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ABSTRACT:

The current methods of non-contact livestock body measurement directly deal with the low-quality point cloud data of livestock,
which have low robustness and lack practicality. On the one hand, the success rate of keypoint detection for livestock body measure-
ment is low. Due to the severe occlusion and noise in the point cloud data, body measurements of some data cannot be performed.
On the other hand, the key frames need to be manually selected from the point cloud sequence during processing. Inspired by the
work of 3D reconstruction based on animal statistical shape models, we implement the construction and learning of the statistical
shape model of real cattle. Given the establishment of the statistical shape model of cattle, a 3D reconstruction and body meas-
urement approach of real cattle based on low-quality point cloud data is proposed. Nine indicators are calculated and the overall
estimation MAPE (Mean Absolute Percentage Error) is 10.27%. The whole process of the body measurement algorithm proposed
in our paper can be extended to other quadrupeds.

1. INTRODUCTION

Accurate monitoring of the livestock body is vital for farm-
ers and breeders to comprehend the growth status, production,
reproduction and breeding of livestock. Manual measurement
cannot meet the growing demand for intelligence (Shuai et al.,
2020, Bartol et al., 2021). The automated growth monitoring
of livestock is of great significance for the sustainable develop-
ment of animal husbandry.

The detection, tracking and analysis of animals have diverse
applications in biology, neuroscience, ecology, agriculture and
recreation. Although widely used, the field of computer vision
focuses more on modeling the human body, such as estimating
human pose and analyzing human behavior. However, it is not
directly feasible to extend or apply this work to animals. The
main reason is that compared with humans, animals are obvi-
ously not as cooperative as humans. Inappropriate interventions
can have a dramatic impact on animal well-being, so there are
far fewer 3D scan datasets for animals than for humans such as
(Anguelov et al., 2005, Weiss et al., 2011, Bogo et al., 2014).
Therefore, existing research on the shape and pose of animals
lags behind that on the human body by a large margin.

1.1 Methods based on multi-view stereo vision

In recent years, scholars have carried out a lot of research on
the application of stereo vision in the field of animals. (Wu et
al., 2004) used six high-resolution cameras to obtain images
of the top, side, and rear views of each pig, and developed
a stereo imaging system that reconstructed the 3D shape of
live pigs. (Pezzuolo et al., 2018) proposed a photogrammetry
method based on Structure from Motion (SfM) and applied it to
the 3D modeling and measurement of the pig body. The above
∗ Corresponding author

animal reconstruction methods based on multi-view stereo tech-
nology require conditions such as illumination and camera syn-
chronization, and the poses of animals are limited.

1.2 Methods based on depth camera

(Kongsro, 2014) used the Kinect camera to collect depth map
images of pigs and estimated the weight of the pig from images.
(Wang et al., 2018) proposed a portable automatic measurement
system for pig body size, in which two Xtion depth cameras
were utilized to capture point cloud data from two viewpoints,
and the body measurement was realized by segmentation and
pose normalization. (Ruchay et al., 2020) designed a vision
system consisting of three Kinect v2 cameras to acquire cattle
data for automatic body measurement. The above approaches
have high operating efficiency, but also have high demands on
animal cooperation and multi-camera synchronization, and the
reconstruction accuracy is not high.

1.3 Methods based on 3D template

(Cashman and Fitzgibbon, 2012) predefined a dolphin template
to learn a low-dimensional model of its deformation by manu-
ally extracting keypoints and manually segmenting. The model
was optimized to minimize reprojection errors of keypoints and
silhouettes. The method works for dolphins, but there are lim-
itations in fitting non-template objects. (Vicente and Agapito,
2013) obtained the template of the corresponding object from
the reference image and used the deformation of the template to
fit the input image. The resolution of the reconstruction result
obtained by this method is low. (Kanazawa et al., 2016) learned
separate animal models of cats and horses and presented a volu-
metric deformation framework to deform 3D templates through
user interaction. Template-based reconstruction techniques do
not explicitly model joints, and the result of template deforma-
tion is still a rough shape, resulting in poor reconstruction. The
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Figure 1. The pipeline of our approach.

majority of the three aforementioned methods solely concen-
trate on the shape features of outcomes, and fail to ensure the
accuracy and reasonableness of topological results.

