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ABSTRACT: 

 

Modelling the movement uncertainty of human indoor trajectory consist of an essential part in promoting the performance of smart 

city related applications. At this stage, the existing uncertainty modelling algorithms usually take the constant sampling error or 

measurement error into consideration and cannot adapt well to the changeable human motion modes and complex handheld modes of 

smartphones. To fill this gap, this paper applied the Long Short-Term Memory (LSTM) network for continuous prediction of 

uncertainty error of human indoor trajectory with complex motion modes and detected indoor landmark points. The human motion 

information including handheld modes, walking speed, and heading information in extracted and fused with detected landmark 

points for reconstruction of human indoor trajectory under large-scale areas using Gradient Descent (GD) algorithm. In addition, the 

hybrid LSTM and Multilayer Perceptron (MLP) network is adopted for uncertainty error prediction, by considering both sampling 

error and measurement error in a specific time period, and the reconstructed trajectory with human motion features are modelled as 

the input vector for model training with the ground-truth uncertainty error as reference. Comprehensive experiments on real-world 

collected dataset indicate that the proposed LSTM-assisted uncertainty modelling algorithm has robust outperformance in uncertainty 

error prediction and uncertainty region definition compared with traditional uncertainty modelling approaches. 

 

 

1. INTRODUCTION 

The movement path data of people is considered a crucial 

component in the field of human mobility analysis as it 

effectively portrays an individual's spatial-temporal movement 

and social behaviour. The advancements in Micro-Electro-

Mechanical Systems (MEMS) sensors have facilitated the 

collection of pedestrian movement information from diverse 

mobile devices for location-based services (LBS) such as 

tourism planning (Liu et al., 2022), user habit analysis (Liu et 

al., 2021), epidemic control and prevention (Yang et al., 2023), 

and community recommendations (Liu et al., 2022). However, 

the acquisition of pedestrian trajectories faces challenges caused 

by the changing urban scenarios and different kinds of motion 

data acquired from various mobile equipment, leading to 

movement uncertainty. This issue has been considered an 

inevitable problem in data acquisition that could reduce 

knowledge extraction efficiency and accuracy (Liu et al., 2022; 

Shi et al., 2022). Recently, researchers have focused on 

describing and eliminating uncertainty error in massive amounts 

of movement data in changing application scenarios, 

specifically in the areas of trajectory mining, representation, and 

navigation (Yu et al., 2021; Yu et al., 2022; Wu et al., 2021; Yu 

et al., 2021). 

 

Typically, in a two-dimensional plane, the path data collected is 

denoted as a finite set of time-stamped location coordinates 

<Rt1, Rt2,..., Rtn>, which are obtained from diverse 

measurement systems. Here, Rt={X, Y, T} signifies a 2D 

location coordinate along with its corresponding timestamp 

(Kuijpers et al., 2010). The inaccuracies present in the raw 

trajectories can be attributed to two primary factors: sampling 

deviation and measurement deviation. Sampling deviation 

results from unconnected data sets or sampled points that 

exhibit varying sampling rates, thereby making it difficult to 

determine the motion information between these points (Zheng 

et al., 2012). Measurement error arises during data collection 

and is influenced by the positioning algorithm adopted, 

environmental changes, and hardware performance deviations 

(Zheng et al., 2014; Zheng, 2015). 

 

The concept of a space-time prism (STP) is frequently utilized 

in the realm of analyzing the uncertainty degree of human 

moving in order to establish the potential path area (PPA) based 

on the generated movement data (Miller, 1991, Kwan, 1998). In 

previous works, the PPA was generally estimated using the 

speed or distance of mobile entities. However, the assumption 

of uniform speed limits the accuracy of uncertainty estimation, 

resulting in an overestimation of the PPA in real-world 

scenarios (Xia et al., 2017, Downs et al., 2018). Addressing this 

issue, researchers have explored effective methods to control 

speed estimation errors and devise adaptive speed control 

criteria for more efficient PPA prediction (Zhou et al., 2018). 

The moving distance also significantly affects the PPA 

prediction. Furtado and his colleagues (Furtado et al., 2018) 

introduced the approximate upper bound (AUB) model, which 

estimates the uncertainty region by utilizing the largest 

movement length to enhance the limitation of adaptive velocity. 

