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ABSTRACT: 
 
Nowadays, photogrammetrically derived point clouds are widely used in many civilian applications due to their low cost and flexibility 
in acquisition. Typically, photogrammetric point clouds are assessed through reference data such as LiDAR point clouds. However, 
when reference data are not available, the assessment of photogrammetric point clouds may be challenging. Since these point clouds 
are algorithmically derived, their accuracies and precisions are highly varying with the camera networks, scene complexity, and dense 
image matching (DIM) algorithms, and there is no standard error metric to determine per-point errors. The theory of internal reliability 
of camera networks has been well studied through first-order error estimation of Bundle Adjustment (BA), which is used to understand 
the errors of 3D points assuming known measurement errors. However, the measurement errors of the DIM algorithms are intricate to 
an extent that every single point may have its error function determined by factors such as pixel intensity, texture entropy, and surface 
smoothness. Despite the complexity, there exist a few common metrics that may aid the process of estimating the posterior reliability 
of the derived points, especially in a multi-view stereo (MVS) setup when redundancies are present. In this paper, by using an aerial 
oblique photogrammetric block with LiDAR reference data, we analyze several internal matching metrics within a common MVS 
framework, including statistics in ray convergence, intersection angles, DIM energy, etc. We associate these metrics to the per-point 
errors evaluated through LiDAR reference data and discuss their potential contributions in estimating internal reliabilities of point 
clouds derived from DIM algorithms. The experimental results show that ray convergence and DIM energy are relevant indicators for 
the accuracy of the generated point clouds. Initial investigation shows that these two indicators could be further utilized to infer the 
measurement errors without reference data, which could potentially estimate the reliabilities of point clouds through error propagation.  
 
 

1. INTRODUCTION 

Multi-view stereo (MVS) has been a hot research topic in the 
field of photogrammetry and computer vision for decades. As a 
key component in 3D reconstruction, MVS takes a set of oriented 
images normally estimated by photogrammetry or Structure from 
Motion (SfM) algorithms as the input, and then establishes the 
dense correspondences across the images, which could be further 
triangulated to point clouds. MVS provides a convenient and 
cost-effective means of scene modeling as compared to other 
approaches such as LiDAR. Therefore, MVS is commonly used 
as a critical component for many applications, such as 3D 
reconstruction and mapping (Elhashash and Qin, 2022; Hu and 
Mordohai, 2012; Stathopoulou et al., 2023; Xu et al., 2022), 
autonomous navigation (Heng et al., 2019; Kendall, 2019), 
robotics (Song et al., 2021), and augmented reality (Zhang et al., 
2019). Four types of MVS algorithms are given in (Seitz et al., 
2006), including voxel-based methods, surface evolution-based 
methods, feature point growing-based methods, and depth-map 
fusion-based methods. Among these, the depth-map fusion-based 
methods have the advantages of finer geometry and scalability, 
which are used in our experiments. There are several internal 
metrics derived from depth-map fusion-based MVS algorithms, 
such as ray convergence, intersection angle, dense image 
matching (DIM) energy, etc. In this work, we analyze these 
metrics to understand how they affect the accuracy of the 
photogrammetric point clouds.  

 
* Corresponding author 

Generally, the quality of generated point clouds is evaluated by 
measuring the accuracy against reference data, e.g., LiDAR point 
clouds. However, such reference data may be unavailable at an 
evaluated region, and not knowing the fidelity of point clouds 
may disqualify photogrammetric point clouds for many 
application scenarios, such as point targeting and navigation. 
Therefore, estimating the reliability of the generated point clouds 
is critical to downstream applications in areas where reference 
data are not available. The internal reliability of camera networks 
has been well studied through Bundle Adjustment (BA) using the 
Gauss-Markov Theorem (Thompson et al., 1966), which plays an 
important role in determining the precision of the final 
triangulated 3D points. However, determining the measurement 
errors of DIM and propagating measurement errors to the 3D 
points are still open problems. There are several works focusing 
on the measurement errors. The works presented by Kuhn et al. 
(2017) estimated the disparity error by classifying disparities into 
different classes based on so-called total variation (TV) and 
learning the disparity error distribution from ground-truth data. 
Another work by Mundy and Theiss (2021) estimated the 
measurement errors by running the semi-global matching (SGM) 
algorithms twice and assigning a probability value based on the 
consistency of the 3D points generated by the forward and 
reverse order of the stereo pair. The method presented by 
Mehltretter and Heipke (2021) estimated the disparity 
uncertainty using the cost curve by learning features from the cost 
volume. However, there are two challenges from these existing  
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approaches: first, most of the existing approaches learned the 
error prediction from samples, which might lack generalization. 
Second, these error metrics are mostly based on a single stereo 
pair, while typical photogrammetric point clouds are carried out 
through MVS, where the information from multiple views should 
be, but rarely utilized in error predictions. To this end, we aim to 
predict the measurement errors in a self-supervised manner by 
leveraging the knowledge of stereo matching as well as the MVS 
framework comprehensively. Such inference requires a 
preliminary study on the metrics involved in the stereo matching 
and MVS processes, which is the goal of this work. 
 
