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ABSTRACT:

Ground filtering is an important tool for many applications. The high variability of landscapes makes it necessary to perform its
computation with 3D points as the only input, that is, with as few as possible algorithm parameters and without any training data. In
the case of terrestrial laser scans, an additional challenge comes from a highly inhomogeneous point density. The SiRP algorithm
on ground filtering, relying on intermediate validating superpixels as ground or non-ground, was previously developed for airborne
point clouds. We consider a dataset acquired by a mobile mapping system mounted on a car, which was extended by additional
stationary laser scans. The registration algorithm is based on hierarchical merging. Afterwards, SiRP was applied to both uni-modal
and multi-modal point clouds. Impressive qualitative and quantitative classification results with around 97 % on overall accuracy
were obtained and discussed.

1. INTRODUCTION

Thanks to the increasing employment of mobile and stationary
laser scanning and advanced techniques for registration of scans
captured at different locations, there is also broader access to
high density outdoor point clouds, which, in turn, reflects in
many applications of surveillance, registration, and geometric
modeling. For many of these applications, filtering out veget-
ation and clutter points is an essential step. Consider registra-
tion: One knows that temporarily dependent objects, such as
trees and vehicles, are challenging for registration. Retrieving
the ground is sensible if one wants to perform a stratified regis-
tration, since once the ground has been aligned, only the issues
of rotation around the xy plane and planar translation remain to
be solved. Consider clustering: subdivision into two categories
is not only useful for the computation of DTMs (digital ter-
rain models) but also allows facilitating hierarchical clustering
of the non-manifold (tree, bush, vehicles) and manifold (build-
ings, terrain) points using a few relatively simple features, such
as relative height and normal vector.

Recently, an approach called SiRP (Superpoints in RANSAC
Planes), by (Bulatov et al., 2020), allowing subdivision of air-
borne point clouds into locally planar and non-planar regions,
was proposed. The advantage of SiRP is that it can handle both
purely 3D structures of data and scarcity, or even absence, of
training examples. In (Bulatov et al., 2021), this method was
applied to both an actively-sensed airborne point cloud and a
result of a photogrammetric reconstruction from a UAV-borne
sequence of high-resolution images. The UAV flight around the
Gubbio wall (Italy) at a moderate altitude ensured a sufficient
overlap of images. This means that, though the point density
varied strongly from dataset to dataset, it was relatively con-
stant within the dataset, with a few exceptions in the area of
overhanging structures. In the case of stationary laser scans,
the inhomogeneous point density is systematic, with orders of
magnitude density difference between points close to the scan
position and those only a few meters further away.

The task of this paper is to find out how well SiRP can perform
ground filtering for laser point clouds collected with a stationary
laser scanner (SLS) and a mobile laser scanner (MLS) in urban
areas. The scans from the MLS are geo-referenced. The station-
ary scans are registered to the mobile scans using a multi-view
registration algorithm based on hierarchical merging. We de-
scribe this algorithm and the successive (ground) point filtering
algorithm in Section 3; however, we start with the description
of the relevant previous works (Section 2). The methodology
is applied to the multi-modal point clouds as described in Sec-
tion 4 while the main conclusions and ideas for future works
are presented in Section 5.

2. PREVIOUS WORKS

2.1 Point clouds registration

Point cloud registration has been receiving continuing research
attention. A recent survey is given in (Dong et al., 2020). Here
we briefly summarize the research trends. The existing point
cloud registration methods could be categorized into coarse re-
gistration and fine registration. The coarse registration tries to
find the initial transformation between two point clouds without
any prior information. In contrast, the fine registration refines
the initial transformation information using local matches.

Coarse registration methods can be grouped into local ones,
based on local features, and global ones, based on correlation
or convolution. The local methods start with feature extraction
and then match features by nearest neighbor search, and then
solve for the relative pose with a robust least squares method.
Common feature extraction methods include fast point feature
histograms (FPFHs) (Rusu et al., 2009), USIP (Li and Lee,
2019), D3Feat (Bai et al., 2020), etc. The global methods dir-
ectly transform the entire point clouds and derive the relative
pose, including those based on correlation and those based on
deep learning. Examples of the correlation approaches are (Tsin
and Kanade, 2004) and (Bernreiter et al., 2021). The end-to-end
deep-learning approaches for registration include the DeepVCP
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(Lu et al., 2019), (Deng et al., 2019), and OverlapNet (Chen et
al., 2021).

