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ABSTRACT:

The integration of the color information from RGB cameras with the point cloud geometry is used in numerous applications.
However, little attention has been paid on errors that occur when aligning colors to points in terrestrial laser scanning (TLS) point
clouds. Such errors may impact the performance of algorithms that utilize colored point clouds. Herein, we propose a procedure
for assessing the alignment between the TLS point cloud geometry and colors. The procedure is based upon identifying artificial
targets observed in both LiDAR-based point cloud intensity data and camera-based RGB data, and quantifying the quality of the
alignment using differences between the target center coordinates estimated separately from these two data sources. Experimental
results with eight scanners show that the quality of the alignment depends on the scanner, the software used for colorizing the point
clouds, and may change with changing environmental conditions. While we found the effects of misalignment to be negligible for
some scanners, they exhibited clearly systematic patterns exceeding the beam divergence, image and scan resolution for four of
the scanners. The maximum deviations were about 2 mrad perpendicular to the line-of-sight when colorizing the point clouds with
the respective manufacturer’s software or scanner in-built functions, while they were up to about 5 mrad when using a different
software. Testing the alignment quality, e.g., using the approach presented herein, is thus important for applications requiring
accurate alignment of the RGB colors with the point cloud geometry. 1

1. INTRODUCTION

Point clouds and RGB images can provide complementary in-
formation due to their different sensing modalities and resolu-
tions. Colored point clouds, as products of incorporating point
cloud geometry and RGB colors, recently have shown their re-
markable benefits in numerous applications compared to pure
point cloud geometry. These applications include high-level
tasks, such as 3D object detection (Liang et al., 2018) and se-
mantic segmentation (Kweon and Yoon, 2022), and also low-
level tasks, e.g., point cloud registration (Zhang et al., 2022)
and point cloud completion (Aiello et al., 2022).

While there are numerous studies that address the joint pro-
cessing of color information and point clouds using data from
RGB-D cameras, very few have focused on terrestrial laser
scanning (TLS) in this context. RGB-D cameras generate
RGB colors associated with planar image coordinates using an
RGB camera and depth coordinates utilizing a dedicated depth
sensor or a photogrammetric solution based on multiple cam-
eras within a single housing. It is necessary to align the depth
sensor to the RGB camera(s), and the alignment details about
either parameter values or solutions are often openly available
(Basso et al., 2018). However, compared to RGB-D cameras,
TLS scanners can generate more accurate point clouds with a
wider field of view (FoV). TLS scanners obtain point cloud
geometry and RGB colors using separate sensors, typically the
LiDAR scanning unit and one or multiple built-in RGB cam-
eras. The alignment of these separate sensors is neither per-
fectly known nor can it be assumed stable over time, partic-
ularly with temperature changes, transport, and scanner use.
Moreover, TLS scanner manufacturers enable users to assign
RGB colors to point clouds using their software, details regard-

1 Our code is available at: https://github.com/zhaoyiww/AssessAlignment
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Figure 1. The concept of assessing the alignment between the
TLS point cloud geometry and colors. A TLS-colored point
cloud of an artificial target is projected independently to 2D

(X,Y ) images with the value of LiDAR intensity (ILiDAR) and
the value of grayscaled RGB values (IRGB).

ing the colorization procedure and the accuracy of transforma-
tion parameter values are not openly available to users. Hence,
it remains unclear whether an extra up-to-date user-based align-
ment is necessary.

On the other hand, RGB colors in TLS-colored point clouds
are often used for visualization purposes (Balado et al., 2023),
with limited research focusing on their accuracy and quality.
Pleskacz and Rzonca (2016) investigate the correctness of RGB
colors and interpolation methods for colored point clouds. Sim-
ilarly, Julin et al. (2020) evaluate the quality of RGB colors gen-
erated from built-in cameras of TLS scanners. Herein, our fo-
cus lies instead on assessing the alignment between point cloud
geometry and colors, which is essential for multi-modal fusion-
based research (Feng et al., 2019; Pham et al., 2020).