In this paper, we performed an initial investigation on indicators 
from an MVS framework that could potentially contribute to 
error prediction of the generated 3D point clouds: we first derived 
a few indicators within an MVS framework from both stereo and 
MVS perspectives, including viewing angles (composition of 
stereo pair), DIM energy, intersection angles, ray convergence 
(number of rays), etc. Then we performed a critical analysis to 
evaluate their correlation with the accuracy of the generated 3D 
point clouds against reference data. Finally, as an initial study, 
we investigated their potential to estimate the reliability of point 
clouds derived directly from DIM algorithms when reference 
data are not available. This is a work-in-progress report on initial 
results. 
 
The rest of this paper is organized as follows: Section 2 
introduces the criteria for selecting the metrics in the MVS 
framework. Section 3 presents the experimental results and 
analyses. Section 4 concludes this work with the outlook for 
future work.  
 

2. METHODOLOGY 

The photogrammetric point clouds are generated by two main 
steps. Firstly, an image orientation process through incremental 
orientation estimation and BA, to estimate the camera poses and 
a sparse reconstruction can be generated as a by-product. 

Secondly, within the MVS framework, a typical dense matching 
algorithm, such as SGM, can be applied to find the dense 
correspondences and generate the depth maps for each image in 
the dataset. Existing methods leverage various types of 
information from the matching process, including cost curve, 
matching consistency, disparity smoothness, and learning-based 
cues. While they achieve more or less promising results in certain 
contexts, they are also limited by different factors as shown in 
Table 1. In our work, we define several internal metrics which 
are derived within the MVS framework to evaluate their 
relationship with the accuracy of the reconstruction. For the MVS 
framework, we consider the number of images observing and 
triangulating a 3D point, which we call it number of rays, as one 
of the internal metrics statistically related to ray convergence. 
Another internal metric used in this work is the median 
intersection angles of the stereo pairs formed by each image and 
all its neighboring images, which presents statistics about the 
intersection angles of the stereo pairs. As for the stereo matching 
process, we define the viewing angles and DIM energy as the 
internal metrics, as they are relevant to the theoretical precision 
of the 3D point, as well as the matching confidence. Our 
proposed metric combo from both stereo and MVS perspectives 
has its uniqueness: firstly, it leverages the advantages of both 
contexts. Secondly, it does not depend on learning from the 
ground truth data, making it more generalized to vast datasets. 
Thirdly, it can be expressed in specific metric units, e.g., in 
pixels. We also analyze and model the distribution of reprojection 
errors with respect to these metrics. This will help understand 
their roles in reliability analysis and error propagation of 3D 
points generated from the photogrammetric process.  
 
In this section, we briefly describe the MVS framework in our 
experiments in Section 2.1. The internal metrics from both MVS 
and stereo matching perspectives are listed and explained in 
Section 2.2 and Section 2.3. The modeling of the distribution of 
reprojection errors is introduced in Section 2.4. 

Metric  Strengths  Weaknesses  

Properties of matching cost curve 
(Egnal et al., 2004; Hirschmüller et 
al., 2002; Veld et al., 2018; Zhang 
and Shan, 2001) 

1. Rich information and 
characteristics could be extracted 
from the cost curves. 
2. The ability to reason about the 
distinctness.  

1. Hardly deal with large images since the 
cost volume is built upon pyramid instead 
of every pixel.  
2. Confidence-based methods have no 
actual units to express the value.  
3. Only in the context of stereo matching. 

