which reveals the bidirectional causal 

relationship between two objects (Xing et al., 2019). The 

structure and correlation of the AP-CM (Air Pollution Control – 

Carbon Mitigation) system are shown in Figure 1 with its specific 

operating rules (Yi et al., 2022). In addition, much existing 

research investigating the driving factors of CO2 and air pollution 

emission does not reflect the discrepancy of the impact from 

drivers over space and time (Karmellos et al., 2016; Zhang et al., 

2016). This study, considering the possibility of the existence of 

non-stationarity of space and time, identifies whether a location 
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specific approach is the appropriate strategy for the realization of 

effective synergistic governance of air pollution control and 

carbon mitigation among provinces. 

 

In this study, we analyse the spatiotemporal heterogeneity of the 

influence of drivers on the synergistic effect of carbon mitigation 

and air pollutants control from 2013 to 2017 at the provincial 

scale. This time span coincides with the implementation period 

of the stringent air pollution prevention and control policy, 

“Clean Air Action”. There are three objectives: (1) To establish 

an index system to evaluate the spatiotemporal pattern of the 

synergistic governance performance of air pollution control and 

carbon mitigation measures among provinces from 2013 to 2017; 

(2) To reveal the local spatial association of synergy degree at the 

provincial level from 2013 to 2017; (3) To identify the spatial-

temporal heterogeneity of the driving factors influencing the 

synergistic governance degree at the provincial scale to reduce 

the uncertainty in the interpretation of spatial and temporal 

variability.  

 

This study provides a new perspective on the driving factors 

analysis with the consideration of spatiotemporal heterogeneity, 

and diversity of the impacts from the drivers. It is conducive to 

the adoption of different strategies to maximize the co-benefit of 

synergistic governance of air pollution control and carbon 

mitigation.  

 

 
Figure 1. The structure and correlation of the AP-CM system. 

 

 

2. STUDY AREA AND DATA 

 

2.1 Study area  

 

In this paper, the air pollution and carbon dioxide emission data 

are acquired from the Multi-resolution Emission Inventory for 

China Dataset (MEIC), which are developed by Tsinghua 

University (Zheng et al., 2018). Due to the spatial scope of this 

dataset, the study area includes 31 provinces in mainland China, 

except Taiwan, Macau, and Hong Kong. A map of China 

showing administrative regions  

can be found at: 

https://en.wikipedia.org/wiki/Template:PRC_provinces_big_im

agemap. 

 

2.2 Data source and indicators for AP-CM system 

assessment 

 

The potential indicators of AP (Air pollution control) and CM 

(Carbon mitigation) subsystems are listed in Table 1. For each 

component, the key features such as total emission, emission 

intensity (emissions per unit of GDP), and emission per capita 

are selected to represent each subsystem, comprehensively. 

Therein, features of intensity and per capita take the geographical 

difference of population and economic development level into 

account to highlight the spatial discrepancy of coupling 

coordination degree of the AP-CM system among provinces. All 

the emission data at the gridded scale are acquired from the 

MEIC dataset. The dataset derives from the integration of 

provincial-scale energy statistics (China Energy Statistical 

Yearbook activity data), and China Power Emissions Database 

(CPED). It performs a spatial disaggregation to grided scale 

based on the spatial pattern of population, traffic network, etc. 

MEIC dataset provides air pollutants and CO2 emissions with a 

spatial resolution of 0.25° from 2008 to 2017. Except from that, 

the socio-economic data and energy statistical data for these 31 

provinces are collected from China Statistical Yearbook and 

Energy Statistical Yearbook from 2013 to 2017. 
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Table 1.  Index evaluation system of AP-CM system. 

 

 

3. METHODOLOGY  

 

3.1 The coupling coordination degree of AP-CM system  

 

A principal component analysis was conducted on all the 

potential indicators to select the combination of several indicators 

that are important and can carry the most amount of information 

to construct the AP subsystem from 2013 to 2017. In this study, 

we choose the indicators whose contribution is higher than 1/15. 

 

3.1.1 The ordering degree of each subsystem: To get an 

understanding of the dynamic interaction mechanism of air 

pollution control and carbon mitigation performance separately, 

it is significant to identify the weights of these ordinal indicators 

in each subsystem. Ordering degree is a quantitative criterion for 

evaluating the combination effect of ordinal indicators (Mu et al., 

2022). The ordinal indicators can be used to assess the 

collaborative development level of each subsystem over time 

(Dong et al., 2019b; Mu et al., 2022, 2022; Shi et al., 2020). The 

rank of the score could represent the air pollution control and 

carbon mitigation level, respectively.  

