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ABSTRACT:  

 

This paper proposes a method for constructing 3D models of shrubs with high accuracy from 3D point clouds acquired by terrestrial 

laser scanning (TLS). Since the shrub point cloud obtained by LiDAR scanning contains a large amount of redundant data, the focus 

of this method is to segment the branches and leaves of the shrub point cloud first, which can remove the noise and make the branch 

skeleton of the shrub stand out. Secondly, a triangulation network is constructed for the segmented branch points, and a minimum 

spanning tree (MST) is established from the triangulation network as the initial shrub skeleton of the input point cloud. Then, the 

redundant branches are removed by merging adjacent points and edges to simplify the initial skeleton. Finally, the 3D model of a shrub 

is constructed by a cylindrical fitting algorithm based on robust principal component analysis (RPCA). Experiments on different types 

of shrubs from different data sources demonstrate the effectiveness and robustness of the proposed method. The 3D models of shrubs 

can be further applied to the accurate estimation of shrub attributes and urban landscape visualization. 

 

 

1. INTRODUCTION AND RELATED WORK 

Shrubs usually refer to those trees that have no obvious trunks 

and are in a cluster state. It plays an important role in windbreak 

and sand fixation, urban greening, and the improvement of air 

quality (Davis et al., 2001; Richardson et al., 2011; Kangas and 

Maltamo, 2006). Constructing digital 3D models of shrubs has a 

wide range of applications in urban landscape design, ecological 

simulation, forestry management, virtual entertainment, and so 

on. In addition, many other applications related to ecological 

modeling and agroforestry management require accurate 

estimation of shrub parameters such as height, width, and stem 

diameter (Ke and Quackenbush, 2011). 

 

The traditional method of measuring shrubs is manual field work, 

which is usually expensive and time-consuming (Hyyppa et al., 

2001). In recent years, Light Detection and Ranging (LiDAR) 

technology has been widely used in forestry-related analysis and 

research. Because LiDAR scanning can directly capture the 3D 

point clouds of the scenes and obtain the accurate geometric 

details of objects, it is widely used in tree height estimation, 

crown analysis, tree species classification, and many other 

applications (Liang et al., 2016; Aschoff and Spiecker, 2004; 

Astrup et al., 2014; Béland et al., 2011). In addition, we can 

obtain high-density point clouds by applying LiDAR technology, 

which provides a data basis for accurate 3D modeling of shrubs. 

 

In order to construct accurate 3D models of shrubs, it is 

necessary to recover the branch shapes of shrubs. Due to the 

geometric characteristics of shrub branches, the common method 

to obtain the branch geometry is cylindrical fitting (Liu et al., 

2020). Therefore, the critical task of building the 3D models of 

shrubs is to obtain the topology of branches.   

 

To build the 3D model for a tree, Fu et al. (2020) first extract the 

initial skeleton by the octree and the level set method, then the 

error position is corrected by an optimization with cylindrical 

prior constraint (CPC). This method has a good effect on trees, 

but it has the problem of skeleton distortion for shrubs. The L1 

median method is widely used to extract the local center of the 

point cloud, and the skeleton of the point cloud can be obtained 

by connecting the local center points (Huang et al., 2013). 

However, the algorithm also has problems such as poor 

repeatability caused by random sampling, easy loss of details in 

the case of uneven density sampling, and wrong skeleton 

connection caused by threshold-based skeleton elongation. Lu et 

al. (2022) proposed an improved algorithm based on adaptive k-

means clustering to deal with the drawbacks of the L1 median 

skeleton extraction algorithm (Lu and Fan, 2022). It effectively 

improves the accuracy and repeatability of the point cloud 

skeleton, and can achieve better extraction results. However, in 

the data of shrubs with poor quality, the skeleton extracted by the 

L1 median will have problems such as position error and 

skeleton crossover. Gaillard et al. (2020) generated a 3D 

approximate skeleton of a plant through a voxel carving 

algorithm, and then transformed the skeleton into a mathematical 

tree by comparing and evaluating the path from each leaf or stem 

tip to the root of the plant. Finally, they used biologically inspired 

features to obtain the corresponding skeleton of the input plant. 

This method has a good effect on the extraction of herbaceous 

plant skeletons, such as corn, sorghum, etc. But there are 

problems such as skeleton loss when extracting shrub skeletons. 