Consistency of dense matching 
between forward and reverse order 
of stereo pair (Egnal et al., 2004; 
Hu and Mordohai, 2012; Mundy 
and Theiss, 2021) 

1. Take image appearance and 
viewing angle differences into 
consideration.  
2. Good at identifying occlusion and 
discontinuities. 

1. Easily result in equal confidence for most 
matches.  
2. Confidence-based methods have no 
actual units to express the value.  
3. Only in the context of stereo matching.  

Disparity oscillation within an 
image patch (Kuhn et al., 2017; 
Rodarmel et al., 2019) 

1. Have certain unit interpretation. 
2. Pixelwise prediction while 
considering the neighborhood 
information. 

1. Learn from ground truth data, meaning 
the generalization is limited.  
2. Require ground truth disparity maps for 
learning.  
3. Only in the context of stereo matching. 

Learning-based methods (Kendall, 
2019; Mehltretter and Heipke, 
2021) 

1. Have certain unit interpretation. 
2. Learning-based feature extraction 
captures more characteristics and 
informative features.  

1. Huge memory consumption for large 
images.  
2. Require ground truth data for learning.  

Ours 

1. Have certain unit interpretation. 
2. In the contexts of both stereo 
matching and MVS.  
3. Learning and predicting in a self-
supervised manner.  

1.  Do not leverage the rich information 
from the cost curves.  
2. Potential difficulties in calibrating the 
metrics between stereo matching and MVS.  

Table 1. Strengths and weaknesses of the existing metrics and ours. 
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2.1 Overview of MVS Framework 

An overview of MVS framework can be found in Figure 1, 
where stereo matching and MVS based filtering and fusion are 
two main steps of this process. 
 
Stereo Matching. Given a stereo pair, both images are rectified 
and we use the Census-based SGM algorithm (Hirschmuller, 
2007; Zabih¹ and Woodfill, 1994) to establish the dense 
correspondences, where the DIM energy is expressed as: 
 

𝐸𝐸 = ��𝐶𝐶�𝑝𝑝,𝐷𝐷𝑝𝑝� + 𝜆𝜆 � 𝑆𝑆�𝐷𝐷𝑝𝑝,𝐷𝐷𝑞𝑞�
𝑞𝑞∈𝑁𝑁𝑝𝑝

�  ,
𝑝𝑝

   (1) 

 
where 𝐶𝐶 is the matching cost for pixel 𝑝𝑝 with a disparity value 
𝐷𝐷𝑝𝑝. 𝑆𝑆 computes the smoothness of the neighborhood 𝑁𝑁𝑝𝑝 of pixel 
𝑝𝑝. The relation between the cost term and smoothness term is 
adjusted by the coefficient 𝜆𝜆 . A hierarchical approach 
(Rothermel et al., 2012) is adopted to achieve memory efficiency. 
In the MVS framework, each row across the green and blue 
blocks in Figure 1 can be regarded as an individual stereo 
matching process. 
 
MVS Based Filtering and Fusion. A typical MVS framework 
is depicted in Figure 1. Given a set of oriented images, we first 
construct a set of stereo pairs for each image, as shown in the 
green block in Figure 1. For each input image 𝐼𝐼𝑖𝑖 in the dataset, 
we form a group of neighboring views 𝑁𝑁(𝑖𝑖)𝑗𝑗 , 𝑗𝑗 = 1, 2, … ,𝑛𝑛 
based on certain criteria, e.g., camera poses and number of 
correspondences. In all the experiments we set 𝑛𝑛 to 10, thus each 
image finds at most 10 neighboring images to construct stereo 
pairs. For each stereo pair, we perform the stereo matching to find 
the dense correspondences and generate respective depth maps. 
As shown in the blue block in Figure 1, a set of 𝑛𝑛 depth maps 
𝐷𝐷(𝑖𝑖)𝑗𝑗  are generated for each image 𝐼𝐼𝑖𝑖  pairing with its  𝑛𝑛 
neighboring views 𝑁𝑁(𝑖𝑖)𝑗𝑗 . For each pixel in the image 𝐼𝐼𝑖𝑖, it will 
be back projected to a 3D point only if its depth values exist in at 
least 𝑘𝑘  depth maps from 𝐷𝐷(𝑖𝑖)𝑗𝑗 , which we set to 2 in our 
experiments. As shown in the yellow block in Figure 1, the fused 
depth map 𝐷𝐷𝑖𝑖 for each image 𝐼𝐼𝑖𝑖 is generated by median filtering 
of the 3D points generated from all the observed depth maps (at 
least 2) from 𝐷𝐷(𝑖𝑖)𝑗𝑗 . The final photogrammetric point clouds are 
simply the merging results of 3D points derived from the fused 

depth maps of each image as shown in the pink block in Figure 
1. 
 