1.4 Methods based on statistical shape models

Currently, it is a research hotspot to use deep learning and other
technologies to regress parameters of animal parametric mod-
els from RGB images or videos to realize 3D reconstruction
of animal body surfaces. Inspired by the parametric model of
the human body, (Zuffi et al., 2017) proposed a Skinned Multi-
Animal Linear model (SMAL) to capture variations in shapes
and poses among various quadruped toy figurines. Based on
SMAL, researchers have sequentially proposed species-specific
parametric models. (Li et al., 2021) defined the horse model hS-
MAL and applied it to video-based lameness detection. (Biggs
et al., 2019) proposed a system to recover 3D models of various
quadrupeds from videos. (Zuffi et al., 2019) proposed an end-
to-end model SMALST that integrated the SMAL model into
a regression network to reconstruct 3D animal shapes with tex-
ture information from a single image of a field scene. (Biggs et
al., 2020) generated a new parametric model SMBLD including
limb scaling. The 3D reconstruction of the animal body surface
is generally developing in a data-driven direction. The SMAL
model is used as the deformation template in this paper.

In this work, we take full advantage of statistical shape mod-
els to obtain topologically consistent 3D surface datasets. Our
contribution is to propose a method for parametric reconstruc-
tion of cattle from low-quality point cloud data. Our process is
generalizable and can be broadened to encompass other quad-
rupeds.

2. METHODS

2.1 Overview

Fig.1 shows a pipeline of the proposed method. A series of pre-
processing is first performed on the original data. Based on the
prior model, the template mesh is fitted to the scan data using
constraints such as keypoints. A pose normalization method is
proposed, and all fitted meshes are unified into a standard pose.
On the topologically consistent 3D surface dataset, parametric

models of animal shape and pose are constructed and learned.
Finally, based on low-quality observation data, animal paramet-
ric reconstruction and body parameter measurement are carried
out.

2.2 Experimental dataset and preprocessing

Figure 2. RGB-D images and point cloud data of cattle from
three different views.

As shown in Fig.2, the original dataset is captured synchron-
ously by three Microsoft Kinect v2 cameras and consists of
RGB-D images and point clouds from left, right, and top views
of 103 cattle, as well as manually measured body references.
The dataset, provided by (Ruchay et al., 2020), was obtained
on a rectilinear passway through an automated data acquisition
system. Each data is mainly composed of standing cattle and
background environment. Three laptops respectively control
three depth cameras and are on the same network. Because
the time on the laptop is synchronized, the minimum time in-
terval among three camera devices is selected to generate the
dataset to obtain the best matching result for the point cloud
data. The dataset also includes transformation matrices among
cameras for registering data obtained from three viewpoints into
a unified coordinate system. The cattle are constantly moving
freely during the acquisition process, so there are differences
in the data poses of the cattle. Since a series of obstacles such
as sensor quality, animal movement and on-site environment,
missing data, outliers and noise are unavoidable.
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To obtain reliable point cloud data, background subtraction,
outlier removal, normal vector estimation and multi-view re-
gistration are performed. Fig.3 shows the data preprocessing
result of a low-quality point cloud of a cattle.

Figure 3. The result of data preprocessing of a cattle.

2.3 Topologically consistent 3D surface dataset

The template mesh is fitted to the point cloud data and pro-
cessed by pose normalization. The meshes of different poses
are normalized to the canonical pose. Then the topologically
consistent surface dataset is output.