For fine registration methods, the nearest corresponding prim-
itives searching and parameter estimation are two keys for the
accurate transformation (Rusinkiewicz and Levoy, 2001). In
the corresponding primitives searching step, correspondences
are selected between two point clouds according to the nearest
distances or nearest descriptors (Honda et al., 2022). In the
parameter estimation step, the transformation between the two
point clouds is estimated using the selected correspondences.
The above two steps are performed iteratively until the geomet-
ric error converges and results in accurate transformation (Yang
and Li, 2022). An epitome of fine registration methods is the
iterative closest point (ICP) algorithm proposed in (Besl and
McKay, 1992).

The above papers mainly focus on registration of point clouds
captured by the same type of LiDAR. Authors (Zang et al.,
2021) proposed a patch-based approach consisting of a cas-
caded neural network for pose estimation and a global refine-
ment to register SLS points to TLS points, but it could take up
to 3 minutes for one pair of registration in our tests (30 mil-
lion points). As such, this study used an established hierarch-
ical approach (Dong et al., 2018) for co-registering point clouds
captured by a MLS and a SLS.

2.2 Point filtering

There are numerous methods for 3D point cloud filtering. As
has been mentioned, for example, in the survey article of (Chen
et al., 2017), it is very difficult to separate a complex terrain re-
lief from a variety of non-ground features using a set of limited
parameters since ground DTM generation methods are usually
applied to large-scale sites. Therefore, methods for ground fil-
tering have been continuously developed.

The pioneering work of (Kraus and Pfeifer, 1998) for extract-
ing ground surface and thus a DTM from airborne laser scan-
ning data using iterative robust plane fitting has been followed
by algorithms based on slope-based filtering (Vosselman, 2000,
Sithole and Vosselman, 2001), edge-based filtering (Brovelli
et al., 2002), segment-based filtering (Sithole and Vosselman,
2004), progressive morphological filtering (Zhang et al., 2003)
and hierarchical filtering (Mongus and Žalik, 2012), as well as
based contour analysis (Elmqvist et al., 2001).

The more recent articles constitute probabilistic pipelines (Hui
et al., 2019). The method of (Mousa et al., 2021) allows dealing
with incomplete point clouds by adjusting the filter shape. The
increasing availability of training data made it possible to ap-
ply very robust deep-learning pipelines, such as (Hu and Yuan,
2016, Gevaert et al., 2018, Rizaldy et al., 2018, Jin et al., 2020).

Still, as the name “manifold filtering” reveals, we are searching
for a quite basic set of surfaces in the point clouds, which makes
the application of deep-learning-based methods an overkill. With
respect to the manifold extraction from point clouds, we are
inspired by the RANSAC-based procedure of (Schnabel et al.,
2007), who have applied RANSAC to unorganized point clouds
in order to fit selected manifolds of first and second degree
(planes, cylinders, cones, etc.), whereby the points were given
a normal vectors. Other authors use Hough transform (Rab-
bani and Van Den Heuvel, 2005). Also here, deep learning is
unstoppable, finding its way into application-based research in
recognizing advanced shapes in 3D (Deprelle et al., 2019).

3. METHODOLOGY

This section presents our method to register the point clouds
from two modalities, the MLS, and the SLS, and our method to
segment ground from the registered points.

3.1 Point cloud registration

We have point clouds collected from two types of devices, the
mobile mapping system (MMS) including an MLS mounted on
a car, and an SLS setup at several stops for capturing stationary
data.

The MMS utilizes GNSS-IMU locations to directly geo-reference
laser scanning data for mapping an area. The car moves around
while the MLS collects profiling laser data, color images, as
well as GNSS and tactical-grade IMU data. The Waypoint In-
ertial Explorer GNSS-IMU post-processing software package
is used to compute the car’s trajectory at 100 Hz by combin-
ing the commercial RTK correction data to the GNSS and IMU
data collected by the on-board GNSS-IMU unit. The computed
trajectory is used to geo-reference the raw laser data consider-
ing the sensor calibration parameters to get the aggregated 3D
point clouds. These points are colored by the corresponding
pixels from the image data, considering the sensor calibration
information.