There are several metrics introduced for each block of the MVS 
framework. As shown in the bottom half of Figure 1, some of the 
metrics are involved in the stereo matching process (as outlined 
in green and blue blocks in Figure 1), while others are relevant 
to geometric configurations of the multi-view images  (as 
outlined in the yellow block in Figure 1). The following 
subsections will discuss these metrics respectively.  
 
2.2 Geometric Configurations of MVS as Metrics 

Based on the extractable parameters from the MVS process, we 
consider analyzing the following metrics as potential indicators 
of the point uncertainty:  1) number of rays, which describes how 
many convergent rays a 3D point is triangulated from; 2) median 
intersection angle of these converging rays. Each metric is 
explained in the following subsections. 
 
2.2.1 Number of Rays 
 
In the MVS process, for each point cloud generated from the 
fused depth map of each image, a 3D point is retained only if at 
least two depth maps contain its depth value. In other words, at 
least three rays (each image itself and two neighboring views) are 
required. Since each image in the dataset is matched with at most 
10 neighboring images, the number of rays is expected to range 
from 3 to 11 for a 3D point. Such a metric could be critical to the 
accuracy of the generated 3D point since robustness is more 
likely to be guaranteed for a high number of rays due to 
redundancy. Performing median filtering on points with a high 
number of rays is also expected to be closer to the ground truth 
position. In contrast, points with few rays could potentially suffer 
from unreliability due to unstable median filtering.  
 
2.2.2 Median Intersection Angles 
 
Since the 3D points are the fused results by median filtering of 
the stereo pairs, median intersection angles reflect the statics of 
intersection angles of all the stereo pairs. A median intersection 
angle that is too small or too large indicates the intersection 
angles of all the stereo pairs are possibly not ideal for 
triangulation. If the intersection angle is too small, the camera 
rays become more parallel, which makes triangulation more 
sensitive to noises as it is an ill-posed problem. Particularly, it 

 
Figure 1. Overview of the MVS framework and metrics. Detailed description of this figure can be found in the text. 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-1/W1-2023 
ISPRS Geospatial Week 2023, 2–7 September 2023, Cairo, Egypt

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-1-W1-2023-517-2023 | © Author(s) 2023. CC BY 4.0 License.

 
519



 

affects the accuracy in the depth direction.  On the other hand, 
the intersection angle being too large can lead to a huge 
appearance difference, which makes the dense matching even 
more challenging. In addition, it also introduces the occlusion 
problem. Thus, a good intersection angle is critical for 
triangulation and the median intersection angle is worth further 
analysis. 
 
2.3 Stereo Matching Metrics 

In the MVS framework, the SGM algorithm is performed for 
each stereo pair. Therefore, several internal metrics from the 
stereo matching process can be explored: 1) viewing angles of 
the images in the stereo pair, which can construct different types 
of stereo pairs; 2) DIM energy, which describes the dense 
matching quality. Each metric is explained in the following 
subsections. 
 
2.3.1 Viewing Angles 
 
Considering the aerial dataset consists of both nadir and oblique 
images, three types of stereo pairs can be possibly constructed: 
two nadir images, two oblique images, one nadir image with one 
oblique image. Stereo pairs constructed by two images with 
either similar viewing angles or not might have great impacts on 
the accuracy of dense matching as well as the intersection angles. 
Thus, it is interesting to analyze the effect of the composition of 
stereo pairs on the accuracy of generated 3D points. Additionally, 
the distance between the points generated from single stereo pair 
and the point clouds from the median filtering can be measured 
to analyze what types of stereo pairs tend to generate more 
deviated points that not only get filtered out by median filtering 
but also affect the results of median filtering. 
 