Zhou and Toga (1999) proposed a voxelization coding method 

for the 3D modeling based on the distance field. The calculation 

of this method is simple and insensitive to the boundary 

complexity, but the skeleton obtained in the discrete domain is 

often discontinuous. Tagliasacchi et al. (2009) proposed a 

method based on the rotational symmetry axis (ROSA) to extract 

the skeleton. For multi-branch point clouds with large data gaps, 

the skeleton extracted by this method can still correctly represent 

the topology of the original model, but the method has a 

significant computational complexity. 
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This paper proposes a skeleton-based method to accurately 

construct 3D models of shrubs from an independent shrub point 

cloud. In order to solve the problem of redundant data, we divide 

the shrub point cloud into branch points and leaf points, so that 

the shrub branch skeleton is highlighted. Then, the minimum 

spanning tree (MST) algorithm is used to extract the initial tree 

skeleton. Finally, skeleton simplification and cylinder fitting are 

used to obtain the 3D models of the shrubs.  

 

2. METHODOLOGY 

The input of the proposed method is a TLS point cloud of shrubs. 

The original scanning point cloud contains the main branches 

and leaf structures of shrubs, but it is usually surrounded by 

strong noise and a large number of outliers. The output of the 

method is a 3D model. The first step is to segment the branch 

points and the leaf points. Secondly, the MST algorithm is used 

to extract the initial skeleton. The next key step is skeleton 

simplification. The initial skeleton is simplified by merging 

adjacent points. Finally, the simplified skeleton is smoothed 

using the Hermite curve, and the radius of each branch is 

calculated using the least square method. Figure 1 shows an 

overview of the module design of the proposed methodology. 

 

 

Figure 1. An overview of the proposed methodology. 

 

2.1 Splitting up branch points and leaf points 

The shrub point cloud obtained by LiDAR scanning is scattered 

and contains a large amount of redundant data. Splitting up the 

branch points from leaves can filter out outliers and eliminate the 

influence of leaf points, thereby reducing the number of points. 

Besides, the segmentation process consolidates the branch 

skeleton of shrubs, which helps to accelerate the calculation 

speed of subsequent construction models.  

 

2.1.1 Segmentation according to the intensity value: The 

intensity value obtained by LiDAR scanning is the echo intensity 

of digital representation, which is proportional to the number of 

photons hitting the detector (Core and Sterzai, 2006). The 

intensity values of branch points and leaf points are different due 

to their different physical reflectivity. In order to adapt to 

different types of shrub point clouds, we use an adaptive intensity 

threshold to segment the branch points and leaf points. First, a 

spatial index K-D tree is established for the input point cloud. 

Based on the Random Sample Consensus (RANSAC) algorithm, 

𝒏 points are randomly selected as seed points. Second, the local 

point set is sampled in a spherical space using the seed points as 

the center and 𝜸  as the radius. Then, the density of each 

sampling point set is calculated. According to the shrub point 

cloud data used in this paper, 𝒏 is set to 1000 and 𝜸 is set to 

0.03.  

 

The entire density interval [𝜌𝑚𝑖𝑛, 𝜌𝑚𝑎𝑥] is quartered. The points 

in the spherical sampling space with densities greater than 𝜌3/4 

are defined as branch points, and the points with densities less 

than 𝜌1/4  are defined as leaf points. The calculation of 𝜌3/4 

and 𝜌1/4 is shown in Formula (1). 

 

{

𝜌3
4
= 𝜌max −

𝜌max − 𝜌min

4

𝜌1
4
= 𝜌min +

𝜌max − 𝜌min

4

(1) 

 

According to RANSAC theory, the sample points can 

approximately represent the intensity distribution of the original 

point cloud. The intensity values of the branch and leaf points 

obtained by the statistics are analyzed, and the intensity curves 

are fitted respectively. The intersection of the curves is used as 

the intensity threshold 𝐼𝑡 to segment the global point cloud, and 

the initial branch points and leaf points are obtained. As shown 

in Figure 2, the intersection of the intensity curves of the branch 

points and the leaf points is used as the intensity threshold 𝐼𝑡.  

 

 

Figure 2. Intensity curves.  