 

Firstly, to obtain the ordering degree of indicators in each 

subsystem, we need to normalize the indicators based on whether 

the selected indicators have a positive or negative effect on the 

overall synergistic coupling system (Shi et al., 2020; Yi et al., 

2022). The indicators with positive and negative effects follow 

the equation (1) and (2) respectively. 

 

Indicator with positive effect: 

AP 
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……
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𝑋𝑖𝑗 = (𝑥𝑖𝑗 −  𝑥𝑖𝑗 𝑚𝑎𝑥)/(𝑥𝑖𝑗 𝑚𝑎𝑥 −  𝑥𝑖𝑗 𝑚𝑖𝑛),              (1)                    

 

Indicator with negative effect: 

𝑋𝑖𝑗 = (𝑥𝑖𝑗 𝑚𝑎𝑥 −  𝑥𝑖𝑗)/(𝑥𝑖𝑗 𝑚𝑎𝑥 −  𝑥𝑖𝑗 𝑚𝑖𝑛)                (2) 

 

Where 𝑥𝑖𝑗  represents the value of indicator 𝑖 in province 𝑗, and 

𝑥𝑖𝑗 𝑚𝑖𝑛 and 𝑥𝑖𝑗 𝑚𝑎𝑥 represent the minimum and maximum value 

of the indicator 𝑖 in province 𝑗, respectively.  

 

Secondly, the synergy degree of the AP-CM system is the result 

of the coupling coordination degree of these two subsystems 

(Dong et al., 2019b; Gan et al., 2020; Liu et al., 2021). For the 

level of the ordering degree of each subsystem, the weights of 

each indicator should be assigned to determine which indicators 

dominate the performance of air pollution control (Mu et al., 

2022; Bai et al., 2021). In this study, the entropy weight method, 

an objective weights assignment strategy was performed to 

allocate a scheme of weight assignment (Dong et al., 2019b; Yi 

et al., 2022). To achieve the comparison among provinces, the 

entropy model is modified in this paper as follows:  

 

Using the entropy weight method to determine the weights for 

each year is divided into four steps: 

 

(1) To determine the proportion 𝑃𝑖𝑗: 

𝑃𝑖𝑗 =  
𝑋𝑖𝑗

∑ 𝑋𝑖𝑗
𝑚
𝑗=1

,                                     (3) 

 

Where 𝑋𝑖𝑗  represent the value of indicator 𝑖 in province 𝑗 (𝑗 =

1, 2, … . , 31) after data normalization.  

 

(2) To calculate the information entropy 𝑒𝑖: 

 

𝑒𝑖 =  
1

ln (𝑚)
∑ 𝑃𝑖𝑗

𝑚
𝑗=1 ln (𝑃𝑖𝑗),                      (4) 

 

Where 𝑚 is the total number of provinces (𝑚 = 31).  

 

(3) To calculate the entropy redundancy 𝑑𝑖: 

 

𝑑𝑖 = 1 −  𝑒𝑖,                                       (5) 

 

(4) To calculate the weight 𝑤𝑖: 

 

𝑤𝑖𝑗 =  
𝑑𝑖𝑗

∑ 𝑑𝑖𝑗
𝑛
𝑖=1

,                                      (6) 

 

For a certain indicator 𝑖, if its weight is greater than others, it 

indicates that this indicator has larger contribution in the 

comprehensive evaluation.  

 

Thirdly, to obtain the level of the ordering degree of these two 

subsystems of each province, different weights of selected 

indicators for each year were assigned and summed together 

through linear weighted regression approach.  

 

𝑈𝜃𝑗 =  ∑ 𝑤𝑖𝑗𝑋𝑖𝑗
𝑛
𝑖=1                               (7) 

 

Where 𝜃 represents each subsystem (𝜃 = 1, 2). 

 

The above steps are performed for each year, respectively. The 

level of air pollution control and carbon mitigation could be 

obtained for each province from 2013 to 2017.  

 

3.1.2    Synergy model for AP-CM model: The synergy degree 

of the compound system determines whether this possible order 

will be established from disorder. From a dynamic perspective, 

measuring synergy is reintegrating the ordering degree of each 

subsystem (Mu et al., 2022). 