2.3.2 DIM Energy 
 
This metric reflects the quality of dense matching directly. 
Generally, low and smooth DIM energy around the pixels reflects 
high confidence of successful matches. On the contrary, dense 
matching on challenging areas is expected to have high DIM 
energy due to the displacement of correspondences and thus leads 
to poor triangulation.  
 
2.4  MVS Reprojection Errors 

For a pixel 𝑝𝑝 in the image 𝐼𝐼𝑖𝑖, if the ground truth of the associated 
3D point 𝑋𝑋𝑝𝑝 is known, the reprojection error of the neighboring 
view 𝐼𝐼𝑗𝑗  can be computed as: 
 

𝑅𝑅�𝐼𝐼𝑖𝑖 , 𝐼𝐼𝑗𝑗�𝑝𝑝 = �𝑃𝑃�𝑋𝑋𝑝𝑝, 𝐼𝐼𝑗𝑗� − 𝜆𝜆�𝑝𝑝, 𝐼𝐼𝑗𝑗��2 , (2) 
 
where 𝑃𝑃�𝑋𝑋𝑝𝑝, 𝐼𝐼𝑗𝑗�  is the projection of 𝑋𝑋𝑝𝑝  with respect to the 
neighboring image 𝐼𝐼𝑗𝑗 , 𝜆𝜆�𝑝𝑝, 𝐼𝐼𝑗𝑗�  is the location of dense 
correspondence of 𝑝𝑝  in 𝐼𝐼𝑗𝑗  derived by SGM algorithms. If the 
reprojection error of 𝐼𝐼𝑖𝑖 itself is small (i.e., smaller than 1 pixel), 
we can approximate measurement errors using reprojection 
errors of 𝐼𝐼𝑗𝑗  since measurement errors indicate the displacement 
of the dense correspondences in the neighboring images. 
However, if no ground truth data are available, there is no way to 
compute the reprojection errors. In this case, the reprojection 
errors can be approached using 3D points that are most likely to 
be accurate based on MVS metrics that are highly correlated to 
accuracy. By modeling the distribution of reprojection errors 
associated with highly correlated stereo matching metrics using 
these “accurate” 3D points, the reprojection errors can be inferred 
for other points based on the same metric, thus their measurement 

errors can be also estimated. To choose an appropriate 
distribution model for the reprojection errors, we first look at the 
components of it. The reprojection error 𝑅𝑅 contains residuals in 
both 𝑋𝑋 and 𝑌𝑌 directions, which we assume normal distributions 
with different means and standard deviations for each 
component. Thus, 𝑅𝑅, which is computed as the squared root of 
the residual sum of squares in 𝑋𝑋 and 𝑌𝑌 directions, its distribution 
model can be approximated by a general Gamma distribution.  
 

3. EXPERIMENTAL RESULTS 

Experiments were performed to evaluate the potential of internal 
metrics described in Section 2 for indicating the accuracy of 
point clouds against LiDAR reference data. The contribution of 
the potential indicators to the estimation of the reliability of point 
clouds derived from the DIM algorithm was further analyzed. In 
all experiments, the 3D point clouds were generated through the 
MVS framework described in Section 2. 3D points triangulated 
directly from each stereo pair were used to evaluate the metrics 
associated with the stereo matching process, while 3D points 
generated by median filtering with at least three rays were used 
to evaluate the metrics corresponding to the MVS process. Prior 
to the evaluation, the generated point clouds were registered to 
the LiDAR point clouds using ICP algorithm (Besl and McKay, 
1992) implemented in the open-source software CloudCompare 
(Girardeau-Montaut, 2022). The accuracy against LiDAR point 
clouds was then measured by computing the mean absolute 
distance (or mean absolute error, MAE) and each point has its 
per-point error. 
 
Section 3.1 introduces the imagery dataset used in the 
experiments and the LiDAR reference data. The experimental 
results and analyses are described in detail in Section 3.2.  
 
3.1 Dataset 

Dortmund airborne imagery dataset and aerial LiDAR point 
clouds were used in our experiments. Dortmund dataset (Nex et 
al., 2015) contains nadir and oblique airborne images acquired by  

  
Figure 2. Left: overview of the photogrammetric point 

clouds generated from Dortmund imagery dataset. Yellow 
boxes indicate two selected sub-regions. Right: overview of 

LiDAR point clouds. 
 