The MLS data has missed some parts of road surfaces and build-
ing facades due to occlusions. The SLS collection is done to
complement the area mapping. From the geo-referenced MLS
point clouds, we visually identified several areas with sparse
laser point coverage, e.g., fractured road surfaces. Then, a SLS
was set up at these area centers to gather more points.

To register the points from the SLS data to the MLS points, we
adopt a hierarchical registration approach (Dong et al., 2018)
which consists of a descriptor-based linear least squares method
for relative transformation initialization and the subsequent
ICP method for refinement. This pipeline is designed for ef-
ficiency and robustness in view of the existing geometric and
learning-based registration approaches.

In the descriptor-based solver, we first detect keypoints with
the method in (Mian et al., 2010). Then, for these keypoints,
binary shape context descriptors are extracted as in (Dong et
al., 2018). Keypoints between two point clouds are matched
by the nearest neighbor search, and mutually the best matches
are accepted. To deal with outlier matches, we iteratively check
the difference of distances between two pairs of matches, and
build groups of matches with similar inner distances. With the
largest group of consistent matches, we compute the relative
transform between the two point clouds using the algorithm of
(Umeyama, 1991). The resultant relative transform is further
refined by the generalized ICP method (Segal et al., 2009). With
the refined relative transform, we map the SLS points to the
MLS coordinate frame. The merged point clouds are processed
by the ground filtering method described next.

3.2 Ground filtering of co-registered points

As illustrated in Figure 1, the algorithm SiRP could be divided
into five main steps. First, the point cloud {p} is approxim-
ated with so called superpoints s. Second, for each superpoint
a RANSAC plane rs is calculated, based on its nearest point
cloud neighbors G(s, p). Third, the superpoints are classified
concerning their distance to the RANSAC plane d(s, rs). To
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refine this result, the isolated ground superpoints are removed
in the fourth step by clustering. Finally, the result of the su-
perpoint classification is transferred to the original point cloud
p(s). While the formal description of the algorithm can be
found (Bulatov et al., 2020), we give a more detailed descrip-
tion of these steps below.

Figure 1. SiRP functionality

Superpoints can be thought of as flexible voxels. In a first
step, the coordinates are discretized, which is analogous to the
voxels. The grid size is an important hyperparameter. After-
ward, all discretized points with the same coordinate are as-
signed to one superpoint. Its geometric coordinates are determ-
ined by the mean of the coordinates of points in the voxel.

The last averaging step is the core difference regarding a voxel
grid. The averaging helps us achieve a better approximation to
the point cloud that is not fixed to a grid. A comparison of both
methods could be seen in Figure 2.

Figure 2. Point cloud approximation using voxels or superpoints

For each superpoint s, a RANSAC plane r is calculated. RANSAC
is an iterative method to fit a geometry according to a point
set, without influence of outliers. Therefore, we determine the
nearest point cloud neighbors, also called support set, of the su-
perpoint G(s) by a radius search (RNN). By this, we use the full
data resolution and have few computation steps. With these, the
RANSAC plane s is fitted as

rs = RANSAC(G(s, p))

For RANSAC, we calculate 100 planes and compute their para-
meters and inlier sets in parallel. 100 planes are a good tradeoff
between computation time and accuracy. This number is found
by tests. As a consequence, the computation time does not in-
crease significantly with an increase or decrease of the super-
pixels density: higher density means many superpixels, but, at
the same time, smaller support sets.

Based on the distance of the RANSAC plane, calculated by the
nearest point cloud neighbors G(s, p), according to the position
of the superpoint d(s, rs), these are classified as manifold (=
ground) or non-manifold. The distance threshold only depends
on the superpoint resolution.

To remove superpoint outliers (small manifold-like segments,
e.g. roofs) the ground superpoints are clustered by a further,
greater distance value. All clusters containing too few number
of superpoints are assigned as non-ground and removed.

Finally, the classification result of the superpoints is transferred
to the original point cloud (Figure 3). The point criteria to clas-
sify as ground is to be within a specific number of ground su-
perpoint RANSAC planes. Again, the tolerance threshold is
automatically derived from of the superpoint resolution.