In this model, the Manhattan distance was employed to 

ascertain the maximum distance, as opposed to methods based 

on Euclidean distance. Nevertheless, the intricate and stochastic 

nature of pedestrian movements and routes makes it difficult for 

the proposed method using Manhattan distance to better capture 

the logical mapping relations between sampling points. 

Furthermore, the uncertainty associated with predicting the PPA 

region is exacerbated by the uncertain collection rate of position 

value and related measurement errors.  

 

Previous studies have primarily focused on uncertainty 

modelling of outdoor trajectories, whereas the most effective 

trajectories for pedestrian mobility analysis are collected 

indoors. However, analyzing the uncertainty of indoor 

trajectories poses several challenges and difficulties compared 

to outdoor trajectories, including: 1) Limited reference points: 
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The collected motion information in indoor environments often 

lacks absolute location references such as Global Positioning 

System (GPS), thus the indoor huma trajectory is normally 

cannot autonomously acquire (Yu et al., 2021). 2) Variations in 

measurement errors of registered indoor positions: Given the 

intricate nature of indoor environments, pedestrian movement 

information is collected in real-time, which results in variations 

in measurement errors that must be accurately foreseen (Li et al., 

2021). 3) Inconsistent gathered trajectories: In contrast to 

outdoor networks, indoor pedestrian trajectories are often 

disordered owing to the stochasticity associated with indoor 

pedestrian movements, making it challenging to estimate 

trajectory uncertainty (Wan et al., 2022). 

 

In this investigation, we present a continuous and unified model 

using cutting-edge deep learning methods to overcome the 

difficulties of uncertainty modelling in indoor trajectories. 

Unlike existing techniques that exclusively rely on two adjacent 

measurement points to establish the uncertainty region, our 

method employs a sequence of location points representing the 

pedestrian's previous moving period as context input for the 

training model. The training model produces Euclidean distance 

as its output value, and its coefficient is adaptively selected 

based on the desired outcomes of the training phase. A range of 

characteristics are derived from the user's motion data to 

represent the evolving measurement and sampling errors. The 

expected Euclidean distance is then adopted to generate the 

probable area according to model prediction results, which 

consists of a compact and powerful uncertainty region. Through 

our extensive experimentation utilizing self-generated real-

world trajectory datasets, we have demonstrated the 

effectiveness of our hybrid LSTM-MLP network. Furthermore, 

comparative analyses with present-day algorithms validate both 

the accuracy and stability of our hybrid LSTM-MLP network 

for generating probable area of movement trajectory using real-

world collected dataset.  

 

The innovations of our research are described as four different 

aspects: 

 

(1) We propose an efficient user trajectory reconstruction 

algorithm suitable for large indoor spaces with limited reference 

points. This model enhances the raw trajectory's performance 

and improves reference location point continuity, rather than 

relying solely on reference points for uncertainty analysis. 

 

(2) A novel deep learning structure is introduced for uncertainty 

modelling by combining LSTM and MLP networks. Unlike 

traditional models, this model considers position information 

among a set time period as essential factors to accurately 

describe the sampling and measurement errors and their time-

spatial relationship of pedestrian's trajectory uncertainty. 

 

(3) The training dataset acquired in our previous work is 

enhanced through the incorporation of more intricate indoor 

routes to improve comprehensiveness. Additional pedestrian 

motion information is collected to enhance the final uncertainty 

prediction's performance while accounting for measurement and 

sampling errors. 

 

(4) The Euclidean distance is used to present the measurement 

error under selected step period, and the Euclidean coefficient is 

adaptively calculated based on the training outcome. The 

ultimate probable area accounts for both sampling and 

measurement errors across different user motion modes. 

 

The arrangements of this paper are outlined as follows: Section 

2 proposes the human indoor trajectory reconstruction and 

optimization algorithm. Section 3 presents the hybrid LSTM-

MLP network and features extraction. Section 4 demonstrates 

the effectiveness and robustness of our algorithm via 

experimental results. Finally, in Section 5, we conclude the 

paper and highlight potential applications of our method.  