 

1 2 

Imagery dataset 
Number of images 16 (N), 43 (O) 
Camera system PentaCam IGI 

Image size 6132 × 8176 pixels (N) 
8176 × 6132 pixels (O) 

GSD 10 cm (N), 8 – 12 cm (O) 
Overlap 75%/80% (N), 80%/80% (O) 

LiDAR dataset 
Density  10 pts/m2 

Table 2. Specifications of the datasets. “N” refers to nadir 
images, “O” refers to oblique images. “GSD” refers to 

ground sampling distance. The overlap contains 
along/across-track directions. 
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the airborne oblique image system (IGI PentaCam) with five 
camera heads. LiDAR point clouds collected by Aerial Laser 
Scanner (ALS) were used for evaluation of accuracy. Table 2 
shows the specification of the datasets. Figure 2 shows the 
photogrammetric point clouds generated by the MVS framework 
and the LiDAR point clouds covering the same area. 
 
3.2 Experimental Results 

3.2.1 Evaluation of MVS Indicators 
 
The first experiment was performed on point clouds generated by 
the MVS process as discussed in Section 2. We registered the 
point clouds to the LiDAR point clouds and measured the 
accuracy. For each 3D point, a per-point error was then 
associated with matching metrics in the MVS framework to 
analyze their correlation. The point clouds were split based on 
different value ranges of each matching metric, so MAE as well 
as standard deviation can be obtained respectively. The goal is to 
find the potential indicators for the accuracy of point clouds. 
 
Figure 3 shows the statistical results of accuracy with respect to 
different numbers of rays and median intersection angles. Firstly, 
a decreasing trend of MAE and standard deviation can be 
observed as the number of rays increases, indicating points with 
high accuracy tend to have multiple rays. The number of such 
points (e.g., with more than 5 rays) is more than 30% of all the 
points, which is sufficient for the number of rays to serve as a 
potential indicator for accuracy. As for median intersection 
angles, except for a few outliers with extremely small or large 
angles (e.g., smaller than 5 degrees or larger than 45 degrees), we 
found that MAE and standard deviation gradually decrease as 
median intersection angles become larger but start to fluctuate 
once the angle is larger than 25 degrees. 3D points with median 
intersection angles ranging from 20 to 25 degrees achieve the best 
accuracy. The number of points with median intersection angles 
falling in this range is also sufficient (13.77%) for median 

intersection angles to serve as another potential indicator of 
accuracy. 
 
The above analysis presents two potential indicators for the 
accuracy of generated point clouds. We further investigated their 
distinctness by separating points into groups with high and low 
accuracy. Two sub-regions were extracted from the entire point 
clouds for evaluation, as shown in Figure 2. The extracted point 
clouds were split by per-point errors with a threshold of 0.5 m. 
For the points with high and low accuracies, the distributions of 
the number of rays and median intersection angles are shown in 
Figure 4. Two peaks can be clearly distinguished for the 
distributions of the number of rays for points with large/small 
errors in both sub-regions. On the contrary, the peaks of 

  

  
Figure 3. Left column: comparison of the effects of different numbers of rays and median intersection angles on the accuracy of 
generated point clouds. Right column: proportions of different number of rays and median intersection angles. For the pie figure 

of median intersection angles, the proportion values of two thinnest slices [40, 45) and [50, ∞) are not shown for better 
visualization purpose. The order of slices in the pie figures is sorted clockwise by the legends.  

 

  
Sub-region 1 

  
Sub-region 2 

Figure 4. Histogram of number of rays and median 
intersection angles in areas with small errors (< 0.5 m) and 

areas with large errors (> 0.5 m) for both sub-regions. 
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distributions of median intersection angles cannot be well 
separated for points with large/small MAE in both sub-regions. 
The results indicate that number of rays can be served as a better 
indicator to the accuracy, while median intersection angles lack 
such distinctness. Visual results in Figure 5 reflect this finding: 
the areas with high errors are mostly matched with the areas with 
a low number of rays, while there is no strong pattern between 
the error distribution and the distribution of median intersection 
angles.  
 
3.2.2 Evaluation of Stereo Matching Indicators 
 
We further evaluated the potential indicators in the stereo 
matching process by generating and comparing 3D points 
directly from each stereo pair to the LiDAR point clouds. The 3D 
points generated by stereo pairs were also compared with the 3D 
points generated by the MVS process to analyze what type of 
stereo pairs tends to generate more outliers filtered out by median 
filtering. Registration as a pre-processing step used the same 
transform matrix as in the evaluation of MVS indicators.  
 