Figure 3. Transfer of superpoint classification to point cloud

4. RESULTS

4.1 Data description

The mobile data was acquired by using the Alpha3D MMS 1

in the Wuhan University campus, Hubei, China, at about 3 pm
Nov 18 2021 (see Figure 4). The Alpha3d MMS consists of
a single RIEGL VUX-1 laser scanner of a 360 ◦ field of view
(FOV) and a 475 m maximum range, a GNSS/INS unit of a
tactical-grade IMU of gyro’s in-run bias stability 0.25 ◦/hr, and
a spherical camera rig of six synchronized cameras each ac-
quiring 5 MP images at 10 Hz. The point clouds captured by
the laser scanner have a relative accuracy of 5 mm in the 100 m
range. The MMS churns out up to 1.8 million points/s. All
sensors were calibrated with the proprietary software shipped
with the MMS before the data collection.

The complementary stationary data were collected using a Leica
RTC360 SLS with a horizontal FOV of 360◦ and a vertical FOV
of 300◦. The measurement accuracy was 2.9 mm at the 20 m
distance. The scans were captured in the “medium density”
mode, with a point spacing of 6 mm at 10 m both horizontally
and vertically.

Once the data is co–registered by the method in Section 3.1 (see
Figure 4.2), two different point cloud fragments about
50 × 40 × 30 m are chosen. These test segments were selected
from several views of the Wuhan University campus along one
main road, as shown by two white polygons in Figure 4. We

1 https://chcnav.com/product-detail/alpha3d
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Figure 4. The two test areas demarcated by white rectangles on
Google Earth.

try to cover the variety of the whole point cloud in these two
segments. One segment was in a scene of mainly road surface,
trees, bushes, with a rectangular shape of an area 1668.0 m2. In
the other segment, the point clouds fall on road surface, trees,
ironwire meshes, and buildings, with a rectangular shape of an
area 2071.6 m2. We refer to Figure 5 for illustration of the cor-
responding point clouds.

In both test areas, points were manually labeled with the point
labeler 2 in order to evaluate the classification performance.
The point labeler was originally created for the SemanticKITTI
benchmark (Behley et al., 2019) to label point clouds. We ad-
apted its interface to load our point cloud chunks. The tool
supports up to 26 classes, but we collapsed the classes down to
five (structures, vegetation, ground, moving agents, and others)
since our primary goal is about ground and vegetation filtering.
The structure class include buildings, lamps, traffic signs, wire
fence, short posts, trash bins, guardrails. The vegetation class
include trees, trunks, bushes, but excludes grassland. The agent
class include pedestrians, cars, trucks, bicycles, motorcycles
and riders. The ground class include road, sidewalk, parking
lots, grassland, lane markings.

The reference labels were created by labeling points manually
within the point labeler tool. At least one other person inspected
the labeling and suggests corrections, per which the labels were
retouched.
4.2 Registration
The SLS data were registered to the MLS data by the regis-
tration method in Section 3.1. For the test site 1, the point
2 https://github.com/jbehley/point_labeler

(a) Segment 1 (b) Segment 2

Figure 5. Segments in RGB

clouds before and after the registration are shown in Figure 6
which shows that the SLS and MLS point clouds were precisely
aligned. By setting a distance threshold on inliers for registra-
tion, the moving objects and growing plants have negligible ad-
verse effects on the registration as the lampposts and road curbs
from the two data sources are well aligned.

(a) Segment 1

(b) Segment 2

Figure 6. Blended views of the registered green MLS data and
pink SLS data; left before and right after the registration.

However, the median strip on the road is measured from the
opposite side of the street, we have aligned it manually in figure
7 to compare the dive in of the laser pulse. We could clearly
see that the SLS has a superior depth penetration, and it can
measure many of the ground points below the vegetation. The
depth penetration of the SLS is likely because that the SLS is
closer to one side of the bushes and its scanning time is much
longer than the MLS which moves along the road quickly at a
median speed 5.55 m/s. We will examine in the next section the
performance of SiRP in this challenging regions.

The accuracy of the registration is measured by the root-mean-
square error (RMSE) of the inlier matches from the point-to-
point ICP step. The inlier matches are those point pairs of a dis-
tance less than 0.1 m. The inlier RMSE is 0.161 m and 0.109 m
for test site 1 and test site 2, respectively.