We attempt to clarify how to effectively and efficiently quantify
the alignment quality between TLS point cloud geometry and
colors. To address this problem, we develop a procedure that
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Figure 2. The proposed procedure and its building blocks for assessing the alignment quality. During the model training stage, we train
target detectors using the training dataset and object detection algorithms (only one-time effort). The proposed procedure contains the

inference stage, target extraction and target center estimation. During the inference stage, the point cloud is used as input and is
projected onto a panoramic image. Targets are then detected in the panoramic image through using one of the trained target detectors.

comprises point cloud projection, target detection, extraction,
center estimation and analysis of the resulting discrepancies.
The core idea is that we can identify artificial targets in the
scene independently using the RGB data and LiDAR intensity
data (or received signal power). LiDAR intensity data and dis-
tance are measured simultaneously using the same laser beam,
which enables us to interpret the intensity data as perfectly
aligned with the point cloud geometry. On the other hand, the
RGB data generated by separate camera(s) are projected onto
the point cloud such that their alignment with the geometry de-
pends on the quality of the projection. By comparing the cor-
responding target center coordinates estimated using (i) LiDAR
intensity and (ii) RGB colors, we can analyze the alignment
quality between the TLS point cloud geometry and colors (see
Figure 1). Our contributions are summarized as follows:

• We develop a simple but efficient procedure for assessing
the alignment between the TLS point cloud geometry
and colors by comparing the discrepancy between the
target center coordinates estimated independently using
(i) LiDAR intensity and (ii) RGB color data.

• We evaluate this alignment quality for eight TLS scanners,
and analyze the magnitudes and spatial distribution of the
identified deviations. We also investigate the alignment
stability with temperature changes for four of the scanners.

2. THEORETICAL BACKGROUND

This section begins with an explanation of how RGB colors
can be integrated with TLS point clouds. Then, we briefly de-
scribe how we utilize current state-of-the-art object detection
algorithms to detect artificial targets.

2.1 Principle of TLS point cloud colorization

The details of how specific TLS scanners or software packages
assign RGB colors to point clouds are often unrevealed. How-
ever, the main principles are publicly available in some soft-
ware manuals and scanner patents, e.g., Steffey et al. (2018)
and Vollrath and Ossig (2018). For example, TLS scanners
that have integrated or externally attached RGB cameras cap-
ture point clouds and RGB images separately and sequentially.
To project the images onto the point cloud, they can either be
combined into a full panoramic image and transformed or dir-
ectly projected using the collinearity equations with intrinsic
and extrinsic parameters of the cameras within the coordinate
system of the scanner. The manufacturer typically determines
the numeric values of these parameters, which are stored in the

scanner or its own software but not made accessible to users.
Interpolation techniques, such as bilinear or cubic methods, are
necessary to determine the RGB values for each point in the
TLS point clouds, given the difference in resolutions and par-
allax resulting from the camera mounting, which may not be
perfectly collinear.

2.2 Object detection

Object detection aims to recognize and locate objects of in-
terest within an image. This is achieved through using deep
learning algorithms that return bounding boxes indicating the
image coordinates and predicted class of each detected object.
The primary objective of using object detection algorithms in
this study is to automatically detect artificial targets and define
bounding boxes for further target extraction and center estima-
tion. To achieve this objective, we employ two common groups
of object detection algorithms: two-stage and one-stage object
detection algorithms (Zaidi et al., 2022), as each has its own
unique advantages (e.g., high accuracy or high efficiency) and
is still widely used.

The two-stage detection algorithm first generates candidate an-
chor boxes in the image. These boxes are then fed into the
network. Examples of commonly used two-stage detection al-
gorithms include Faster R-CNN (Ren et al., 2015) and its up-
graded version, Mask R-CNN (He et al., 2017). In contrast, the
one-stage detection algorithm such as YOLO (Redmon et al.,
2016) divides the image into small regions and directly carry
out object detection in each of them.

3. THE PROPOSED PROCEDURE AND METRICS
USED FOR ASSESSING THE ALIGNMENT

Our procedure employs artificial, planar black-and-white tar-
gets. The rationale for this choice is based on the high accur-
acy achievable for target center estimation (TCE) compared to
the scanning resolution (Omidalizarandi et al., 2019b; Janßen
et al., 2019). This enables TCE utilizing both LiDAR intensity
data and RGB data, without sacrificing the alignment quality
assessment. It is worth noting that extending the procedure to
use natural features for the assessment remains a direction for
future investigations.