Considering that the dataset contains both nadir and oblique 
images, the composition of the stereo pair was first evaluated 
with all possible combinations (i.e., nadir/nadir, nadir/oblique, 
oblique/oblique). Table 3 shows the statistical results compared 
to the 3D point clouds generated by MVS. Stereo pair which 
consists of both nadir images generates 3D points closest to 3D 
points generated by MVS and the standard deviation is the 
smallest. The points generated from the stereo pair of one nadir 
image and one oblique image have the largest distances and twice 
the standard deviation, which are more likely to be outliers during 
the median filtering process in MVS since they are most deviated. 
The distribution of intersection angles as shown in Figure 6 
explains the reason: only the pairs with one nadir image and one 
oblique image have intersection angles larger than 35 degrees. 
Large intersection angle introduces more matching difficulties 
including appearance difference and occlusion, thus the 3D 
points generated by such pairs are more possible to become 
outliers.  
 

The point clouds generated by the stereo pairs were also 
compared to the LiDAR point clouds. As shown in Table 3, 3D 
points generated from stereo pairs of both nadir images or one 
nadir image and one oblique image have similar MAE, while the 
3D points generated from stereo pairs consisting of both oblique 
images have the worse MAE. Such results can be explained from 
the distribution of intersection angles of different stereo pairs as 
shown in Figure 6: the stereo pairs with both oblique images tend 
to have more small intersection angles, and almost fail to have 

Errors [m] Number of rays Median intersection angles [°] 

   

   
Figure 5. Distribution of per-point errors, number of rays, and median intersection angles of the generated point clouds in region 

1 (first row) and region 2 (second row). The scale of color rendering is adjusted for better visualization purpose. 

Stereo pair MAE to 3D 
points by MVS 

MAE to LiDAR 
point clouds 

 Mean 
[m] 

Std 
[m] 

Mean 
[m] 

Std 
[m] 

Nadir/nadir 0.2035 0.9100 0.2968 0.4327 
Nadir/oblique 0.3484 1.8446 0.3054 0.6640 
Oblique/oblique 0.2835 1.0485 0.4562 0.8205 
Table 3. Distance between 3D points generated by stereo 
pairs with different combination and 3D points generated 

by MVS and LiDAR point clouds. 

  
(a) Nadir/nadir (b) Nadir/oblique 

 
(c) Oblique/oblique 

Figure 6. Distribution of intersection angles for different 
composition of stereo pairs. 
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intersection angle that falls in the range of 20 to 25 degrees, 
which is indicated as the best angle range in the first experiment. 
While stereo pairs consisting of one nadir image and one oblique 
image have all the points with large intersection angles (larger 
than 35 degrees), they also produce sufficient points with 
appropriate intersection angles. Therefore, using the composition 
of the stereo pair as an indicator might not be sufficient since the 
best combination (nadir/nadir) only contributes a small portion of 
all the possible stereo pairs and it is easily affected by the 
datasets.   
 
The relation between accuracy and DIM energy was evaluated 
for all the stereo pairs. Figure 7 shows the comparison of the 
effect of different DIM energy ranges on the MAE and standard 
deviation. The results indicate that MAE is positively correlated 
to the DIM energy with the coefficient of determination R2 
0.9938: the higher the DIM energy, the higher the MAE and 
standard deviation. Such a high correlation associates DIM 
energy with accuracy tightly, which makes it more reliable to 
estimate the reprojection errors.  
 
The results of evaluation indicate that although the composition 
of stereo pair reflects the accuracy of point clouds to some extent, 
it has the similar problem as the metric of median intersection 
angles since it is subject to different datasets. On the other hand, 
DIM energy can be regarded as a good indicator for its high 
correlation with the accuracy of generated point clouds from 
stereo pairs.  
 