 

Given the same importance of air pollution control and carbon 

mitigation in China from 2013 to 2017, weights (𝛼=0.5, 𝛽=0.5) 

is adopted for each subsystem and the comprehensive synergy 

degree of AP-CM system can be obtained through the weighted 

averaging method (Liu et al., 2021; Shi et al., 2020; Yi et al., 

2022).  

 

The calculation is divided into two steps: 

 

(1) To calculate the coupling coordination degree of AP and CM 

subsystems: 

𝐶𝑖𝑗 =  √
𝑈1𝑗𝑈2𝑗

(
𝑈1𝑗+ 𝑈2𝑗

2
)2

,                                  (8) 

 

Where 𝐶𝑖𝑗  is the coupling coordination degree of air pollution 

control and carbon mitigation for each province for each year. 

𝑈1𝑗  and 𝑈2𝑗  represents the ordering degree of each subsystem in 

province 𝑗. 

 

(2) To calculate the coupling coordination degree of the AP-CM 

system with consideration of the development level of these 

subsystems. 𝛼 =0.5, 𝛽 =0.5 are used to constrain the same 

importance of China’s atmospheric environment management. 

 

𝑇𝑖𝑗 =  ∑ 𝛼𝑖  ×2
𝑖=1  𝑈𝑖,                            (9) 

 

𝐷𝑖𝑗 =  √𝐶𝑖𝑗 × 𝑇𝑖𝑗                               (10) 

 

3.2 Local spatial association of coupling coordination degree 

of AP-CM system 

 

To identify if the synergy of air pollution control and carbon 

mitigation has achieved regional joint governance, local spatial 

association statistic, Geary’s 𝑐 was performed in the whole study 

area. The calculation formula is shown as below (Geary, 1954):  

 

𝑐𝑖 =  ∑ 𝑊𝑖𝑗(𝑧𝑖 − 𝑧𝑗)2𝑛
𝑖                          (11) 

 

Where 𝑊𝑖𝑗  is the spatial weight between location  𝑖 and 𝑗. 𝑧𝑖 and 

𝑧𝑗  are the coupling coordination degree of location  𝑖 and 𝑗. 

 

Geary’s 𝑐  is designed to identify the local association among 

georeferenced data by measuring the squared difference from the 

reference site 𝑖, whereas the variogram is used to evaluate the 

spatial variability across the whole study area. If the trends of the 

mean, standard deviation, and covariance are dissimilar from 

place to place, it indicates that the heterogeneity exists among the 

observations. Getis and Ord (1996) said, “A typical heterogeneity 

spatial data set would be one containing drift, that is, the 

occurrence of trends toward high values or low values in certain 

direction.” Hence, local statistics could be used to identify the 

existence of heterogeneity of spatial georeferenced data. 

Conversely, it has the capability of identifying whether if the 

synergy of air pollution control and carbon mitigation present 

local positive autocorrelation, which indicating the achievement 

of regional joint synergistic governance (Odongo et al., 2014). 

Geary's 𝑐  is between 0 and an undefined value larger than 1. 

Statistical indicator with small value (less than one) indicates 

positive spatial autocorrelation (fewer disparities between an 

observation and its neighbours), whereas statistics with big 

values (greater than one) indicate negative spatial autocorrelation 

(Fischer and Wang, 2011).  
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3.3 Spatiotemporal heterogeneity of drivers on the coupling 

coordination degree of AP-CM system 

 

GTWR (Geographical and Temporal Weighted Regression) is an 

extension of GWR (Geographical Weighted Regression) 

approach. In contrast, GTWR is not only modelling spatial 

heterogeneous process with the relationship between a response 

and a set of covariates varying across geographical space, but 

also considering the temporal non-stationarity (Fotheringham et 

al., 2015). In this study, considering the spatiotemporal 

discrepancy of socio-economic development level, emission 

patterns and local energy and industrial structure, it is of 

significance to explore whether the influence of each drivers 

present spatiotemporal heterogeneity. It could provide the 

valuable information of the mechanism and dynamics of the 

geographical entities or relationships with the coupling 

coordination degree. Therefore, in this study, GTWR was chosen 

to examine and identify the spatiotemporal heterogeneity of the 

influence of drivers among provinces from 2013 to 2017.  