Moreover, we assume that the scans for the assessment are con-
ducted in an environment with a relatively uniform distribution
of targets throughout the FoV of the scanner. Without loss of
generality, we will use targets distributed in a single, large room
herein. We illustrate the proposed procedure and its building
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blocks in Figure 2. The procedure consists of (1) a projection
of the 3D point cloud onto a 2D LiDAR intensity image, (2)
target detection within this image utilizing a trained detector,
(3) target extraction from the 3D point cloud, (4) target cen-
ter estimation independently using the LiDAR intensities and
camera-based intensities (derived from the RGB data) for each
detected target, and finally (5) calculation and analysis of the
differences between the target center coordinates of the same
target extracted from the two different intensity data sets.

3.1 Point cloud projection

Let G ∈ Rm×7 denotes a point cloud with m points x 7 dimen-
sions (i.e., X,Y, Z, LiDAR intensity, R,G,B). To enhance the
processing speed while preserving the target quality that only
used for target detection, we downsample G to GD. We trans-
form the Cartesian coordinates of the points in GD to polar ones:

S =
√

X2 + Y 2 + Z2

H = arctan(Y/X)

V = arccos(Z/S)

(1)

where S = the distance from local coordinate origin
H,V = the horizontal and vertical angle, respectively.

We then project the point cloud GD onto a panoramic image
with dimensions (H,V ) where the LiDAR intensities serve as
the pixel values for the image. This panoramic image is sub-
sequently employed for the target detection.

3.2 Target detection and extraction

Target detection involves utilizing a trained target detector (see
Figure 2). It is worth noting that the image sizes may vary,
which can lead to a situation where the detectors that are trained
on a certain size of images and be used to infer results on im-
ages with unequal sizes. Fortunately, Feature Pyramid Network
(FPN) (Lin et al., 2017) integrated in the detection algorithms
enable us to overcome this. Thus, during the inference stage,
we detect targets directly on the projected panoramic image.
Once a target is detected, its region in the image is determined
by its upper-left (H0, V0) and lower-right image coordinates
(H0 + h, V0 + w) (see Figure 3).

For target extraction, we compute the Cartesian coordinates
(S,H, V ) of the point cloud G using Equation 1, then derive
the indexes of (H,V ) that within the image region. These
indexes also correspond to the target region in the point cloud
G, as (H,V ) and (X,Y, Z) are one-to-one corresponding.
We therefore extract the point cloud T ∈ Rn×7 for each
target. Then, we save P ∈ Rn×4 and Q ∈ Rn×6 as subsets
of T , which correspond to (X,Y, Z, LiDAR Intensity) and
(X,Y, Z,R,G,B), respectively. Both P and Q are used to
estimate the target center. Note that (R,G,B) values in Q will
then be converted to grayscale values (i.e., IRGB).

3.3 Target center estimation

The estimation of target center coordinates is performed
by following the steps mentioned in Janßen et al. (2019).
Initially, we apply RANSAC (Fischler and Bolles, 1981)
with a small threshold (e.g., 0.05 m) to detect and remove
outliers while estimating the initial plane parameter values
based on (X,Y, Z). The initial values are then refined through
Gauss-Helmert model-based plane estimation. Further, the

V
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h

Figure 3. Detected targets with bounding boxes. w and h denote
the width and height of the detected target, respectively.

target point cloud is orthogonally projected to this plane. To
determine the target center coordinates, we adopt a sub-pixel
image registration method (Guizar-Sicairos et al., 2008). This
method computes the 2D transformation information (i.e.,
rotation and translation) between the target image and its
corresponding template image, with center coordinates (0, 0).
Using this transformation information and the template center
coordinates, we determine 2D target center coordinates in the
target plane. We further obtain 3D target center coordinates
using the target plane parameters.

We estimate the 3D target center coordinates from ILiDAR (i.e.,
LiDAR intensity) and IRGB target images independently. This
enables us to analyze the discrepancy between point cloud geo-
metry and colors.

3.4 Metrics for assessing the alignment

In order to assess the quality of the alignment in later experi-
ments, we define two metrics, namely homogenized horizontal
and vertical angle deviation, and angular deviation.

