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ABSTRACT:

In the last two decades, Light detection and ranging (LiDAR) has been widely employed in forestry applications. Individual tree
segmentation is essential to forest management because it is a prerequisite to tree reconstruction and biomass estimation. This
paper introduces a general framework to extract individual trees from the LiDAR point cloud based on a graph link prediction
problem. First, an undirected graph is generated from the point cloud based on K-nearest neighbors (KNN). Then, this graph is
used to train a convolutional autoencoder that extracts the node embeddings to reconstruct the graph. Finally, the individual
trees are defined by the separate sets of connected nodes of the reconstructed graph. A key advantage of the proposed method is
that no further knowledge about tree or forest structure is required. Seven sample plots from a plantation forest with poplar and
dawn redwood species have been employed in the experiments. Though the precision of the experimental results is up to 95 %
for poplar species and 92 % for dawn redwood trees, the method still requires more investigations on natural forest types with
mixed tree species.

1. INTRODUCTION

Accurate forest inventory is decisive to forest management.
Advanced remote sensing techniques particularly LiDAR have
proven potential in forest mapping. The variety of LiDAR sys-
tems from airborne to personal laser scanners enables com-
prehensive forest interpretation due to the huge amount of
gained information (Fekry et al., 2021). A key process for pre-
cise biomass estimation is individual tree segmentation. In
general, tree segmentation from LiDAR data is divided into
raster-based methods (Xu et al., 2021), point-based methods
(Comesaña-Cebral et al., 2021; Yao et al., 2012), and multi-
source data fusion methods (Duncanson et al., 2014).

The basic principle of raster-based methods is to locate the
tree location based on the local maximum from the canopy
height model (CHM). Then, the tree crowns are delineated
based on the region’s growth. The main limitation of these
methods is the information loss due to the projection of a
three-dimensional (3D) point cloud and interpolation while
creating the CHM. This means that under-story trees are not
segmented particularly in a multi-layer forest. Moreover, the
segmentation is initiated at predefined markers. Several tree
segmentation methods were developed based on CHM gen-
eration. For instance, Zhen et al. (2014) developed a marker-
controlled approach for tree crown delineation based on re-
gion growing with the treetops as seed points. Yang et al. (2020)
segmented the individual trees by improving the watershed
algorithm results using the 3D information from the point
cloud. Xu et al. (2021) proposed a crown morphology-based
tree detection approach from unmanned aerial vehicle laser
scanning (ULS) data in an urban forest of mixed broadleaf
trees.

In contrast, the point-based methods operate directly on
the 3D point cloud then, the information loss is mitigated. The
point-based methods involve different implementations in-
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cluding converting point clouds to voxels (Wang et al., 2008),
clustering such as mean shift (Hui et al., 2021) and density-
based spatial clustering of applications with noise (DBSCAN)
(Fu et al., 2022), conditional euclidean distance (Shendryk
et al., 2016) and graph-based segmentation (Yao et al., 2012).
There are numerous methods depending on point-based tree
segmentation approaches. Li et al. (2012) introduced a distance-
based approach in a conifer forest. Hosoi et al. (2013) gener-
ated the 3D tree model in a mixed Japanese plantation based
on point cloud voxelization. Moreover, a bottom-to-top method
(Lu et al., 2014) was developed for deciduous tree segment-
ation based on intensity. Dai et al. (2018) used mean shift
segmentation to extract individual trees from multi-spectral
ALS data. Hui et al. (2021) presented a self-adaptive band-
width of mean shift algorithm such that the single trees were
gradually extracted based on hierarchy mean shift. Fu et al.
(2022) proposed single-segmented trees from terrestrial laser
scanning (TLS) data using a bottom-up approach based on DB-
SCAN by first detecting the trunks. Yao et al. (2012) performed
tree segmentation by employing the normalized cut of a graph
composed of voxels for less computational cost. However
promising results of point-based methods, the segmentation
results are significantly affected in the case of forests with mul-
tiple tree species. In addition, they demand high requirements
due to the LiDAR point density.