 

2.1.2 Refine the Segmentation based on neighborhoods: Due 

to the overlap of intensity values, some points will be divided 

into wrong categories. The neighborhood classification method 

is used to find the misclassified leaf points in the branch points 

according to the spatial geometric information, so as to obtain 

the final branch points. The distribution of branch points is more 

regular compared with leaf points. Therefore, it can be inferred 

that the spatial distribution of branch points is also compact and 

dense, while the misclassified leaf points are sparse and discrete 

in the initial branch points. First, a K-D tree is constructed for the 
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initial branch points to facilitate the search of adjacent points. 

Secondly, according to the formula (2), the average distance 𝒅𝒂 

between each point 𝒑  in the initial branch points and its K 

nearest neighbor points is calculated. 

 

𝑑𝑎 =
∑ 𝑑𝑛
𝐾
𝑛=1

𝐾
(2) 

 

where 𝑑𝑛 is the distance from each adjacent point to the target 

point. Empirically, the number of neighborhood points K is set 

to 8. At last, we set a distance threshold 𝑇 to judge the class of 

the target points. If the 𝑑𝑎 value of the target point is less than 

𝑇, the point is classified as the final branch point. Otherwise, the 

point is classified as leaf point.  

 

2.2 Skeleton initialization 

In the shrub point cloud, adjacent points are likely to belong to 

the same branch. Based on this observation, we use an MST 

algorithm to extract the initial skeleton from the extracted point 

cloud of branches. Delaunay triangulation is first performed on 

the point cloud to form a triangulation network (Zhou et al., 

2002). Moreover, Delaunay triangulation helps to complete 

missing regions or incomplete branches, which ensures the 

robustness of the proposed method to input point clouds with 

poor data quality. After obtaining the Delaunay triangulation, the 

length of each edge of a triangle is used as a weight to judge all 

edges. We use the Dijkstra shortest path algorithm to calculate an 

MST from the triangulation network as the initial skeleton. 

Figure 3 shows the initial skeleton extracted from the input 

points using the shortest path algorithm. 

 

When calculating the MST, the root point of the point cloud 

needs to be defined first, and the root point is used as the initial 

point of the MST. Due to the shape characteristics of shrubs, it is 

hard to distinguish the root point within the point cloud, so the 

lowest point in the data cannot be directly used as the root point. 

We assume that the roots of shrubs are located in the bottom 

center of the entire shrub. Therefore, this paper solves this 

problem by deliberately selecting the points of the shrub point 

cloud data center. Firstly, the size of the box in the 3D space of 

the whole point cloud is calculated. The points in the central part 

of the box are extracted, and then the lowest point in this part is 

found as the root point. 

 

 

Figure 3. Initial skeleton. 

 

2.3 Skeleton simplification 

The initial skeleton has a large number of redundant points and 

edges. It is possible to delete a large number of redundant edges 

to further simplify the shrub skeleton without affecting the 

reconstruction accuracy of the model. Assigning weight values 

to each point and each edge in the initial skeleton will help to 

further simplify the skeleton. In this paper, the weight value is 

assigned to each point according to the length of the subtree. The 

subtree of a point is defined as a collection consisting of itself 

and its offspring points and edges. Therefore, the weight value 

𝑤𝑖 of a point 𝒑𝑖 is calculated as the sum of the lengths of all 

edges in its subtree. The weight value of each branch is the 

average of the weights of its two points. In this way, the points 

and edges of the top area of the shrub have consistent low weight 

values. The trunk branches near the bottom area of the shrub will 

obtain larger weight values, while the small branches near the 

trunk will obtain very small weight values. Such characteristics 

can help us to remove the small noisy branches lying on the main 

branches, while retaining the small branches in the upper part of 

the shrub. 

 

After simplifying the initial skeleton by the weight value, there 

are still some redundant edges and points. This paper simplifies 

these edges and points by detecting the proximity between 

adjacent points. The similarity 𝛽  is defined to describe the 

closeness between adjacent points. There are two possible cases 

where the current point has one child point or multiple child 

points. 