The seasonal change and gardening cause the vegetation points
from the MLS and the SLS to not match precisely. This dis-
crepancy actually has little bearing on the registration because
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Figure 7. Comparison of planted median strip measured by MLS
in red and SLS in blue.

the ICP in the refinement step uses closest point matches for re-
gistration and point matches of distances larger than a threshold
(0.1 m in tests) are disregarded.

4.3 Classification

Two experiments were performed with the SiRP algorithm. The
superpoint resolution and the minimum cluster size are set to
0.1 and 5000, respectively. First, we evaluate it using the MLS
only. Second, we apply SiRP on the merged point cloud from
mobile and stationary laser scans (MSLS), to prove the benefit
of point cloud fusion. We start with the quantitative evaluation,
which reflects both point-wise classification accuracy and also
that of a homogenized reference point cloud, with equal point
density. Then, we discuss qualitative results. Remarks on com-
putation time conclude this section.

First, we look at the confusion matrices in Tables 1 to 4. The
first two tables show the overall results for both test segments 1
and 2. The overall accuracy is roughly the same for MLS and
MSLS point clouds. To highlight the improvement of additional
scans and make classification output independent on the point
density, we show the confusion matrices for the homogenized
point cloud of the more challenging segment 1. These results
are shown in the last two tables.

ground yes no
∑

%

yes 2542398 120977 2663375 42.84
no 82156 3471851 3554007 57.16∑

2624554 3592828 6217382
% 42.21 57.79 96.73

Table 1. Confusion matrix of MLS classification result for both
segment 1 and 2; the rows depict the prediction, the columns the

ground truth. Gray and green colors in the background depict
correctly identified vegetation and ground points, respectively.

Magenta and yellow denote misclassifications.

ground yes no
∑

%

yes 2600518 134243 2734761 43.99
no 24036 3458585 3482621 56.01∑

2624554 3592828 6217382
% 42.21 57.79 97.45

Table 2. Confusion matrix of MSLS classification result for both
segment 1 and 2, see structure of Table 1 for further

explanations. Since we use the same reference point cloud, the
aggregated last row of the confusion matrix is the same as in

Table 1.

Both overall results are around 97 %, which is very satisfying.
The enhancement by adding more scans is marginal by means
of the confusion matrices (Table 1 vs. 2). As we will see in our

qualitative evaluation, the reason for the small numerical im-
provement is the unbalanced point resolution. On the opposite
road side from the MLS in segment 1, the resolution is much
lower. If we balance the resolution for evaluation and compare
the result only for the more challenging segment 1, the numer-
ical improvement is clearer (Tables 3 and 4). The overall accur-
acy raises by 1.3 %. Concerning the recognition rate of correct
labelled road points, it raises from 72% by mobile scanner to
94% by combining mobile and stationary laser scans.

ground yes no
∑

%

yes 39921 10542 50463 7.68
no 15853 590510 606363 92.32∑

55774 601052 656826
% 8.49 91.51 95.98

Table 3. Segment 1, Confusion matrix of homogenized MLS
classification result. See structure of Table 1 for further

explanations.

ground yes no
∑

%

yes 52634 14826 67460 10.27
no 3140 586226 589366 89.73∑

55774 601052 656826
% 8.49 91.51 97.26

Table 4. Segment 1, Confusion matrix of homogenized MSLS
classification result; see structure of Table 1 for further

explanations.

All tests for Tables 1 to 4 were carried out with the superpoint
resolution 0.1 m, which turned out to be a quite good choice
for this dataset and has the same order of magnitude as for the
photogrammetric dataset in (Bulatov et al., 2021). Experiments
with larger resolutions, up to about 1 m, perform increasingly
better on recognizing correctly more street points, especially
with sparse point cloud density in areas away from the scan.
However, more vegetation points are spuriously being assigned
to this ground class. This tendency happens to a larger extent
for MLS than for MSLS. Even if the superpoint resolution is not
optimally selected, the overall accuracy remains around 90 %.

To compare our result and rank its performance, we also run
tests with CANUPO, the built-in classifier of CloudCompare.
We needed some time to find a good set-up. Finally, we set the
scales to [0.01, 0.02, 0.04, 0.08, 0.16, 0.32, 0.64, 1.28] and use
1000 max core points. However, it was only possible to run
the test with the MLS point cloud, because of the much lower
number of points. To save labeling time and get the best case
prediction, we use the labelled point cloud parts for training and
classifying. The overall accuracy is 94 % which is worse than
our result.