 

2. HUMAN INDOOR TRAJECTORY 

RECONSTRUCTION AND OPTIMIZATION 

In this section, the human indoor trajectory contains rich motion 

information is modelled and optimized combining with the 

detected landmark information using wireless or Quick 

Response (QR) codes, and the optimized trajectory is further 

applied for features extraction for uncertainty prediction. 

 

2.1 Human Indoor Trajectory Modelling  

In contrast to outdoor trajectories, which rely on GPS-acquired 

outdoor location information with comparable sampling and 

measurement deviations, indoor trajectory data is characterized 

by varying sampling and measurement deviations. Additionally, 

raw acquired indoor trajectories often lack reference points and 

require reconstruction through human motion information to 

provide continuous indoor location points. To address these 

challenges, we represent pedestrian indoor trajectories as a 

graph comprising landmark points and human motion features, 

as depicted in Figure 1, which is based on our previous work 

(Liu et al., 2022): 
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Figure.1 Diagram of Human Trajectory Modelling 

 

Figure 1 depicts the indoor trajectory reconstruction process, 

which involves utilizing pedestrian motion data to calculate 

step-length and heading values between two spatiotemporal 

points. Absolute location sources like Wi-Fi stations, BLE 

nodes, and QR codes are used as reference points for location 

determination. By incorporating the collected motion data 

throughout the trajectory duration, it becomes feasible to 

reconstruct the complete indoor trajectory: 
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where 01R represents the location of first detected landmark 

point under walking period. 
i

L and i The gait-length and 

direction values collected among two consecutive 

spatiotemporal points represented in (Shi et al., 2021).  

 

In this study, to enhance the precision of raw collected 

movement data and related movement features, above (1) is 

treated as an optimization formula: 
T 1( , ) ( ( , )) ( ( , ))

i i ii i i i iL STP L STP L   −= − −z z     (2) 
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where covariance matrix  of the measured quantity is denoted 

by the symbol specified.  

 

The objective of trajectory optimization based on graphs is to 

identify the smallest state vector that satisfies the described 

expression.: 

 
,

( , ) arg min ( , )
i i

ii

i i
L

L L


   =                          (3) 

where ( , )
i iL  indicates the collection of calculated gait and 

direction vectors, and the loss function ( , )
i iL  is constructed 

under the condition of optimal gait and direction vectors. 

 

Upon obtaining the optimized indoor trajectory reconstruction, 

it is imperative to have a ground-truth trajectory as well. For 

this study, the original sensor data was sourced from the IPIN-

2018 public dataset (Renaudin et al., 2019), while the reference 

points were gathered using a total station that has centimetre-

level precision. Each ground-truth trajectory was created using 

5 to 8 reference points, and an accuracy of 0.1 to 0.3 m can be 

achieved based on our previous research (Li et al., 2021). 

Additional trajectories were included in the improved dataset, 

which were acquired from larger indoor spaces with more 

complex routes. The constructed dataset comprises data vectors 

that include the following parameters: 

/ /{ , , , , , }train G O G O r rVector x y L x y=                    (4) 

where /G Ox and /G Oy represents the x-axis and y-axis of acquired 

ground-truth trajectory, L and  are the gait-length and direction 

values, rx and ry  represents raw x-axis and y-axis of acquired 

trajectory.         

 

The ground-truth user trajectories are described in Figure.2 with 

indoor map information: 

 

 
Figure.2 Walking Routes of Collected Dataset 

  

2.2 Landmark Detection and Trajectory Reconstruction 

In this section, the daily-life facilities for instance Wi-Fi, BLE, 

and QR codes, are adopted for landmark recognition, and the 

DTW matching is developed by considering the real-time 

collected measurement distribution and ideal distribution. 

 

The Received Signal Strength Indication (RSSI) value of local W-

Fi and BLE stations can be utilized in measuring distances, and 

the conversion formula that relates the acquired distance to the 

acquired RSSI value is expounded as follows.: 

0 0

0

( ) ( ) 10 lg( )rL L


   


= − +                      (5) 

where ( )rL  indicates the acquired RSSI value at the distance  

among user and wireless stations,
0 is the corresponding ground-

truth distance,
0 0( )L  is the reference RSSI at the known distance 

d0,  indicates the path loss index, and represents the random 

error of measured RSSI. 