 

For points with only one child point, the skeleton simplification 

problem is transformed into a line simplification problem. In this 

paper, if the distance between the current point and the line 

segment formed by its parent point and child point is closer, the 

importance of the current point is lower. Therefore, the similarity 

𝛽 is defined as: 

 

𝛽 = 𝑑 (
𝑤𝑐

𝑤max
)
1.1

(3) 

 

where 𝑑 represents the distance between the current point and 

line segment formed by its parent point and child point, 𝑤𝑐  is 

the weight of the current point, 𝑤max is the maximum weight 

of all points. Setting the exponential rate to 1.1 is to adjust the 

adaptability of the similarity. If the similarity 𝛽 is less than the 

given threshold 𝜎, it is considered that the current point is less 

important and can be deleted from the skeleton.  

 

For points with more than 2 child points, we compare each pair 

of child points iteratively. Every time, we determine whether a 

pair of child points need to be merged by a similarity score 𝛽. If 

merging is necessary, we will include the merged point in the set 

and delete the original two. The similarity 𝛽 of any two child 

points is calculated by: 

 

𝛽 = min (𝑙1sin𝜃 (
𝑤𝑐

𝑤max
)
1.1

, 𝑙2sin𝜃 (
𝑤𝑐

𝑤max
)
1.1

) (4) 

 

where 𝑙1  and 𝑙2  represents the lengths between the current 

point and its two child points, 𝜃 is the angle between the two 

edges of the current point and two child points. It should be noted 

that the similarity calculated from different directions is different, 

so we choose the minimum value to judge the closeness between 

adjacent child points. By calculating the similarity 𝛽  of each 

two child points, we can get a set of similarity {𝛽𝑖}. 
 

If the minimum similarity 𝛽min  in the {𝛽𝑖}  is less than the 

given threshold 𝜎, the two child points corresponding to 𝛽min 

are needed to be merged. We use formula (5) to merge these two 

child points into a new child point to complete the simplification. 

The merged new child point position is the weighted average of 

the original two child points. 

 

𝒑new =
𝒑1𝑤1 + 𝒑2𝑤2

𝑤1 +𝑤2

(5) 
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where 𝒑new represents the position of the new child point, 𝒑1 

and 𝒑2 are the positions of the original two child points, and 

𝑤1  and 𝑤2  are the weight values of the original two child 

points, respectively. Figure 4 shows the simplification process. 

 

 

Figure 4. Point simplification by merging similar child points. 

 

2.4 Cylinder fitting 

The simplified skeleton can already represent the topological 

structure of the shrub. On this basis, this paper smooths the shrub 

skeleton by Hermite curve fitting. The method makes the models 

of branches more in line with the bending characteristics of shrub 

branches. Then, the cylinder fitting method is used to accurately 

simulate the geometry of the branches. In practice, we use two 

different means to adjust the cylinders for the branches, which 

are divided into two types, namely trunk branches and branch 

tips. 

 

If the branches don’t contain the leaf points in the MST, these 

branches are not belonging to branch tips, and they usually have 

high point density. We use a robust principal component analysis 

(RPCA)-based method to obtain accurate branch geometries 

(Nurunnabi et al., 2019). Firstly, the points near each branch are 

segmented and identified. Then, the cylinder surface of each 

branch is fitted according to the corresponding branch points to 

approximate the branch geometry. Figure 5 illustrates the 

cylinder fitting process. 

 

 

Figure 5. Parameters to be solved in cylindrical fitting. 

 

The input data for the cylinder fitting is a set of coordinates {𝒑𝑖} 
of the divided branch points. The point set is selected by 

calculating the distance to the line segment in the skeleton. We 

choose the points within a distance of 3.5 times the weight of the 

line segment as the branch points. The parameters to be solved 

include the axial direction vector 𝜶 of the cylinder, the position 

𝒑𝒂 of the endpoint on the axis, and the radius 𝑟 of the cylinder. 

In this paper, principal component analysis (PCA) is used to 

calculate the axial direction vector 𝛼 and the position 𝑃𝑎 of the 

endpoint on the axis. To solve radius 𝑟, we design an objective 

function, which minimizes the sum of the distance from the 

branch points to the initial cylinder. 

 

𝑟 = argmin(∑|𝑑𝑖 − 𝑟|

𝑛

𝑖=1

) ⁡⁡ (6) 

where |𝑑𝑖 − 𝑟| represents the distance from the point 𝑃𝑖 to the 

cylindrical surface. The Levenberg-Marquardt (LM) algorithm is 

used to solve the nonlinear least squares problem (Marquardt, 

1963). With the help of the LM algorithm, the initial cylinder 

radius 𝑟 can be calculated.  