Moreover, advanced machine learning models such as deep
learning have been utilized to detect individual trees from
LiDAR data. For example, Jin et al. (2018) utilized Faster R-
CNN to detect maize trees from TLS data, while Chen et al.
(2021) used PointNet to detect individual tree crowns. Luo et
al. (2022) employed a multi-channel representation to detect
individual trees from ULS, and Ying et al. (2021) introduced
a pointCNN-based approach for tree detection using a CHM
from LiDAR to generate rough seed points for extracting the
detection samples. However, deep learning-based methods
often require converting 3D point clouds to 2D raster images,
which may result in the loss of important 3D information.
Additionally, annotating the data can be challenging.
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In summary, the limitations of raster-based methods for
tree segmentation include (1) 3D information loss, which can
result in the misidentification or omission of understory trees;
and (2) segmentation initiation at predefined markers, which
can lead to errors in tree location and segmentation. Point-
based methods also have drawbacks, including high compu-
tational requirements, and sensitivity to noise and outliers.
Both raster-based and point-based can face difficulties in situ-
ations where tree crowns are complex or overlap with each
other, especially in mixed forest environments. Furthermore,
existing tree segmentation methods that use deep learning
algorithms necessitate significant amounts of labeled train-
ing data, which can be both costly and time-consuming to
obtain. These approaches may also be affected by variations
in the training data and the selection of model architecture
and hyperparameters, which can impact their accuracy.

This study presents a new approach for segmenting indi-
vidual trees from LiDAR data using convolutional graph au-
toencoder. The proposed method uses raw point cloud data
without any additional information about forest structure or
predefined markers, which can overcome the limitations of
raster-based methods such as 3D information loss, understory
misinterpretation, and errors caused by inaccurate tree loca-
tions. Unlike deep learning-based point-based methods, the
proposed method does not require labeled data, which can
overcome the need for data annotation. The proposed method
can be broken down into several main steps. Firstly, a LiDAR
point cloud is used to create a graph by connecting each node
to its K nearest neighbors. Secondly, the generated graph is
defined by its adjacency matrix and node features, and is then
reconstructed by the autoencoder. During this stage, the au-
toencoder predicts the existence of an edge between any pair
of unconnected nodes. Lastly, a single tree is identified by find-
ing a set of connected nodes from the reconstructed graph.
The main contributions of this research can be summarized
as:

• The development of a convolutional graph neural net-
work that can extract single trees from LiDAR data.

• The ability to perform individual tree extraction without
requiring any additional information about tree paramet-
ers or forest structure.

The rest of this paper is structured as follows: Section 2 de-
scribes the methodology used in the research. In Section 3,
the study area, dataset, and experimental design are discussed.
Section 4 presents the research findings and discussion. Fi-
nally, Section 5 provides a summary of the conclusions and
future outlook of the research.

2. METHODOLOGY

An end-to-end graph neural network is proposed to perform
tree segmentation from backpack laser scanning (BLS) data in
four stages as shown in Figure 1. First, the data preparation
and graph formation. Then, the graph is fed to a convolutional
graph autoencoder which reconstructs the graph to make pre-
dictions. Finally, the reconstructed graph analysis to extract
the single trees.

2.1 Data Preparation

In order to develop an end-to-end neural network, point
cloud pre-processing has been integrated with the framework.
The pre-processing includes outlier removal, ground-filtering,
downsampling, and graph formation. In the subsequent sub-
sections, the detailed steps of these processes are outlined.

2.1.1 Outlier Removal: It is an important preprocessing
step in LiDAR data processing. Outliers can be caused by a
variety of factors, such as sensor noise, environmental con-
ditions, and measurement errors, and can lead to errors in
downstream processing tasks such as object detection and 3D
reconstruction. As a result, it is necessary to remove these
outliers from the point cloud before proceeding with any fur-
ther processing. To achieve this, the distances between each
point and its neighboring points within a certain radius r are
calculated. The average distance µd and standard deviation
σd of these distances are then computed. The maximum dis-
tance Dmax =µd +n×σd is determined as the sum of µd and a
multiple of σd , where the multiple n is a predefined constant.
Points that have µd > Dmax are considered outliers and are
marked for removal from the point cloud.