 

During the course of user walking towards the Wi-Fi/BLE 

stations and leave the stations, it is customary for the measured 

distance between the smartphone and the landmark to yield 

regular peaks. Ideally, there exists a distribution that accurately 

describes this process, which is constructed using information on 

the pedestrian's ideal walking speed and the measured distance 

between their ideal position and the location of the landmarks. 

However, the collected distance set can be influenced by real-

world environmental factors. In order to mitigate these effects, 

this study proposes a DTW-assisted landmark recognition 

algorithm, which is founded on the similarity results obtained 

from comparing real-time collected measurement vectors with 

self-generated reference vectors: 
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where
refer( , )kDTW   indicates the cumulated DTW indexes 

among real-time collected measurement vector and generated 

reference vector,
refer and

k represent the corresponding 

distributions which contain the ranging values 
ne and 

mf . 

1( , )n mD e f−
 denotes the calculated absolute value of the 

difference between ranging values 
1ne −
and

mf . 

 

The identified landmark can furnish an observation for location 

reference in Equation (3), wherein the Gradient Descent (GD) 

technique is employed to obtain the optimal outcomes. Since 

the observation model is nonlinear, it necessitates a linearization 

stage, wherein the Taylor series is utilized to expand the present 

state estimation and extract the first-order term: 
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 (7) 

where  x indicates the state update error, G indicates the 

Jacobian matrix. The difference between each iteration 

phase is presented as follow: 

( ) =-  +z x G x                             (8) 

The difference in the updated state vector following each 

iteration phase is computed using the equation expressed 

as follows: 
T -1 -1 T -1= ( ) x G R G G R z                        (9) 

To achieve a state estimation error below the threshold, 

non-linear least squares requires multiple iterations of the 

aforementioned process. Generally, the update for 
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nonlinear least squares can be represented as: 

-1 -1=j j j+x x x                               (10) 

where j represents the number of iteration. Since the observation 

error is not affected by the state estimation, the observation 

error covariance matrix R remains unchanged. The optimal 

solution reaches in the case when ( )L x less than the set 

threshold.  

 

 

3. HYBRID LSTM-MLP BASED UNCERTIANTY 

PREDICTION MODEL 

This section details the autonomous extraction and learning of 

comprehensive features using the suggested LSTM-MLP 

network. The output vector is modelled to contain uncertainty 

error, which encompasses varying sampling and measurement 

deviations within specific time windows. 

 

3.1 LSTM-MLP Based Features Extraction 

In order to achieve a comprehensive depiction of the 

relationship between the movement uncertainty index and 

reconstructed trajectory, we extracted the following 

characteristics from the latter. This allowed for the 

determination of the corresponding mapping relationship 

between the reconstructed trajectory and the uncertainty index 

of each spatiotemporal point:  

 

1) Approximated gait-length observation iL among two 

consecutive collected points. 

2) Approximated heading observation i among two 

consecutive collected points. 

3) Approximated interval i for coordinate updates 

among two consecutive collected points. 

4) Approximated amount of steps ( )step i at the recorded 

time period. 

5) Approximated movement velocity vi among two 

consecutive collected points: 

i

i

i

L
v


=


                                  (11) 

6) Current recorded distance: 

 
1

( )
k

cum i

i

Dis i L
=

=                          (12) 

7) Current ratio of completeness index under total trajectory 

distance: 

1

1

( )

k

i

i

d n

i

i

L

PI i

L

=

=

=



                                  (13) 

where n indicates the recorded number of gaits of overall 

trajectory, k indicates the indexed number of current gaits. 

8) Current ratio of completeness index under total time 

length and current time used: 

( ) ( ) /t totalPI i T i T=                             (14) 

where totalT  indicates the recorded time of gaits of overall 

trajectory, ( )T i  indicates the indexed time used by current gaits. 

9) Current ratio of completeness index under total number of 

gaits and current number of gaits: 

( ) ( ) /s totalPI i step i step=                        (15) 

where totalstep  indicates the recorded number of gaits of overall 

trajectory, ( )step i indicates the indexed number recorded by 

current gaits. 