 

In order to further improve the quality of the solution, we 

introduce weights for each point to adjust 𝑟. The weight 𝜆𝑖 of 

each branch point is defined as follows: 

 

𝜆𝑖 = 1 −
|𝑑𝑖 − 𝑟|

𝑑max

(7) 

 

where 𝑑max denotes the maximum distance among all distances 

between the points of the specific branch and its initial cylinder. 

By formula (7), the weights of all the points of the branch are 

normalized. Then, the objective function is updated to: 

 

𝑟new = argmin⁡ (∑𝜆𝑖|𝑑𝑖 − 𝑟new|

𝑛

𝑖=1

) (8) 

 

Once again, we use the LM algorithm to solve formula (8) and 

get the adjusted 𝑟. Using the calculated 𝒑𝒂, 𝒂, and 𝑟, we can 

generate the cylinder surface for each branch. 

 

On the other hand, the points near the top of the shrub are usually 

noisy, and it is difficult to perform accurate cylindrical fitting. 

We treat these branches as branch tips and calculate their radius 

by using the weights of the branches: 

 

𝑟𝑖 = 𝑟̅ (
𝑤𝑖

𝑤̅
) (9) 

 

where 𝑟𝑖  represents the radius of the 𝑖 -th branch, and 𝑟̅ 

represents the average radius of all trunk branches, which are 

calculated by (8). 𝑤𝑖 represents the weight value of the 𝑖-th 

branch, and 𝑤̅ represents the average of the weight values of all 

trunk branches. As described in section 2.3, the weight value of 

a trunk branch is the average of the point weights of its two end 

points in the MST. 

 

3. RESULTS 

3.1 Experimental results 

All point clouds in our experiment are acquired with a TLS 

device. The scanning equipment is Leica BLK360. The scanning 

process is performed independently for an individual shrub, and 

the shrub point cloud data is manually extracted after the 

scanning. Figure 6 shows the reconstruction results of 2 sets of 

data. The bottom part of the original point cloud of Shrub 1 is 

missing, and the points of Shrub 2 have a higher density and 

noise level. The models reconstructed from these two data sets 

show that the proposed method can handle shrubs with different 

shapes and structures. 

 
Shrub 1                     Shrub 2 

Figure 6. 3D models of shrubs.  
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In this paper, the accuracy of the modeling results is quantified 

by calculating the average distance from the input shrub point 

cloud data to the generated model (P2M distance) (Du et al., 

2019). The shortest distance from each point in the original shrub 

point cloud to the model surface is calculated, and the original 

point cloud is colored according to the distances, as shown in 

Figure 7. The closer the color to blue, the shorter the distance; 

and vice versa. Table 1 lists the statistics corresponding to Figure 

7. We can observe that the points located in the main branch are 

usually closer to the model, and the points near the tip of the 

branch usually have larger errors. The results demonstrate that 

the proposed method can generate high-precision main branch 

structures of shrubs. However, as the points near the tip of the 

branches become sparser, the point density is not sufficient to 

reliably reconstruct such branches.  

 
Shrub 1                Shrub 2 

Figure 7. Geometric error heat map.  

 

Number 
Total 

Points 
Complexity 

P2M distance 

(cm) 

Shrub 1 272925 Easy  0.98 

Shrub 2 1012927 Difficult 1.18 

Table 1. Shrub data statistics related to Fig.7.  

 

3.2 Parameter tuning 

In our methodology, distance threshold 𝑇  and similarity 

threshold 𝜎 are introduced in point segmentation and skeleton 

simplification. This section will discuss the influence of different 

parameter settings on the modeling results. On this basis, we 

select the threshold that is most suitable for our method. 

 

The distance threshold 𝑇⁡controls the degree of outlier filtering 

in the density-based branch separation. According to the 

experimental data, we test the threshold 𝑇 from 0.005 to 0.009, 

and the results are shown in Figure 8. Through experiments, 

many branch points are misclassified into leaf points when the 

threshold is too small, resulting in the incomplete skeleton of the 

final branch points. When the threshold is too large, the wrong 

leaf points contained in the initial branch points are not classified. 

Therefore, we choose 0.007 as the segmentation threshold.  