 

Firstly, OLS (Ordinary Least Squares) regression was performed 

to identify the potential drivers for the further modelling (Li et 

al., 2022). Then, it was performed again to model the relationship 

between the coupling coordination degree of air pollution control 

and carbon mitigation with potential drivers at a global scale. A 

multi-collinearity test was used to check the collinearity among 

potential divers through the variance inflation factor (VIF). BP 

(Breusch-Pagan) test was performed to identity if 

homoscedasticity exists in a linear regression with residuals 

distributed with equal variance of the predictor variable (Liao et 

al., 2023; Ling et al., 2022). If the null hypothesis is rejected, it 

means that there may be non-stationarity in the linear regression 

model. The geostatistical model with consideration of spatial and 

temporal non-stationarity has the potential possibility to reduce 

the uncertainty on the explanation of the relationship between the 

coupling coordination degree and drivers. In this study, GTWR 

model was used to identity the spatiotemporal heterogeneity of 

the drivers’ impact on the synergy degree of air pollution control 

and carbon mitigation, as shown in equation (12):  

 

𝑦𝑘 =  𝛽0(𝜇𝑘 , 𝜗𝑘 , 𝑡𝑘) + ∑ 𝛽𝑝(𝜇𝑘 , 𝜗𝑘 , 𝑡𝑘)𝑥𝑘𝑝 + 𝜀𝑘
𝑞
𝑝=1      (12) 

 

Where 𝛽0(𝜇𝑘 , 𝜗𝑘 , 𝑡𝑘) are the regression intercept; 𝛽𝑝(𝜇𝑘 , 𝜗𝑘 , 𝑡𝑘) 

is the regression coefficients of the variable 𝑥𝑘𝑝 ; 𝜇𝑘 , 𝜗𝑘 , 𝑡𝑘 are 

the space-time coordinates of the research unit, representing 

latitude, longitude and time, respectively; 𝑞 = 6 ; 𝑥𝑘𝑝  is the 

driver; 𝜀𝑘 is the error term for the study unit 𝑘.  

 

 

4. RESULTS 

 

4.1 Spatiotemporal characteristic of the coupling 

coordination degree of AP-CM system from 2013 to 2017 

 

Based on the PCA result, PM10 Emission, PM2.5 Emission, CO 

Emission, PM10 Emission per capita, PM2.5 Emission per capita, 

NOx Emission, PM10 Intensity, PM2.5 Intensity (order of 

contribution from largest to smallest) have been used to represent 

AP subsystem. With the establishment of the index evaluation 

system and synergy model for the AP-CM system, the coupling 

coordination degree of air pollution control and carbon mitigation 

are measured for the 31 provinces in China from 2013 to 2017.  

 

 
Figure 2. (A) Ordering degree of each subsystem from 2013 to 

2017; (B) Coupling coordination degree of AP-CM system from 

2013 to 2017; (C) Relative change of the coupling coordination 

degree. 

 

Firstly, for the ordering degree of each subsystem, an 

improvement was observed in both subsystems from 2013 to 

2015. Whereas there was an opposite trend from 2015 to 2017 for 

the AP and CM subsystem. The ordering degree of the CM 

subsystem slightly decreases in 2016, then increases to 0.6916 in 

2017. In addition, as shown in Figure 2B, the degree of coupling 

coordination of the AP-CM system at the national scale is slightly 

increasing from 2013 to 2017 (degree: 0.79732 – 0.81216), but a 

slight decrease in the coupling coordination degree was observed 

from 2015 to 2016.  

 

Secondly, the spatial distribution of the coupling coordination 

degree of air pollution control and carbon mitigation is present in 

Figure 3. Based on the division scheme from (Shi et al., 2020), 

the coupling coordination degree is categorized into four types: 

basic coordination (0.40-0.50), primary coordination (0.50-0.60), 

moderate coordination (0.60–0.80), quality coordination (0.80-

1.0) (Shi et al., 2020). From 2013 to 2017, with the 

implementation of “Clean Air Action”, the provinces in the 

middle and southern areas present better performance of 

synergistic governance than other areas. The coupling 

coordination degree of Inner Mongolia drops from primary 

coordination to basic coordination in 2017. And there is a 

dramatic improvement in the performance of the synergistic 

governance of air pollution control and carbon mitigation in 

Hebei, Henan, and Anhui Provinces. The rank of the coupling 

coordination degree at the provincial scale is shown in Figure 4A. 

The top five provinces with better performance are Tibet, Beijing, 

Shanghai, Hainan, and Tianjin. 