2.1.2 Ground Filtering: A point cloud PC ∈ R3 was classi-
fied into the ground and non-ground points based on the cloth
simulation filter (CSF) developed by Zhang et al. (2016). First,
PC was inverted and covered with a rigid cloth. Then, the inter-
actions between the nodes of the cloth and their counterparts
from LiDAR points were analyzed. Accordingly, the positions
of the cloth nodes were identified to form the ground surface.
Finally, the formed surface was compared with the original
LiDAR data to extract the ground points. The non-ground
points were most important because they served as input for
the various phases of this study.

2.1.3 Point Cloud Downsampling: A 3D grid of a point
cloud PC ∈ R3 is generated by subdividing PC into small cubes
with side lengths dx ,dy , and dz in X , Y , and Z directions,
respectively. A single cube (voxel) contains m points whose
centroid is represented by Equation(1). Voxel downsampling
was performed to only reduce the point density for computa-
tional reasons, and it had no effect on the point distribution or
object shapes. It is worth noting that the voxelized point cloud
P̄C = x̄i ∈R f , i = 1,2,3, ..., N̄ will be deployed in further steps
of the proposed method.

x̄ =
∑m

i=1 xi

m
(1)

2.1.4 Graph Formation A graph G is defined by a set of
edges (links) E which connect a set of vertices (nodes) V .
Graph G is represented by its adjacency matrix A and the
nodes feature matrix X . According to Equation (1), a voxel-
ized point cloud P̄C is used to generate graph G with f = 3
denotes the XYZ-dimensionality or more when additional fea-
tures (e.g., RGB or normal features) are present. To define
the graph edges, the nearest neighbor search is employed to
identify the K neighbors to every node based on 2D distances.
Then, every node of G is connected to its K neighbors, there-

fore, the adjacency matrix A ∈ {1,0}N̄×N̄ is formed, where 1
denotes a positive (present) edge while 0 denotes a negative

(absent) edge. Moreover, the nodes feature matrix X ∈ RN̄× f

thus a single row in X involves the positional coordinates of a
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Figure 1. Research framework.

single node in G .

2.2 Model Architecture

The proposed graph neural network consists mainly of a con-
volution autoencoder. This autoencoder encompasses two
parts: encoder and decoder. A convolution encoder is a set of
convolution layers that can learn low-dimensional representa-
tions of the nodes in the graph. The autoencoder consists of an
encoder that maps the adjacency matrix to a low-dimensional
latent space, and a decoder that maps the latent space back
to the adjacency matrix. A detailed explanation of the model
architecture is presented in the next subsections.

2.2.1 Graph Autoencoder: The principal question of a link
prediction problem: if there are any two entities, should they
be connected? The structural link prediction problem involves
estimating the probability of the presence of a missing or ab-
sent connection between two nodes in a partially observed
graph (Wang et al., 2014). The likelihood of an unobserved
edge in a graph can be computed using various approaches,
such as statistical models, machine learning algorithms, or
graph-based methods. Graph autoencoders are a powerful
tool for predicting missing edges in graphs because they can
capture complex patterns and dependencies between nodes,
and can handle graphs of arbitrary size and structure (Tran,
2018).

The structure of a graph G is defined by its adjacency matrix
A and the features of its nodes X . The goal of the autoencoder
model h(A, X ) is to learn a set of low-dimensional latent vari-
ables Z ∈ R N̄×D that represent the nodes, such that the model
can produce an output Â that closely approximates the ori-
ginal adjacency matrix A. By minimizing the error between A
and Â, the autoencoder preserves the overall structure of the
graph.

The autoencoder architecture involves transforming the ad-
jacency vector ai of the i th node in graph A using non-linear
transformations. The autoencoder architecture consists of two
parts: an encoder g (ai ) that maps ai from the original space
N̄ to a low-dimensional latent space RD , and a decoder f (zi )
that maps the latent variables zi back to the original space N̄ .
The resulting autoencoder model produces an approximate
reconstruction output âi that closely approximates the ori-
ginal adjacency vector ai for the i th node (Kipf and Welling,
2016). The computation of the hidden representations for
the encoder and decoder parts is performed in the following
manner:

Z = g (ai ) =GC N (X , A) = AReLU
(

H(l )W (l )
)
, (2)

where H(l ) and W (l ) represent the output of a convolution
layer l and the weight matrix, respectively. Given the low-
dimensional representations of nodes i and j , denoted by zi

and z j respectively, the probability of an edge between nodes
i and j is given by:

Âi , j = f (zi ) =σ(zT
i z j ), (3)

where σ is the sigmoid activation function, which maps the
output to a probability value between 0 and 1.