 

 
𝑇 = 0.005   𝑇 = 0.007   𝑇 = 0.009 

Figure 8. Segmentation results using different segmentation 

thresholds. 

 

The similarity threshold 𝜎 controls the similarity of points in 

the skeleton simplification process. According to the 

experimental data, we test the threshold 𝜎 from 1.0 to 2.0, and 

the results are shown in Figure 9. The degree of skeleton merging 

at the branches is low when the simplified threshold is small, 

which does not meet the characteristics of branch growth; there 

will be excessive simplification when the simplification 

threshold is large. Therefore, through experiments, we choose 

1.5 as the simplification threshold. 

 
𝜎 = 1            𝜎 = 1.5            𝜎 = 2 

Figure 9. Skeletonization results using different similarity 

thresholds. 

 

3.3 Comparisons 

This section compares the proposed method with two other 

methods proposed for tree model reconstruction. Figure 10 

shows the modeling results compared with PypeTree 

(Delagrange et al., 2014) and AdTree (Du et al., 2019). PypeTree 

is a tool for reconstructing tree model from point clouds that were 

acquired with TLS. It introduces the idea of using semi-

supervised adjustment tools to further improve reconstruction 

accuracy. AdTree is a tool based on extracting skeleton to build 

a tree model. It has a good modeling effect for trees.  

 

Table 2 lists the accuracy parameters corresponding to Figure 10. 

It can be seen that the result of PypeTree only provides a rough 

description of the shrub topology, and does not restore the branch 

geometry. AdTree can extract the topological structure and 

branch geometry of shrubs. However, the modeling results of 

AdTree are very dependent on data quality. For point cloud data 

with gaps and large amounts of noise, the modeling results are 

seriously distorted. The model of shrub 2 generated by AdTree 

has higher accuracy because it contains a large number of 

redundant branches filling the entire data space, as shown in 

Figure 11. Although the AdTree points can get a small P2M 

distance, each point participating in the calculation did not obtain 

the true distance. On the contrary, the proposed method can 

construct models with higher topological and geometric 

accuracy for shrub data sets.  

 
Point clouds    PypeTree     AdTree       Ours 

Figure 10. 3D models of shrubs constructed by different 

methods. 
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P2M distance (cm) PypeTree  AdTree Ours 

Shrub 1 1.53 1.13 0.98 

Shrub 2 2.32 1.07 1.18 

Table 2. The accuracy of shrub models with different methods 

corresponding to Fig.10. 

 

 

Figure 11. Redundant branches generated by AdTree. 

 

4. CONCLUSION 

This paper proposes a method for automatically reconstructing 

3D models of shrubs from LiDAR point clouds. A novelty of the 

method proposed is that the input shrub point cloud is first 

divided into branch points and leaf points, so as to obtain branch 

point cloud with obvious branch skeleton, which helps to 

improve the accuracy of shrub skeleton extraction. In addition, 

the cylindrical fitting method based on RPCA can better fit the 

geometric structure of shrub branches. Experiments show that 

the proposed method is robust when dealing with shrub point 

clouds of various types and sizes.  

 

ACKNOWLEDGEMENT 

This work was supported in part by the National Natural Science 

Foundation of China (No. 42271343) and the National Natural 

Science Foundation of China (No. 42177387), and supported by 

the Fund of State Key Laboratory of Remote Sensing 

Information and Image Analysis Technology of Beijing Research 

Institute of Uranium Geology (6142A01210403).  

 

REFERENCES 

Aschoff, T., Spiecker, H., 2004: Algorithms for the automatic 

detection of trees in laser scanner data. The International 

Archives of the Photogrammetry, Remote Sensing and Spatial 

Information Sciences, 36, 71-74. 

 

Astrup, R., Ducey, M.J., Granhus, A., Ritter, T., von Lüpke, N., 

2014: Approaches for estimating stand-level volume using 

terrestrial laser scanning in a single-scan mode. Canadian 

Journal of Forest Research, 44(6), 666-676. 

 

Béland, M., Widlowski, J-L., Fournier, R.A., Côté, J-F., 

Verstraete, M.M., 2011: Estimating leaf area distribution in 

savanna trees from terrestrial LiDAR measurements. 

Agricultural and Forest Meteorology, 151, 1252-1266. 

 

Core, F., Sterzai, P., 2006: Radiometrc correction in laser 

scanning. International Journal of Remote Sensing, 27(15), 

3097-3104. 