 

 
Figure 3. Spatial distribution of the coupling coordination 

degree. 
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Figure 4. (A) The coupling coordination degree of air pollution 

control and carbon mitigation for the 31 provinces during 2013 – 

2017; (B) Relative change of the coupling coordination degree 

from 2013 to 2017. 

 

Thirdly, Figure 4B presents the relative change of the coupling 

coordination degree for the 31 provinces from 2013 to 2017. 

Although some provinces present lower coupling coordination 

over the years, they have shown relatively large improvement in 

synergistic governance of air pollution control and carbon 

mitigation from 2013 to 2017. The top five provinces with 

improvement over the years are: Hebei (relative change: 

0.10383) > Shandong (relative change: 0.06527) > Hubei 

(relative change: 0.05955) > Sichuan (relative change: 0.05578) > 

Jiangsu (relative change: 0.05358).  

 

4.2 Spatial association of the coupling coordination degree 

at local scale  

 

The spatial association at the provincial scale is shown in Figure 

5. The local Geary’s c is used to detect the clustering of similar 

coupling coordination degree in the spatial distribution. High - 

High means the high value of coupling coordination degree is 

surrounded by the areas with a similarly high value. Whereas 

Low - Low indicates there is a lower coupling coordination 

degree in the spatial distribution in the specific local area. 

  

In terms of the spatial pattern of local spatial autocorrelation of 

the coupling coordination degree of air pollution control and 

carbon mitigation, it is obvious that from 2013 and 2017, there is 

a locally positive autocorrelation in Guangxi and Sichuan 

Province with the attribution of High – High classification. 

Shanxi and Hebei Provinces present a local cluster of poor 

performance of synergistic governance in 2013, and 2014 - 2015, 

respectively. Heilongjiang Province shows a clear positive 

autocorrelation with a similar higher value of the coupling 

coordination degree with surrounding provinces in 2013 and 

2014. Subsequently, Heilongjiang Provinces and Inner Mongolia 

entered a Low – Low positive spatial autocorrelation pattern. And 

Xinjiang shows a negative spatial autocorrelation over the years. 

 

4.3 Spatiotemporal heterogeneity of driving factors on the 

coupling coordination degree 

 

4.3.1   Selection of the main driving factors: To reveal the 

mechanism of the dynamic evolution characteristics of the 

coupling coordination degree of air pollution control and carbon 

mitigation in China from 2013 to 2017, this study uses OLS and 

GTWR to conduct a comparative analysis for the influence of 

driving factors. Air pollutants and CO2 emission are influenced 

by local emission pattern, economic status, energy and industrial 

structure. Hence, we assume these factors are the potential 

drivers of the coupling coordination degree between air pollution 

control and carbon mitigation. Hence, we collected relevant 

socio-economic and energy statistics and grouped them into four 

sets of factors. They are: (1) Investment: investment in exhaust 

gas treatment; (2) Industrial structure: regional GDP of the 

primary industry, regional GDP of the secondary industry, 

regional GDP of the tertiary industry, GDP proportion of primary 

industry, GDP proportion of secondary industry, GDP proportion 

of tertiary industry, GDP index of primary industry, GDP index 

of secondary industry, GDP index of tertiary industry; (3) Energy 

structure: energy consumption, coal consumption, crude oil 

consumption, natural gas consumption, electricity consumption, 

energy intensity; (4) Economic level: regional GDP, GDP per 

capita, GDP index.  

 

OLS regression analysis was performed to determine the 

statistically significant variables for the global explanation of the 

relationship between the coupling coordination degree and 

potential driving factors. After the screening, the variables that 

have a significant impact are investment in GDP per capita (X1), 

energy consumption (X2), coal consumption (X3), crude oil 

consumption (X4), natural gas consumption (X5) and energy 

intensity (X6). OLS regression is performed between the 

coupling coordination degree and the selected drivers. The result 

shows that these six variables could explain 90.39% variation in 

the coupling coordination degree of air pollution control and 

carbon mitigation at a global scale from 2013 to 2017. 

 

 
Figure 5. Local Geary’s c for the coupling coordination degree 

at provincial scale. 