2.2.2 Loss Function: In link prediction for graphs, the goal
is to predict the presence or absence of edges between pairs of
nodes in a graph. Because link prediction of graphs is a binary
classification problem, cross-entropy with logits is commonly
utilized. In addition, logits provide a stable numerical repres-
entation of the model’s output. Also, cross-entropy with logits
can handle imbalanced datasets where the number of edges is
much smaller than the number of possible edges. Moreover, it
is a differentiable function, which means that it can be used
to update the model parameters through backpropagation
during training. This allows the GCN to learn the features that
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are most relevant for link prediction. The cross-entropy with
logits loss function is defined as:

L =− 1

Ne

Ne∑
i=1

[
yi log(pi )+ (1− yi ) log(1−pi )

]
, (4)

where Ne is the total number of edges, yi is the true label
for the i th edge (either 0 or 1), pi is the predicted probability
of the i th edge being present, and log represents the natural
logarithm. The pi values are obtained from the output of the
model before the sigmoid function is applied, also known as
the logits. The sigmoid function is then applied to the logits to
obtain the predicted probabilities pi =σ(zi ) = 1

1+e−zi . The loss
function can be broken down into two terms: the first term
penalizes the model for predicting a probability that is too
small when the true label yi is 1, and the second term penalizes
the model for predicting a probability that is too large when
the true label yi is 0. The overall loss L is the average of the
per-edge losses. The goal of training the model is to minimize
this loss by optimizing the model parameters. By minimizing
the loss, the model learns to predict the existence of edges in
the graph more accurately.

The loss function you provided is a binary cross-entropy
loss commonly used for training binary classification models
such as link prediction models. In the context of a link pre-
diction model, the encoder and decoder are responsible for
learning representations of nodes and relationships between
them, respectively.

During training, the encoder takes in a pair of nodes and
produces their corresponding embeddings. The decoder then
takes these embeddings and produces a probability score in-
dicating the likelihood of a relationship existing between the
two nodes. The loss function is used to measure the difference
between the predicted probability score and the true label (i.e.,
whether a relationship actually exists between the two nodes).

The loss function is computed for each training example
(i.e., each pair of nodes) and averaged over all examples to
obtain a scalar value representing the overall loss for that it-
eration of training. This loss value is then used to update the
parameters of the encoder and decoder using backpropaga-
tion.

By minimizing the loss function during training, the en-
coder and decoder are encouraged to learn representations
of nodes and relationships that accurately predict whether a
relationship exists between two nodes. In other words, the loss
function serves as a measure of how well the model is able to
perform the task of link prediction, and guides the learning
process towards better performance.

2.3 Single Tree Segmentation

After the graph reconstruction using the graph autoencoder,
a single tree is identified as a set of connected nodes in the
reconstructed graph. Therefore, the individual trees are extrac-
ted from the reconstructed adjacency matrix Â of the graph G
based on Algorithm 1.

The algorithm takes an adjacency matrix Â as input and
returns a list of lists (i.e., trees), where each inner list (i.e.,
single tree) contains the indices of all nodes that are connected
to each other. The algorithm starts by initializing an empty

Algorithm 1: Individual tree extraction from the recon-
structed graph.

Input: Reconstructed adjacency matrix Â
Output: List of individual trees
function

groupc onnectedn odes()
vi si ted ←;; E xtr acted_tr ees ← [];
function dfs(node, cur r ent_tr ee):

vi si ted .add(node)
cur r ent_tr ee.append(node)
for nei g hbor ← 0 to l en(Â)−1 do

if Â(node,nei g hbor ) = 1 and
nei g hbor ∉ vi si ted then
dfs(nei g hbor , cur r ent_tr ee)

for node ← 0 to l en(Â)−1 do
if node ∉ vi si ted then

cur r ent_tr ee ← []
dfs(node, cur r ent_tr ee)
E xtr acted_tr ees.append(cur r ent_tr ee)

return E xtr acted_tr ees

set for visited nodes and an empty list for individual trees. It
then defines a recursive DFS function that visits all unvisited
neighbors of a given node and adds them to the same tree. The
visited set is used to keep track of which nodes have already
been visited. The algorithm then iterates over all nodes in the
graph, and for each unvisited node, it initializes a new tree and
calls the DFS function to add all connected nodes to the same
tree. The resulting tree is then added to the list of individual
trees. Finally, the algorithm returns the list of individual trees.