Since the results of the quantitative evaluation were quite ac-
curate for all configurations, we present in Figures 8 and 9 the
qualitative results for both test areas. The improved quality of
the MSLS result could be clearly seen. Especially road points
are better classified. In the homogenized case, vegetation has a
strong overbalance against the road. However, areas of different
resolution are equal weighted. This has the consequence, that
the improvement by MSLS gets clearer.

In Figure 8 parts of street which are mislabelled as vegetation
are mostly distant from the sensor platform and have less dens-
ity and rough edges. But even parts are recognized as street,
which is due to the superpoint generalization possibility. If the
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superpoint grid size is increased, e.g., to 1 m, this part of road is
classified better, at the cost of more vegetation being labelled as
ground elsewhere. On the other side of the test segment, which
is not shown in Figure 8, a footway exists and has a connection
to the correctly labelled street, it is also completely marked cor-
rectly. Furthermore, it can be seen, that beside the improvement
in the area of the road, the classification of objects on the road
like bollards or guardrails is improved too. The Misclassifica-
tion in vegetation remains, even though it gets better.

In the bottom half of Figure 9, many ground points are misclas-
sified because of the low point density. In contrast, in the upper
half, the MSLS result has more false vegetation points. These
points are below bushes and can not clearly assign to vegetation
or road. SiRP decides more differentiated if ground points be-
low vegetation exist, because it seizes the opportunity to set the
estimated plane to the ground and remove vegetation.

Figure 8. A bird-eye view of ground and low objects in segment
1. Both halves show the same point cloud part mirrored along

the white middle axis. The colors are the same as in the
confusion matrices in the previous chapter.

To summarize, challenging areas, such as ground below vegeta-
tion, are better classified in MSLS. If we have a sufficient dens-
ity, SiRP could tell apart noisy vegetation and flat ground.

We show in Figure 10 the classification results of the whole
point cloud described in Section 4.1. Overall, they look very
plausible. There are some outliers visible, but they are not all

Figure 9. A bird-eye view of ground and low objects in segment
2.

misclassifications because SiRP tries to assign points lying far
away, too, which also satisfies the ground conditions.

The far beam power of the three additional static laser scans is
astonishing. Even not measured areas are improved. This can
be seen by the blue areas, which are additionally classified as
ground after adding these scans.

Computing time is about 300 µs per point, whereby all ex-
periments were performed with an Intel® Xeon® Gold 6154
CPU, using multiprocessing. For the fused point cloud from
Figure 10, which contains 122.5 million points, the total com-
puting time was 11.5 hours. For comparison, the performance
of CANUPO is about 37 µs/point on the same device. However,
the test classified only 10 million points. The whole point cloud
was not computable. Additionally, time for labelling has to be
spent, ranging from 30 minutes to up to an hour.

5. CONCLUSION

We presented a modular workflow consisting of co-registering
multi-modal 3D point clouds using hierarchical merging and
ground filtering using the SiRP method from (Bulatov et al.,
2020). The ground filtering method, originally developed for
airborne point clouds, has several key parameters. For the ter-
restrial dataset, most of them were kept unchanged. The su-
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perpoint grid size, the key parameter, could be chosen in an in-
tuitive way, which is also an encouraging finding. Its range, in
which pretty high values for overall accuracy could be obtained,
is sufficiently broad. The decay in overall accuracy is, however,
faster if only 3D points from MLS are used. This validates the
benefit of additional point clouds from the TLS.

SiRP is known to be rotationally invariant and does not filter
points with respect to the surface normal and color content.
This partly explains a few remaining misclassifications, such as
cropped bushes. While we present the results of SiRP without
any kind of post-processing, we note that for applications of
autonomous driving, these vegetable remnants are less critical
than moving cars and pedestrians.

There are several immediately connected topics worth explor-
ing in future work. Validation of the registration approach in
a diverse set of large scenes, possibly with aerial point clouds
fused in, would be similarly interesting in understanding the
effect of sensor noise and registration errors on the classifica-
tion results. With respect to classification, we look to explore
deep-learning approaches for ground and vegetation filtering,
especially, in the context of sparse training data.
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