 

Davis, L.S., Johnson, K.N., Bettinger, P.S., Howard, T.E., 2001: 

Forest management: To sustain ecological, economic, and social 

values. Boston: McGraw Hill. 

 

Delagrange, S., Jauvin, C., Rochon, P., 2014: PypeTree: A tool 

for reconstructing tree perennial tissues from point clouds. 

Sensors, 14, 4271-4289. 

 

Du, S., Lindenbergh, R., Ledoux, H., Stoter, J., Nan, L., 2019: 

AdTree: Accurate, Detailed, and Automatic Modelling of Laser-

Scanned Trees. Remote sensing, 11, 2074. 

 

Fu, L., Liu, J., Zhou, J., Zhang, M., Lin, Y., 2020: Tree 

Skeletonization for Raw Point Cloud Exploiting Cylindrical 

Shape Prior. IEEE Access, 8, 27327-27341. 

 

Gaillard, M., Miao, C., Schnable, J., Benes, B., 2020: Sorghum 

segmentation by skeleton extraction. Computer Vision - ECCV 

2020 Workshops, 296-311. 

 

Huang, H., Wu, S., Cohen-Or, D., Gong, M.L., Zhang, H., Li, G., 

Chen, B., 2013: L1-Medial Skeleton of Point Cloud. ACM 

Transactions on Graphics, 32(4): 1-10. 

 

Hyyppa, J., Kelle, O., Lehikoinen, M., Inkinen, M., 2001: A 

segmentation-based method to retrieve stem volume estimates 

from 3-D tree height models produced by laser scanners. IEEE 

Transactions on Geoscience and Remote Sensing, 39(5), 969-

975. 

 

Kangas, A.S., Maltamo, M., 2006: Forest Inventory: 

Methodology and Applications. Springer. 

 

Ke, Y., Quackenbush, L.J., 2011: A review of methods for 

automatic individual tree-crown detection and delineation from 

passive remote sensing. International Journal of Remote Sensing, 

32(17/18), 4725-4747.  

 

Liang, X., Kankare, V., Hyyppä, J., Wang, Y., Kukko, A., 

Haggrén, H., Yu, X., Kaartinen, H., Jaakkola, A., Guan, F., 2016: 

Terrestrial laser scanning in forest inventories. ISPRS Journal of 

Photogrammetry and Remote Sensing, 115, 63-77. 

 

Liu, Z., Zhang, Q., Wang, P., Li, Z., Wang, H., 2020: Automated 

Classification of Stems and Leaves of Potted Plants Based on 

Point Cloud Data. Biosystems Engineering, 200, 215-230. 

 

Lu, B., Fan, X., 2022: Research on 3D Point Cloud Skeleton 

Extraction Based on Improved Adaptive k-means Clustering. 

Acta Automatica Sinica, 48(8), 1994-2006. 

 

Marquardt, D.W., 1963: An algorithm for least-squares 

estimation of nonlinear parameters. Journal of the Society for 

Industrial and Applied MathematicsSoc, 11(2), 431-441. 

 

Nurunnabi, A., Sadahiro, Y., Lindenbergh, R., Belton, D., 2019: 

Robust cylinder fitting in laser scanning point cloud data. 

Measurement, 138, 632-651. 

 

Richardson, D.M., Rejmánek, M., 2011: Trees and shrubs as 

invasive alien species - a global review. Diversity and 

Distributions, 17, 788-809. 

 

Tagliasacchi, A., Zhang, H., Cohen-Or, D., 2009: Curve skeleton 

extraction from incomplete point cloud. ACM Transactions on 

Graphics, 28(3), 71. 

 

Zhou, H., Shenoy, N., Nicholls, W., 2002: Efficient minimum 

spanning tree construction without Delaunay triangulation. 

Information Processing Letters, 81, 271-276.   

 

Zhou, Y., Toga, A.W., 1999: Efficient Skeletonization of 

volumetric objects. IEEE Transactions on Visualization and 

Computer Graphics, 5(3), 196-209. 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-1/W1-2023 
ISPRS Geospatial Week 2023, 2–7 September 2023, Cairo, Egypt

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-1-W1-2023-575-2023 | © Author(s) 2023. CC BY 4.0 License.

 
580