 

The variance inflation factor (VIF) results show that except for 

X2 (energy consumption), there is no significant collinearity 

among the other five variables. Therefore, these other five drivers 

(including X1, X3, X4, X5, X6) are reasonable to explain the 

results of OLS analysis and can also be used as potential 

dependent variables for further GTWR modelling. In addition, 

the Breusch – Pagan test results shows that the relationship 

between coupling coordination degree and potential drivers 

presents spatial heteroscedasticity. Therefore, OLS regression 

analysis at a global scale is not appropriate to be used. In contrast, 

it is more reasonable to use GTWR to identify the impact of 

driving factors. 

 

4.3.2     Spatiotemporal characteristic of the impact of driving 

factors: The GTWR model has a R2 = 91.62% and the AICc = -

605.1, compared to 90.19% and -588.9 for OLS. This means that 

GTWR fits the data better, although the mean predictive ability 

of the two models is similar. The regression coefficients of the 

GTWR model are non-stationary in time and space. Hence, 
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GTWR reveals the spatial and temporal differences in the impact 

of drivers on the coupling coordination degree among provinces 

from 2013 to 2017.  See also Hamm et al. (2015).  

 

Table 2 shows the time evolution characteristic of these five 

driving factors at the national scale over these five years. 

Generally, GDP per capita, crude oil consumption, and natural 

gas consumption are the dominant factors in the improvement of 

provincial-level coupling coordination degree of air pollution 

control and carbon mitigation. Whereas coal consumption and 

energy intensity led to the decline of synergistic governance 

performance with the fluctuating regression coefficients.   

 

Year X1 X3 X4 X5 X6 

2013 0.004 -0.092 0.005 0.013 -0.040 

2014 0.007 -0.099 0.004 0.012 -0.039 

2015 0.008 -0.088 0.004 0.012 -0.037 

2016 0.009 -0.084 0.003 0.011 -0.041 

2017 0.003 -0.082 0.006 0.012 -0.047 

Table 2. The mean of the regression coefficients for each 

driving factor from 2013 to 2017.

 

 

 

 

 

 
 

Figure 6. Spatial distribution of the regression coefficients of five drivers in 2013, 2015 and 2017. 

 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-1/W1-2023 
ISPRS Geospatial Week 2023, 2–7 September 2023, Cairo, Egypt

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-1-W1-2023-509-2023 | © Author(s) 2023. CC BY 4.0 License.

 
514



 

The GTWR model can determine the regression coefficients of 

the influences of five drivers on the provincial-level coupling 

coordination degree over space and time. The visualization of the 

spatiotemporal pattern of each driver is shown in Figure 6.  

 

As shown in Figure 6, the magnitude of the regression coefficient 

of GDP per capita presents an increasing trend from 2013 to 2015, 

but a decrease from 2015 to 2017. In contrast, the provinces in 

the southern and south-eastern areas show a relatively strong 

positive relationship between GDP per capita and the coupling 

coordination degree of air pollution control and carbon mitigation, 

especially in Anhui and Zhejiang Provinces. In 2015, the 

improvement effect is mainly presented in the eastern coastal 

provinces, like Zhejiang, Jiangsu and Fujian Provinces. It 

indicates that the positive impact from the local economic level 

is more significant in these provinces and eastern areas with well 

economic development. Whereas, in 2017, the dramatic 

improvement effect is located in Sichuan, Guizhou, Anhui, and  

Zhejiang Provinces. But there is an inhibition effect of GDP per 

capita on the synergistic governance in Inner Mongolia in 2017.  

 

In terms of the influence of energy structure, coal consumption is 

a dominant driver for the decrease of the coupling coordination 

degree at the provincial scale. The magnitude of the negative 

regression coefficient of coal consumption does not change a lot. 

It indicates that after the implementation of “Clean Air Action”, 

coal consumption still has a strong inhibition effect on the 

synergistic governance improvement, especially for the western 

and northern provinces such as Xinjiang, Tibet, Inner Mongolia, 

Gansu, and Qinghai Provinces. In contrast, there is a relatively 

lower inhibition effect of coal consumption in Shanxi, Shaanxi, 

Henan, and Hubei Provinces in 2017. In addition, from 2013 to 

2017, the increasing share of crude oil consumption presents an 

improvement effect on the increasing coupling coordination 

degree of air pollution control and carbon mitigation. Compared 

with the eastern provinces, western provinces present a dramatic 

impact from the structural shift of crude oil consumption in the 

energy consumption structure. But the contribution to Shanxi, 

Henan, Shandong, and northeastern provinces is limited. 