2.3.1 Parametric model As shown in Fig.4, the SMAL model
T = M(β,θ,γ) (Zuffi et al., 2017) is selected for its gener-
alization, where T is a 3D mesh with 3889 vertices and 7774
faces, β, θ and γ are pose, shape and translation parameters,
respectively. The pose parameter β is a 33 × 3 dimensional
vector representing the rotations of the 33 joints in the para-
metric model. The shape parameter θ that determines the body
shape characteristics of the model is a 41-dimensional vector,
which is obtained by PCA on the 3D animal toy dataset. The
displacement in three orthogonal directions relative to the initial
position is controlled by the translation parameter γ.

Figure 4. An illustration of the SMAL model.

2.3.2 Keypoint detection and coarse alignment In model
fitting, high-quality corresponding points are essential for re-
gistration. DeepLabCut (Mathis et al., 2018) is used for 2D
keypoint detection. 2D is mapped to 3D according to the in-
trinsic and extrinsic parameters of the camera. Then keypoints
Sk = {sk

i }27i=1 on scan data and T k = {tki }27i=1 on template
mesh are obtained. Considering that keypoints on the template
T only need to be predefined once, the corresponding points
T k are marked manually.

To prevent being trapped in a local optimum while fitting, the
sum of squared errors of Sk and T k is minimized as eq(1)

(Horn et al., 1988):

E(a,R, b) =

27∑
i=1

∥aRsk
i + b− tki ∥

2
, (1)

where a is the scale factor, R is the rotation matrix and b is the
translation vector. The transformed data is S

′
and its keypoints

are S
′
k = {s

′k
i }27i=1.

2.3.3 Pose normalization and dataset augmentation To
reduce the impact of the animal’s free movement on fitted meshes,
β = 0 is set to realize normalization. Blender is used to build
the skeleton, the data of 190 different individuals in the same
pose and 99 different poses of the same individual are obtained
as Fig.5.

(a) Different individuals in the
same pose.

(b) Different poses of the same
individual.

Figure 5. Topologically consistent 3D surface dataset.

2.4 Construction of the parametric model

2.4.1 Shape deformation Principal component analysis is
used for dimensionality reduction to characterize body shapes
of different cattle. Vertex coordinates are arranged as vectors
to form a shape space. The PCA analysis is performed on the
set of points in the shape space. Orthogonal bases are extracted
to express the shape subspace, so that a set of shape parameters
θ = {θ1, ..., θ|θ|} is used to characterize the shapes of different
individuals.

All vertices {pf
i | i = 1, ..., Nv; f = 1, ..., F} of topologically

consistent meshes of F different cattle with the same pose are
input. Nv is the number of vertices on each individual. {pf

i } is
performed row stacking to get P ∈ RF×Nv . The shape space
P is normalized by orientation and decentralized, and the av-
erage shape T and the covariance matrix D of the normalized
shape space are computed. D is subjected to eigenvalue de-
composition. According to the size of the eigenvalues, the ei-
genvectors are arranged in descending order. The eigenvectors
corresponding to the first 23 eigenvalues are taken to form the
shape base V = {V1, ...,V |θ|}. Linear blending is performed
to approximate the shapes of different individuals, as eq(2):

f(θ) = T +Vθ, (2)

where f(θ) is the shape mapping function. Fig.6 shows the
average shape T of the statistical shape model of the real cattle.
Different shapes can be obtained by adjusting the value of the
shape parameter θ.

2.4.2 Pose deformation Linear blend skinning (LBS) is a
commonly used skinning method that binds 3D model meshes
to bones. A bone vertex weight map establishes a connection
between each vertex and the bones. Given β = {β1, ..., β|β|},
each vertex vi is processed by LBS as eq(3):

vi =

|β|∑
m=1

wim(Rmpi + tm),wim ≥ 0 ∧
|β|∑

m=1

wim = 1 (3)

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-1/W1-2023 
ISPRS Geospatial Week 2023, 2–7 September 2023, Cairo, Egypt

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-1-W1-2023-541-2023 | © Author(s) 2023. CC BY 4.0 License.

 
543



Figure 6. The average shape of the statistical shape model of the
real cattle.