3. EXPERIMENTS

3.1 Study Area and Dataset

The national forest park on the Yellow Sea coast in south-
east China (120.82◦ E, 32.87◦N) is the study area of this re-
search. It is a managed forest with a total area of 2240
ha while the planted tree species involve dawn redwood
(Metasequoia glyptostroboides), poplar (Populus deltoids), and
ginkgo (Ginkgo biloba) (Fekry et al., 2022). Seven square test
plots (30 m side length) were sensed using backpack laser scan-
ning. The test sites comprise two tree species with different
tree parameters including diameters at breast height (DBH),
heights H , and stand densities SD as listed in Table 1.

Table 1. Forest parameters of the test sites.

Plot Species DBH(cm) H(m) SD (1/ha)
1 Poplar 36.4 31.4 256
2 dawn redwood 30.6 29.4 489
3 dawn redwood 30.7 26.7 233
4 Poplar 39.7 36.1 222
5 dawn redwood 27.6 22.8 578
6 Poplar 36.4 26.9 156
7 Poplar 22.1 21.3 444

The GreenValley BLS system consists of a Velodyne Puck
VLP-16 scanner, POS, and a touchpad to manage data capture
was used for LiDAR data collection. The point cloud was pro-
duced using SLAM technology, which combines scan data with
POS information. Table 2 lists the sensor parameters during
the data acquisition.
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Table 2. Scanner parameters used for data collection.

Parameter Value
Sensor Velodyne VLP-16
Max. range (m) 100
Ranging accuracy (cm) ± 3
Max. footprint (◦) 0.1-0.4
Wavelength (nm) 905
Horizontal FOV (◦) 360
Vertical FOV (◦) 30
Point density (m−2) (5−10)×103

Rotation rate (Hz) 5-20

3.2 Evaluation Scheme

To evaluate the performance of the tree segmentation, three
metrics were employed. The first metric is called recall R ,
which is computed by dividing the number of correctly seg-
mented trees by the total number of trees. The second metric
is precision P , which is calculated by dividing the number of
correctly segmented trees by the total number of segmented
trees. The third metric is the F 1scor e, which provides an over-
all measure of accuracy based on both recall and precision.
The formula for computing these metrics is provided in Equa-
tion 5, where the true positive T P represents the number of
correctly segmented trees, false negative F N represents the
number of omitted trees, and false positive F P represents the
number of incorrectly segmented trees.

R =
( T P

T P +F N

)
%

P =
( T P

T P +F P

)
%

F 1scor e =
( 2×P ×R

P +R

)
%

(5)

It is worth noting that the number of trees in each plot is
identified based on field observations which also provide tree
locations. Therefore, the total number of segmented trees
is compared to the reference number from fieldwork. If the
reference tree location corresponds to a segmented tree, then
the detected tree belongs to the T P . The F N occurs when
the tree location does not represent a segmented tree (i.e., the
omitted trees) while the F P represents the over-segmented
and under-segmented trees.

4. RESULTS

4.1 Model Training

The ADAM optimizer Kingma (2015) was used for model train-
ing and the learning rate was 0.01. For nonlinearity, the recti-
fied linear unit (ReLU) activation function was employed. The
number of epochs was 250 with a step of 25, and the number of
neighbors was set to 250 (i.e., K = 250 in KNN). All experiments
were performed using an NVIDIA GeForce GTX 1080 GPU and
the model was fully implemented based on the PyTorch library
Fey and Lenssen (2019). Figure 2 shows the minimization of
the reconstruction loss during training.

4.2 Single Tree Segmentation

Individual tree segmentation was performed on seven sample
plots as shown in Table 1. The evaluation metrics were com-
puted for single plots and the results were summarized in
Table 3. Segmentation results were promising for all plots. De-

0 50 100 150 200 250
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0.5

0.6
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0.9

Lo
ss

Figure 2. Reconstruction loss.

tection accuracy ranged from 87.5 % to 92.5 % for the dawn
redwood plots, while its counterpart from poplar plots was
84.6 % to 95.2 %. Figure 3 shows the segmentation results for
the point cloud of a poplar sample plot based on the proposed
approach.