10) Calculated relative direction i  among adjacent gaits: 

1i i i   − = −                                 (16) 

11) Calculated cumulative direction changes according to the 

initial heading value: 

1

1

( )
k

i i

i

  
=

 = −                              (17) 

The aforementioned characteristics could aptly illustrate the 

efficacy of the chosen indoor movement data and its expected 

uncertainty error value. These acquired features are 

subsequently structured as the input vector for the hybrid LSTM 

and MLP based framework used in predicting uncertainties. 

 

Furthermore, the suggested hybrid LSTM and MLP based 

uncertainty prediction model takes full account of both 

sampling and measurement errors. To address the issue of 

sampling error, the estimated interval i for coordinate 

updates between two consecutive spatiotemporal points and the 

input vector associated with the continuous time period are 

utilized. Meanwhile, the constructed features of the selected 

trajectory are employed to tackle the challenge of changing 

measurement deviation. 

 

3.2 Model Design of Uncertainty Prediction 

In this work, we utilize a hybrid LSTM-MLP network to 

construct an uncertainty model for indoor trajectories. Five 

distinct features that have been acquired from the trajectories 

are structured into the input features of the hybrid LSTM-MLP 

network. 

 

Furthermore, in order to provide a detailed depiction of the 

chosen trajectory, it is necessary to include additional features. 

To address the issue of feature correlation in uncertainty 

prediction for indoor trajectory estimations, 11 distinct features 

are extracted and employed. To enhance the learning and 

extraction of the feature vector utilized in describing the 

movement data, the MLP model is adopted to enhance the 

performance of single LSTM. 

 

To effectively leverage the characteristics of both the MLP and 

LSTM networks and to account for time and characteristics 

correlations within large-scale indoor trajectories, a novel 

hybrid LSTM and MLP network is introduced in this study. The 

proposed structure uses a combination of LSTM and MLP 

networks, as shown in Figure 3: 
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Figure.3 Hybrid LSTM and MLP Network  

 
In the LSTM layer, the update model of LSTM parameters is 

described as: 
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where ti , tf , to indicate the input, forget and output 

units, tX indicates the input vector of LSTM model at current 

moment, and the th represents the hidden state vector, regarded 

as the output of the LSTM model.  indicates the sigmoid 

function, and tC is the candidate vector. 

 

Lastly, the output layer of LSTM network is structured as the 

input layer for the MLP network. The uncertainty error is then 

calculated using the following equation: 

ˆ ( )i iE MLP y=                              (19) 

 

To characterize the measurement error associated with different 

users and daily-life movement trajectory, the Euclidean distance 

is applied. The deviation among reference movement data and 

reconstructed movement data under selected location point 

Dis(GT.Pi, RT.Pi) is applied as the reference output vector under 

the model training procedure. 

 

To get the overall uncertainty area of selected movement 

trajectory, the estimated uncertainty error under each step 

period is generated as an uncertainty circle, and the overleap 

parts of all the uncertainty circles are generated as the overall 

uncertainty area.  

 

4. EXPERIMENTAL RESULTS 

In this section, a series of experiments are designed to evaluate 

the performance of the proposed LSTM-based human trajectory 

uncertainty prediction framework. The real-world trajectory 

collected from large-scale indoor spaces provided by IPIN-2018 

and an office building is applied as the training dataset. 

 

4.1 Performance Evaluation of Trajectory Reconstruction 

In this paper, the raw human motion data is collected by mobile 

terminals to calculate the initial motion features including step-

length, heading, and time period. In addition, the Wi-Fi, BLE, 

and QR codes are applied as the landmarks, and the DTW 

algorithm is proposed to autonomously match the collected 

RSSI vector and ideal vector for landmark detection. The 

comparison between ideal distribution and real-time collected 

distribution and the calculated DTW results are described in 

Figure 4 and Figure 5 respectively. 

 

 
Figure.4 Comparison Between Reference Vector and Real-time Vector 

 

 
Figure.5 DTW Calculation Results 

 

It can be found from Figure 4 and Figure 5 that the proposed 

DTW algorithm proves expected matching performance in the 

procedure of landmark detection. The lower point can be find 

according to calculated DTW results, which indicates the 

timestamp of detected landmark at the nearest location. 