Where wim is the weight of the m-th bone to the i-th vertex,
pi is the coordinate of the i-th vertex in the standard pose, Rm

and tm are the rotation and translation matrices of the m-th
bone, respectively.

SSDR (Smooth Skinning Decomposition with Rigid Bones) (Le
and Deng, 2012) is used to solve wim. Given J target poses
(i.e., datasets of different poses of the same individual), meshes
T in a resting state (including N vertices) and |β| bone joint
points. Vertices of target poses are {vj

i | i = 1, ..,N ; j =
1, ...,J }. The algorithm is as eq(3):

min
w,R,t

E = min
w,R,t

J∑
j=1

N∑
i=1

∥vj
i −

|β|∑
m=1

wim(Rj
mpi + tjm)∥

2

(4)
where Rj

m and tjm are rotation and translation matrices of the
m-th bone in the j-th pose, respectively. The statistical shape
model of the real cattle is T = F(β,θ,γ).

2.5 Parametric reconstruction

The process of 3D reconstruction is transformed into the prob-
lem of minimizing the loss function. The animal shape and pose
prior (Biggs et al., 2020) are used for regularization. Let µβ and
Cβ denote the mean and covariance matrices of the pose prior.
The constraint Epose is expressed by the Mahalanobis distance
as eq(5):

Epose(β) = (β − µβ)
⊤C−1

β (β − µβ) (5)

the shape prior constraint Eshape is similar to the pose prior as
eq(6):

Eshape(θ) = (θ − µθ)
⊤C−1

θ (θ − µθ) (6)

where µθ and Cθ are the mean and covariance of the shape
prior, respectively. The local joint rotation constraint Erotate

reduces the rotation of joints on the X-axis and Z-axis to meet
the needs of cattle’s motion poses. The keypoint constraint
Ekeypoint minimizes the sum of distances between keypoints to
optimize the shape and pose of the template mesh T as eq(7):

Ekeypoint(β,θ,γ, s) =

Nk∑
i=1

∥svk
i (β,θ,γ)− s

′k
i ∥2 (7)

where Nk is the number of keypoints, s is the scale factor and
vk
i (β,θ,γ) is the keypoint of T under pose β, shape θ, and

translation γ. s
′k
i and vk

i (β,θ,γ) are corresponding points.
The data constraint Edata is expressed as the sum of the dis-
tances of all corresponding points of T and S

′
and measures

how close T is to S
′

as eq(8):

Edata(β,θ,γ, s) =

Nc∑
i=1

∥svc
i (β,θ,γ)− s

′c
i ∥2 (8)

where Nc is the number of corresponding points, and s
′c
i is the

nearest neighbor point of vc
i (β,θ,γ) on S

′
. The loss function

EP(β,θ,γ, s) can be expressed as eq(9):

EP(β,θ,γ, s) = wposeEpose(β) + wshapeEshape(θ)+

wrotateErotate(β) + wkeypointEkeypoint(β,θ,γ, s)+

wdataEdata(β,θ,γ, s)
(9)

where wpose, wshape, wrotate, wkeypoint and wdata are five
weights. With the goal of minimizing EP(β,θ,γ, s), the gradi-
ent descent algorithm Adam (Kingma and Ba, 2014) is used to
optimize β, θ, γ and s, and the best fitting mesh for low-quality
observation data is is shown in Fig.7.

Figure 7. An illustration of the reconstruction effect.

2.6 Body parameter estimation

Nine body parameters chest width (CW), ilium width (IW),
hip joint width (HJW), oblique body length (OBL), hip length
(HL), withers height (WH), hip height (HH), heart girth (HG)
and chest depth (CD) are evaluated. Evaluation indicators mean
absolute error (MAE) and mean absolute percentage error (MAPE)
are selected as eq(10):

MAE =
1

NE

NE∑
i=1

|ŷi − yi| ,

MAPE =
100%

NE

NE∑
i=1

∣∣∣∣ ŷi − yi
yi

∣∣∣∣ , (10)

where ŷi is the estimated value, yi is the real value, and NE is
the number of experimental data.