Table 3. Individual tree segmentation from BLS point cloud.

Plot T P Total segmented trees R (%) P (%) F 1Scor e (%)
1 20 23 86.9 95.2 91.2
2 37 44 84.1 92.5 88.1
3 21 29 72.4 87.50 79.2
4 18 20 90 94.7 92.3
5 50 52 96.2 92.5 94.3
6 11 14 78.6 84.6 81.5
7 36 40 90 90 90

The segmentation results were analyzed by comparing the
results of the individual plots as shown in Table 3. Considering
the tree species, the precision range of the poplar species was
84.6 % to 95.2 % while this range was 87.5% to 92.5 % for dawn
redwood species. On the one hand, the largest precision of
poplar species occurred at Plot 1 (stand density: 256 tree/ha)
while the precision recorded its minimum at Plot 6 with the
lowest stand density. This could be attributed to the irregular
tree shapes of Plot 6 where some trees are co-dominant. Al-
though Plot 7 comprised the highest stand density among pop-
lar plots, it reported a precision of 90% (5.4 % greater than the
precision of Plot 6). The reason also could be the co-dominant
trees in the case of Plot 6. On the other hand, sample Plot 5 had
the highest stand for the dawn redwood plots and recorded the
largest precision among the dawn redwood plots. This can be
attributed to the simple understory structure with low shrubs
of Plot 5. The precision gained at sample Plot 3 (87.5 %) was
lower than that of Plot 5; however, the stand density of Plot 5
was greater than that of Plot 3. This also could be attributed to
the complex understory structure of Plot 3 where there were a
large number of irrigated grasses and shrubs. Similar findings
were gained when comparing the precision of Plot 1 (poplar
species) and Plot 3 (dawn redwood species). The precision of
Plot 1 was more remarkable than that of Plot 3; however, Plot
3 was planted with poplar trees. Thus, the proposed approach
has potentially performed for poplar and dawn redwood spe-
cies that involve forest parameters.

It is worth noting that however the stems are well sampled
from BLS data, the proposed methodology has segmented
single trees from BLS data without stem detection. Moreover,
our segmentation approach can be generalized to airborne
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(a) Point cloud (b) Segmented trees

(c) Point cloud (d) Segmented trees

Figure 3. Individual tree segmentation of two poplar plots based on the proposed approach. Unique colors represent single trees.

(e.g., ALS or UAV) LiDAR data where the stems are not well-
sampled without treetop detection on a CHM. Thus, the loss
of 3D information will be mitigated and the understory will
be segmented. Unfortunately, the experiments have been
conducted on planted sample plots with regular tree shapes.
Therefore, we are willing to extend the experiments to other
forest types with high complexity and mixed species. Further,
performing tree segmentation from ground-based (e.g., TLS)
and airborne LiDAR systems.

5. CONCLUSIONS

This research proposes a novel approach to perform single tree
segmentation from LiDAR data. The developed approach is in-
spired by link prediction problems from recommendation sys-
tems. First, a point cloud is seen as an undirected graph. Then,
this graph is fed to a graph convolution autoencoder to learn
the node features for graph reconstruction. Finally, a single
tree is extracted as the set of connected graph nodes based
on link prediction. One main advantage of the proposed ap-
proach is that it does not require any information about trees
or forest structures. In addition, it does not depend upon stem
detection or treetop detection which mitigates the limitations
of CHM-based approaches. The experiments involved seven
forest plots from BLS data. The results showed a potential
performance of the proposed approach in tree segmentation
however, the experiments were conducted on a planted forest
with monotype tree species at the plot level. Accordingly, one
important aspect of future work is testing the proposed meth-
odology against LiDAR data of natural forests (e.g., temperate,
boreal) with complex plots. Also, extending the experiments to

other types of LiDAR data including ground-based (e.g., TLS,
MLS) and airborne (e.g., ALS, and UAV-LiDAR).