 

In addition, the location of detected landmark point is further 

applied for human trajectory reconstruction. The GD algorithm 

is developed to optimize the collected motion features under 

each step period. The comparison between raw trajectory and 

reconstructed trajectory is described as follows: 
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Figure.6 Trajectory Reconstruction Result 

 

And the accuracy of optimized trajectory under generated daily-

life dataset is described as: 

 

 

 
Figure.7 Trajectory Reconstruction Error 

 

It can be found from Figure 6 that the positioning error of 

reconstructed trajectory is lower than 3.32 m in 75% under 

complex human motion modes, compared with raw trajectory 

error of 9.31 m in 75%. 

 

4.2 Model Training and Dataset Setting 

In the aforementioned study, the source data from raw sensors 

and reference points were obtained from the IPIN-2018 training 

dataset. The original data was gathered within a large-scale 

indoor shopping mall situated in Nantes, France. The ground-

truth trajectory was determined by the optimal outcomes of the 

raw trajectory together with high-accuracy control points, as 

explained in the preceding section. Furthermore, real-world 

trajectories collected from another large-scale building were 

introduced as an enhanced daily-life dataset. The 

comprehensive attributes of the improved real-world dataset are 

outlined in Table 1: 

 

Number 
of 

Trajectories 

Number of 
Location 

Points 

Average 
Trajectory 

Length 

Average 
Time 

Period 

Largest 
Walkin

g 

Speed 

Average 
Sampling 

Interval 

45 9772 117.2m 115.4s 4.58m/s 0.62s 

Table 1. Parameters of Generated Real-world Dataset 

 

Table 1 displays that the augmented dataset formulated for this 

study comprises more than 45 routes and 9772 acquired location 

coordinates. The mean length of a route is 117.2 m, and the 

average time interval between points is 115.4 s. Additionally, 

the collected routes have varying sampling durations due to the 

inconsistent step intervals. 

 

The proposed deep learning architecture integrates the 

advantages of LSTM and MLP networks. The Adam optimizer 

is implemented as it is efficient in handling a vast amount of 

training data. The input vector dimension of hybrid LSTM and 

MLP network structure is set to 11. The sensitivity experiment 

verifies that these settings generally reflect the model's 

performance, which remains effective even with different 

configurations. 

 

To achieve the proposed deep learning framework's training 

objectives, we randomly selected 70% of the 9772 

spatiotemporal coordinates from 45 routes as the training 

dataset, leaving 30% as the test dataset. After the procedure of 

model training, the optimized model is utilized to evaluate the 

performance of the test dataset and measure the final 

uncertainty prediction accuracy and generate the related 

uncertainty area of selected trajectory.  

 

4.3 Performance Evaluation of Uncertainty Prediction  

 

In this section, we evaluate our proposed uncertainty prediction 

framework against three current state-of-the-art models. We 

utilize completeness and density indices as reference standards 

for comprehensive evaluation. The completeness index 

evaluates the degree of coverage of the ground-truth trajectory 

by the generated uncertainty region, thereby characterizing the 

overall completeness of our proposed framework. On the other 

hand, the density index provides a more detailed assessment by 

determining the ratio of the total area covered by the generated 

uncertainty region to the spatiotemporal points in the ground-

truth trajectory. To comprehensively evaluate the performance 

of our deep-learning-based uncertainty prediction algorithm, we 

combine these two indices.  

 

In addition to the LSTM model proposed by (Liu et al., 2022), 

we compare our proposed framework with three conventional 

uncertainty prediction models: the upper bound (UB) model, 

approximate upper bound (AUB) model, and broad adaptive 

error ellipse (BAEE) model. The UB model generates the 

uncertainty region by considering the trajectory's starting and 

ending points and defining an error ellipse based on the time 

length and maximum speed as factors. The AUB model 

generates the uncertainty region using the "Approximate Upper 

Bound Distance" method and the constrained error ellipse. In 

contrast, the BAEE model enhances the AUB model by 

incorporating the Minkowski distance metric. To enable a 

comprehensive comparison, we maintain consistency with Shi 

et al.'s work (Shi et al., 2021) by setting the maximum speed for 

UB at 4.94 m/s and the Minkowski coefficient p-value for error 

ellipse generation in the BAEE model at 1.5. They utilized all 

three algorithms for uncertainty analysis and uncertainty region 

generation.  