3. RESULTS AND DISCUSSION

Table1 and Table2 show the results without pose normaliza-
tion and pose normalization, respectively. The results after pose
normalization show some improvement, with an overall MAPE
of 10.27%. The overall MAPE without pose normalization is
10.93%. Judging from the measurement results of body para-
meters after pose normalization, the MAPE of CW, HH, HG,
and CD is all less than 10%, indicating that this method has a
high accuracy of measuring these body parameters. The MAPE
of IW, HJW, OBL, HL, and WH is greater than 10%. There are
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two reasons why pose normalization improves a little over no
normalization. One is that the training samples of the SMAL
model are animal toys, and the shape of the cattle toy data is
different from that of the real cattle. The second is the lack of
some body shapes in the training data of the parametric model.
These all lead to poor local fitting results when the template
mesh is fitted to the cattle observation data, whether normalized
or not. Therefore, in the future, it is necessary to use a richer
dataset to train the parametric model, which will enhance the
generalization ability of the model and ultimately improve the
measurement accuracy of body parameters.

Table 1. MAE and MAPE results for nine body parameters
without pose normalization.

Indicators CW IW HJW OBL HL
MAE(cm) 4.41 4.64 5.70 21.95 4.17
MAPE(%) 9.86 11.14 11.52 13.11 9.06
Indicators WH HH HG CD
MAE(cm) 20.31 12.21 9.93 7.09
MAPE(%) 16.82 9.72 5.59 11.56

Table 2. MAE and MAPE results for nine body parameters with
pose normalization.

Indicators CW IW HJW OBL HL
MAE(cm) 4.29 4.57 5.75 22.08 5.49
MAPE(%) 9.59 10.97 11.61 13.15 11.86
Indicators WH HH HG CD
MAE(cm) 15.28 9.82 9.63 5.86
MAPE(%) 12.61 7.83 5.21 9.60

Fig.8 shows our results in comparison to those of (Du et al.,
2022). The overall MAPE of (Du et al., 2022) is 12.82%, where
CW, HG, HJW, HL and IW are less accurate than ours. The
main reason is that the cattle are scanned while they are in
motion, causing the width keypoints to deviate from the same
cross-section of the body. Especially when the data is severely
missing, it is difficult to get accurate results. In contrast, our
method is more robust. But the MAPE of CD, HH, OBL and
WH is still high, the root cause is the lack of corresponding
body shapes in the training data.

Existing methods for estimating body parameters directly on
low-quality point clouds are less robust and lack practicality.
Due to the high failure rate of keypoint detection, severely oc-
cluded areas and noisy points, the body measurement of some
data is limited and cannot be executed. Our proposed body
parameter estimation method successfully tackles the challenge
of measurement when data quality is low. Moreover, pose nor-
malization can address the difficulty of inconsistent body meas-
urements when animals move freely. Experiments show that
our approach has high accuracy and robustness. Each recon-
struction takes about 2 minutes, which is much faster than our
previous work (Luo et al., 2023).

4. CONCLUSION

Due to the insufficient cooperation of animals and the self-occlusion
of quadrupeds, it is difficult to obtain high-precision animal 3D

Figure 8. Comparisons with the state-of-the-art method on the
same dataset.

scan datasets. Currently, the lack of robustness and practical-
ity in measuring animal bodies on low-quality point cloud data
is a prevalent issue. Aiming at the above problems, based on
the statistical shape model, this paper combines the pose nor-
malization method to obtain a topologically consistent 3D sur-
face dataset. The real cattle parametric model is constructed
and learned, and the geometric difference of the cattle body
is decomposed into two parts: shape and pose. Based on the
statistical shape model of cattle, we propose a method for 3D
reconstruction and body measurement of real cattle based on
low-quality point clouds. The overall pipeline of our proposed
body parameter estimation method for cattle can be extended to
other quadrupeds.
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