ACKNOWLEDGEMENTS

The authors are very appreciative of the support of researchers
at the Nanjing Forestry University, particularly Lin CAO for
data provision. Also, the authors acknowledge the foresters
in the Dongtai forests for the data acquisition and for sharing
their knowledge of the regional forest ecosystems.

References

Chen, X., Jiang, K., Zhu, Y., Wang, X., Yun, T., 2021. Indi-
vidual Tree Crown Segmentation Directly from UAV-Borne
LiDAR Data Using the PointNet of Deep Learning. Forests,
12(2). https://www.mdpi.com/1999-4907/12/2/131.

Comesaña-Cebral, L., Martínez-Sánchez, J., Lorenzo, H.,
Arias, P., 2021. Individual Tree Segmentation Method Based
on Mobile Backpack LiDAR Point Clouds. Sensors, 21(18).
https://www.mdpi.com/1424-8220/21/18/6007.

Dai, W., Yang, B., Dong, Z., Shaker, A., 2018. A new
method for 3D individual tree extraction using multis-
pectral airborne LiDAR point clouds. ISPRS Journal of
Photogrammetry and Remote Sensing, 144, 400-411. ht-
tps://doi.org/10.1016/j.isprsjprs.2018.08.010.

Duncanson, L., Cook, B., Hurtt, G., Dubayah, R., 2014.
An efficient, multi-layered crown delineation algorithm for

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-1/W1-2023 
ISPRS Geospatial Week 2023, 2–7 September 2023, Cairo, Egypt

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-1-W1-2023-547-2023 | © Author(s) 2023. CC BY 4.0 License.

 
552



mapping individual tree structure across multiple ecosys-
tems. Remote Sensing of Environment, 154, 378-386. ht-
tps://doi.org/10.1016/j.rse.2013.07.044.

Fekry, R., Yao, W., Cao, L., Shen, X., 2021. Marker-Less
UAV-LiDAR Strip Alignment in Plantation Forests Based
on Topological Persistence Analysis of Clustered Canopy
Cover. ISPRS International Journal of Geo-Information, 10(5).
https://www.mdpi.com/2220-9964/10/5/284.

Fekry, R., Yao, W., Cao, L., Shen, X., 2022. Ground-based/UAV-
LiDAR data fusion for quantitative structure modeling and
tree parameter retrieval in subtropical planted forest. Forest
Ecosystems, 9, 100065.

Fey, M., Lenssen, J. E., 2019. Fast graph representation learning
with PyTorch Geometric. ICLR Workshop on Representation
Learning on Graphs and Manifolds.

Fu, H., Li, H., Dong, Y., Xu, F., Chen, F., 2022. Segmenting Indi-
vidual Tree from TLS Point Clouds Using Improved DBSCAN.
Forests, 13(4). https://www.mdpi.com/1999-4907/13/4/566.

Hosoi, F., Nakai, Y., Omasa, K., 2013. 3-D voxel-based
solid modeling of a broad-leaved tree for accurate volume
estimation using portable scanning lidar. ISPRS Journal
of Photogrammetry and Remote Sensing, 82, 41-48. ht-
tps://doi.org/10.1016/j.isprsjprs.2013.04.011.

Hui, Z., Li, N., Xia, Y., Cheng, P., He, Y., 2021. INDI-
VIDUAL TREE EXTRACTION FROM UAV LIDAR POINT
CLOUDS BASED ON SELF-ADAPTIVE MEAN SHIFT SEG-
MENTATION. ISPRS Annals of the Photogrammetry, Remote
Sensing and Spatial Information Sciences, V-1-2021, 25–
30. https://www.isprs-ann-photogramm-remote-sens-spatial-
inf-sci.net/V-1-2021/25/2021/.

Jin, S., Su, Y., Gao, S., Wu, F., Hu, T., Liu, J., Li,
W., Wang, D., Chen, S., Jiang, Y., Pang, S., Guo, Q.,
2018. Deep Learning: Individual Maize Segmentation
From Terrestrial Lidar Data Using Faster R-CNN and Re-
gional Growth Algorithms. Frontiers in Plant Science, 9. ht-
tps://www.frontiersin.org/article/10.3389/fpls.2018.00866.

Kingma, D. P., 2015. &Ba J.(2014). Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980.

Kipf, T. N., Welling, M., 2016. Variational graph auto-encoders.