 

To ensure a comprehensive evaluation of each method, we 

adopt the uncertainty region produced by the UB model as the 

standard benchmark. We then determine the proportion of 

actual trajectory points that fall within this region when aligned 

with the constructed uncertainty area. This provides us with an 

evaluation of the completeness of our proposed framework. 

Additionally, the density of covered ground-truth trajectories is 

an essential metric for assessing the accuracy of the generated 

uncertainty region. 
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Our proposed hybrid LSTM and MLP network-based method is 

a noteworthy contribution to the field of uncertainty prediction, 

as it has been compared with four other existing models, taking 

into account both completeness and density indices. Unlike the 

traditional methods that generate a single uncertainty region for 

the entire trajectory, our method generates a separate 

uncertainty region at each spatiotemporal point, ensuring robust 

uncertainty prediction using features extracted from pedestrian 

motion data. Each spatiotemporal point contains a standard 

circular uncertainty region, and the final uncertainty region for 

the entire trajectory is generated by the union of all 

spatiotemporal points. 

 

Furthermore, our proposed model utilizes a period of trajectory 

data to predict the uncertainty value at the current moment, 

which leads to more accurate predicted uncertainty values at the 

beginning of the trajectory, similar to the location error of the 

deployed control point. This is an important advantage over 

traditional methods where the predicted uncertainty values 

remain constant throughout the trajectory. Figure 6 provides a 

typical representation of the generated uncertainty region using 

our proposed hybrid LSTM and MLP network, highlighting its 

superior performance in uncertainty prediction. Overall, our 

study demonstrates the effectiveness of our proposed model in 

predicting uncertainty regions for indoor positioning systems.  
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Figure.7 Comparison of Generated Uncertainty Areas 

 

As presented in Figure 7, the suggested combination of LSTM 

and MLP network achieves an 87% completeness index for 

predicting uncertain regions on the chosen trajectory, compared 

to UB (100%), AUB (88%), and BAEE (69%) methods. The 

density index results indicate that the hybrid LSTM and MLP 

network's application, utilizing down-sampled points, leads to a 

density index of 0.14/m2, surpassing UB (0.03/m2), AUB 

(0.13/m2), and BAEE (0.09/m2) methods, thus demonstrating 

superior performance in predicting uncertainty regions while 

taking both completeness and density indices into account. 

 

In order to obtain a thorough comparison of four distinct 

uncertainty prediction algorithms based on completeness and 

density indices, an improved test dataset is utilized to assess 

their performance. The evaluation includes 45 different daily-

life trajectories of various users, with the final uncertainty areas 

calculated using the respective algorithms' predicted uncertainty 

errors. Table 2 presents the average completeness and density 

indices for the five algorithms under consideration. 

 

Indexes UB AUB BAEE LSTM HDL 

Completeness 100 72 88.6 91.8 94.7 

Density 0.018 0.144 0.114 0.152 0.166 

Table 2. Description of Completeness and Density Indexes 

 

Table 2 presents a comprehensive comparison of the average 

completeness and density indices for four conventional methods 

(UB, AUB, BAEE, LSTM) and our innovative HDL framework. 

Furthermore, our suggested hybrid LSTM and MLP network 

significantly enhances the uncertainty prediction performance of 

the LSTM model, which translates to an improvement ratio of 

3.16% and 9.21% in completeness and density indices, 

respectively. 

 

5. CONCLUSION 

In order to realize accurate uncertainty modelling of complex 

human trajectory data, this work proposes a hybrid LSTM-MLP 

network, which takes the sampling error, measurement error, 

human motion features, and time related effects into 

consideration and training the hybrid LSTM-MLP network 

using the real-world generated trajectory dataset. 

Comprehensive experiments indicate that the proposed hybrid 

LSTM-MLP network can effectively describe the uncertainty 

error of human indoor trajectory under complex motion modes, 

and the proposed hybrid LSTM-MLP network also proves 

better performance compared with state-of-art algorithms under 

different accuracy indexes. 
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