3.2.3 Factors for Estimating Internal Reliability from 
DIM Algorithms 
 
The above experiments were all conducted using LiDAR point 
clouds as reference data to evaluate the accuracy. In the case that 
such reference data are not available, inferring the reliability of 
point clouds from DIM algorithms can be critical. There are two 
key findings on the evaluation results of the indicators: 1) a large 
number of rays is critical for accurate 3D points; 2) DIM energy 
has a high correlation with the accuracy of the points. Based on 
the findings, number of rays and DIM energy could be leveraged 
to infer the reliability of point clouds by estimating the 
measurement errors and propagating to 3D points. This problem 
can be approached by using the multi-ray points as “ground truth” 
and estimating the reprojection errors based on the DIM energy, 
which is then used to approximate the measurement errors for all 
the points. The reliability of point clouds could be finally 
obtained through error propagation of the measurement errors. 
The reason is that a 3D point with a high number of rays is more 
likely to be accurate as “ground truth” as indicated in the above 
experiments. DIM energy can be used to estimate reprojection 
errors due to its high correlation with accuracy. Thus, an initial 
investigation was conducted by exploring the relationship 

between the DIM energy and the reprojection errors between the 
projection of the multi-ray points and the correspondences 
derived from the DIM algorithms.  
 
Figure 8(a) shows the joint distribution of DIM energy and 
reprojection errors for one stereo pair. Since the selected points 
have a high number of rays, they tend to have low DIM energy 
and small reprojection errors (located in the bright yellow region 
in Figure 8(a)). The DIM energy was further categorized into 
different bins with the size of 1000 to compute the distribution of 
reprojection errors within different ranges of DIM energy, as 
shown in Figure 8(b). It can be seen that as the DIM energy 
increases, the distribution of reprojection errors becomes 
dispersed. Based on the formulation of reprojection errors, we 
used the Gamma distribution model to approximate the 
distribution of reprojection errors, as depicted in Figure 8(c). The 
statistical results show that the mean and standard deviation of 
reprojection errors increase as the DIM energy increases, which 
accordingly reflects the histograms in Figure 8(b). Once the 
relationship between the reprojection errors and DIM energy is 
obtained using the multi-ray points, we can estimate the 
reprojection errors for other points based on their DIM energy. 
The estimation of measurement errors and error propagation can 
be further explored in future work.  

 
Figure 7. Comparison of the effect of different energy 

ranges on MAE and Std.  

 
(a) 

 
(b) 

 
(c) 

Figure 8. (a) Joint distribution of DIM energy and 
reprojection errors. (b) Histogram of reprojection errors 

under different DIM energy ranges. (c) Curve fitting of the 
histogram using Gamma distribution model. 

 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-1/W1-2023 
ISPRS Geospatial Week 2023, 2–7 September 2023, Cairo, Egypt

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-1-W1-2023-517-2023 | © Author(s) 2023. CC BY 4.0 License.

 
523



 

4. CONCLUSIONS 

In this paper, we performed a series of experiments to analyze the 
potential of several matching metrics within the MVS framework 
as indicators for the accuracy of the generated point clouds. An 
aerial imagery dataset consisting of nadir and oblique images was 
used to generate the photogrammetric point clouds, evaluated 
with aerial LiDAR point clouds as reference data. The results of 
experiments show that from the perspective of MVS process, 
number of rays is a good and distinct indicator of accuracy. 
Particularly, 3D points with more than 5 rays have a high 
possibility of being accurate. As for the median intersection 
angles, we found that for a typical aerial imagery dataset, 20 – 25 
degrees are necessarily good angles to generate 3D points with 
good accuracy. However, it does not have strong distinctness as 
the number of rays in terms of distinguishing accurate and 
inaccurate points and it may vary with different datasets. From 
the perspective of stereo matching process, the DIM energy can 
be served as another indicator due to its high correlation with 
accuracy. We also found that stereo pairs consisting of both nadir 
images tend to produce points with better accuracy than those 
consisting of at least one oblique image. Additionally, as an 
initial investigation, we explored the potential of using the 
qualified indicators to infer the point reliability directly from the 
DIM algorithm when reference data are not available. Based on 
the findings on the indicators, 3D points with multiple rays (i.e., 
more than 5 rays) can be regarded as “ground truth” as they are 
more likely to be accurate. Using these points, we were able to 
model the reprojection errors with respect to the DIM energy by 
a Gamma distribution, which can further infer the measurement 
errors, thus the final 3D point reliability through error 
propagation. Further study can be focused on the quantification 
of such reliability and error propagation, and the quantitative 
comparison with other existing methods which rely on learning 
from ground truth samples.   
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