Li, W., Guo, Q., Jakubowski, M. K., Kelly, M., 2012. A New
Method for Segmenting Individual Trees from the Lidar Point
Cloud. Photogramm. Eng. Remote Sens., 78(1), 75–84.

Lu, X., Guo, Q., Li, W., Flanagan, J., 2014. A bottom-
up approach to segment individual deciduous trees
using leaf-off lidar point cloud data. ISPRS Journal
of Photogrammetry and Remote Sensing, 94, 1-12. ht-
tps://doi.org/10.1016/j.isprsjprs.2014.03.014.

Luo, Z., Zhang, Z., Li, W., Chen, Y., Wang, C., Nurunnabi, A.
A. M., Li, J., 2022. Detection of Individual Trees in UAV LiDAR
Point Clouds Using a Deep Learning Framework Based on
Multichannel Representation. IEEE Transactions on Geoscience
and Remote Sensing, 60, 1-15.

Shendryk, I., Broich, M., Tulbure, M. G., Alexandrov, S. V.,
2016. Bottom-up delineation of individual trees from full-
waveform airborne laser scans in a structurally complex eu-
calypt forest. Remote Sensing of Environment, 173, 69-83. ht-
tps://doi.org/10.1016/j.rse.2015.11.008.

Tran, P. V., 2018. Learning to Make Predictions on
Graphs with Autoencoders. CoRR, abs/1802.08352.
http://arxiv.org/abs/1802.08352.

Wang, P., Xu, B., Wu, Y., Zhou, X., 2014. Link Prediction in
Social Networks: the State-of-the-Art. CoRR, abs/1411.5118.
http://arxiv.org/abs/1411.5118.

Wang, Y., Weinacker, H., Koch, B., 2008. A Lidar Point Cloud
Based Procedure for Vertical Canopy Structure Analysis And
3D Single Tree Modelling in Forest. Sensors, 8(6), 3938–3951.
https://www.mdpi.com/1424-8220/8/6/3938.

Xu, W., Deng, S., Liang, D., Cheng, X., 2021. A Crown
Morphology-Based Approach to Individual Tree Detection in
Subtropical Mixed Broadleaf Urban Forests Using UAV LiDAR
Data. Remote Sensing, 13(7). https://www.mdpi.com/2072-
4292/13/7/1278.

Yang, J., Kang, Z., Cheng, S., Yang, Z., Akwensi, P. H., 2020. An
Individual Tree Segmentation Method Based on Watershed Al-
gorithm and Three-Dimensional Spatial Distribution Analysis
From Airborne LiDAR Point Clouds. IEEE Journal of Selected
Topics in Applied Earth Observations and Remote Sensing, 13,
1055-1067.

Yao, W., Krzystek, P., Heurich, M., 2012. Tree species classi-
fication and estimation of stem volume and DBH based on
single tree extraction by exploiting airborne full-waveform
LiDAR data. Remote Sensing of Environment, 123, 368-380.
https://doi.org/10.1016/j.rse.2012.03.027.

Ying, W., Dong, T., Ding, Z., Zhang, X., 2021. Pointcnn-based in-
dividual tree detection using lidar point clouds. N. Magnenat-
Thalmann, V. Interrante, D. Thalmann, G. Papagiannakis,
B. Sheng, J. Kim, M. Gavrilova (eds), Advances in Computer
Graphics, Springer International Publishing, Cham, 89–100.

Zhang, W., Qi, J., Wan, P., Wang, H., Xie, D., Wang, X., Yan, G.,
2016. An Easy-to-Use Airborne LiDAR Data Filtering Method
Based on Cloth Simulation. Remote Sensing, 8(6).

Zhen, Z., Quackenbush, L. J., Zhang, L., 2014. Impact of Tree-
Oriented Growth Order in Marker-Controlled Region Grow-
ing for Individual Tree Crown Delineation Using Airborne
Laser Scanner (ALS) Data. Remote Sensing, 6(1), 555–579.
https://www.mdpi.com/2072-4292/6/1/555.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-1/W1-2023 
ISPRS Geospatial Week 2023, 2–7 September 2023, Cairo, Egypt

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-1-W1-2023-547-2023 | © Author(s) 2023. CC BY 4.0 License.

 
553