Moreover, the increasing share of natural gas is the other 

significant driver for the improvement of the synergistic 

governance of air pollution control and carbon mitigation from 

2013 to 2017. In contrast, provinces in the northern, north-eastern, 

and eastern areas present a good performance of synergistic 

governance improvement affected by the increasing share of 

natural gas consumption in the local energy structure. In contrast, 

Sichuan and Yunnan Provinces show less influence from the 

benefit of natural gas consumption. There is a dramatic 

improvement effect to Inner Mongolia, north-eastern provinces, 

Shandong, and Jing-Jin-Ji Region. Given these areas strongly 

rely on fossil-fuel combustion for residential living and 

transportation, it indicates that during the implementation of 

“Clean Air Action”, the energy structure adjustment of more 

share of natural gas is an effective abatement measure for the 

synergistic governance of air pollution and carbon emission 

reduction.  

 

In terms of energy intensity, it is obvious that it presents a 

relatively strong inhibition effect to the south-eastern and eastern 

provinces in 2015 and 2017. respectively. Based on the 

magnitude and direction of the regression coefficient, it indicates 

that energy intensity is the key driver for the decreasing of the 

coupling coordination degree of air pollution control and carbon 

mitigation at the provincial scale over these five years. Increasing 

energy efficiency and the development of the low-consuming 

industry has the potential to improve synergistic governance, 

especially for the whole eastern area of China.  

5. DISCUSSION AND CONCLUSION 

This study provides a novel index evaluation system and a new 

attempt of the driving factors analysis on the coupling 

coordination degree of air pollution control and carbon mitigation, 

while reducing the uncertainty in the interpretation of temporal 

and spatial variability of drivers’ influences.  

 

As the spatial distribution of synergy degree among provinces 

suggested, the proposed novel index evaluation system with the 

consideration of local differences in emission features, socio-

economic status has the capability of distinguishing the 

performance of synergistic governance between air pollution 

control and carbon mitigation in China. Although coupling 

coordination degree has significantly improved nationally, there 

are dynamic transition among provinces over years. Compared 

with the provinces relying on heavy industry with energy-

intensive consumption (such as Inner Mongolia, Shanxi, and 

Shandong Provinces), eastern provinces with well socio-

economic development and service-oriented economic structures 

present a better performance of synergistic governance of air 

pollution control and carbon mitigation (such as Beijing and 

Shanghai). It indicates that the abatement measures of the “Clean 

Air Action” involving energy structure adjustment and industrial 

structure update are closely related to the co-reduction of air 

pollution and CO2 emission. But the poor performance of local 

joint synergistic governance and dynamic transition of the 

coupling coordination degree implies that the targeted measures 

still need to be identified and improved under the comprehensive 

consideration among local and trans-local capacity, knowledge, 

and functionality. 

 

In this study, GTWR can reduce the uncertainty in the 

interpretation of the spatiotemporal heterogeneity of driving 

factors’ impacts on synergistic governance performance. Locally, 

the energy structure adjustment with the increasing share of non-

fossil-fuel, clear energy promotion, energy efficiency 

improvement, as well as industrial structure adjustment with 

more low energy-consuming industries are still the effective 

pathways to improve the synergistic governance of air pollution 

control and carbon mitigation. But the increase in the local 

economic level presents a limited improvement effect on the 

coupling coordination degree year by year. The “one-fit-all” 

approach is not appropriate to deal with the current atmospheric 

environmental issue in China. Different synergistic governance 

strategies should be adhered to by each province. The targeted 

energy dispatch, wide usage of clean and green energy, and cross-

local diversified economic intervention are the potential effective 

pathways for further synergistic governance of deeper carbon 

mitigation and air pollution control locally.  

 

For this study, there are several limitations and shortcomings: (1) 

From the perspective of the construction of the subsystem 

evaluation system, different choices mean different definitions of 

"coordinated governance of air pollutants and carbon emission 

reduction". This study mainly focuses on emissions 

characteristics. (2) Considering the data incompleteness of local 

energy statistics, the differences in accounting methods, emission 

scope, and spatial downscaling methods to establish the CO2 

inventory, data quality problem inevitably exists. Data 

uncertainty is propagated throughout the data analysis process. 

For further research, we could downscale the spatial scale of 

research from the provincial scale to the city or county scale. The 

decentralized strategy of synergistic governance between air 

pollution control and carbon mitigation could narrow down the 

regional difference. But it is largely constrained by data 

availability for air pollution and CO2 emission.  
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