3.4.1 homogenized horizontal and vertical angle deviation
Let (HLiDAR, VLiDAR) and (HRGB, VRGB) denote the po-
lar coordinates of the target center estimated from ILiDAR

(i.e., LiDAR intensity) and IRGB target images, respectively.
To visualize deviations on vertical-horizontal angle deviation
maps, we compute (HLiDAR, VLiDAR) and (HRGB, VRGB) for
each target center using Equation 1. Let (∆H , ∆V ) denote the
original horizontal and vertical angle deviation of the same tar-
get center, which can be computed using:{

∆H = HLiDAR −HRGB

∆V = VLiDAR − VRGB

. (2)

However, due to the spherical sampling pattern of TLS
scanners, ∆H becomes exaggerated with higher elevation
angles. Thus, we use the sine of the vertical angle acting as a
scaling factor to correct such an exaggeration. Let (∆Ĥ , ∆V̂ )
denote the homogenized horizontal and vertical angle devi-
ation of the same target center, and we can compute them using:{

∆Ĥ = ∆H sinVLiDAR

∆V̂ = ∆V
. (3)

3.4.2 Angular deviation We compute joint angular devi-
ation using:

∆Â =

√
∆Ĥ2 +∆V̂ 2. (4)

The beam divergence, image resolution, and scan resolution can
reflect the achievable level of detail (LoD) of each scan. Hence,
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to assess the magnitude of these angular deviations relative to
the achievable LoD, we introduce the maximum of the beam
divergence, image and scan resolution as a threshold for clas-
sifying deviations as outlying. To represent all three factors in
the same units, we neglect the beam waist and consider only
the beam divergence instead of the physically more meaningful
beam diameter. The beam divergence, image and scan resolu-
tion values for all investigated scanners are listed in Table 1.

4. EVALUATION OF THE TARGET DETECTION AND
EXTRACTION

In this section, we describe the dataset we used for training tar-
get detectors, implementation details, and evaluate the perform-
ance of the target detection and extraction.

4.1 Dataset

As manual annotation of targets is labor-intensive, the train-
ing dataset comprises both manually annotated and synthetic
targets. The dataset comprises 2D images with standardized
dimensions of 800 pixels (vertically) x 1333 pixels (horizont-
ally). The targets in these 2D images contain four categories:
checkerboard, rotated checkerboard, round checkerboard, and
BOTA8, as shown in Figure 4.

Figure 4. Types of targets used during the model training stage.
From left to right: checkerboard, rotated checkerboard, round

checkerboard, and BOTA8 (Janßen et al., 2019).

4.2 Implementation details

We conduct all experiments on a single RTX 3090 Ti GPU
and implement all model training using PyTorch (Paszke et
al., 2017). We train four different target detectors based on
Faster R-CNN, Mask R-CNN, YOLOX (Ge et al., 2021) and
YOLOv7 (Wang et al., 2022). Target center estimation is per-
formed in MATLAB R2022a, primarily using the source code
provided by Janßen et al. (2019), which are further integrated
into the automatic procedure. Specifically, we implement Faster
R-CNN and Mask R-CNN using MMDetection toolbox (Chen
et al., 2019), while we implement the other two using the source
code from official documentations. We train all these detectors
using corresponding pre-trained models, which means we can
easily achieve satisfactory results with much less training time
compared to training from scratch. Specifically, we train Faster
R-CNN with linear 500 warm-up iterations, with a batch size
of 16 using a SGD optimizer with learning rate 0.02 and mo-
mentum 0.9, and weight decay 0.0001. We train the network
in 24 epochs, and use a pre-trained model ResNet101. We
train Mask R-CNN using the same hyperparameters as Faster
R-CNN. Further, we train YOLOX with a batch size of 6 in
300 epochs, based on a pre-trained model YOLOX-x. We train
YOLOv7 using a batch size 4, dataloader workers 4, and 300
epochs, based on a pre-trained model YOLOv7-E6E.

4.3 Performance

We train different target detectors on the training dataset. To
compare the performance, we test all detectors on the same test

set, i.e., a test set that contains only manually annotated targets.
In addition, we use mean Average Precision (mAP) (Ren et al.,
2015), a commonly used metric for object detection, to com-
pare these detectors. Among these detectors, the detector based
on YOLOv7 performs best, but the difference among them are
very small. We further address how efficient our procedure for
detecting and extracting targets compared to manual extraction.
Through testing on a point cloud with 50 million points and
roughly 250 targets, the manual method using CloudCompare
needs approximately 50 minutes to extract approximately 90%
targets, whereas our automatic procedure detects and extracts
the same number of targets within 3 minutes. The improved ef-
ficiency of our proposed procedure enables us to conduct later
experiments at scale sufficient for generalizable assessment of
the alignment quality in commercial TLS scanners.

5. EXPERIMENTS

We utilize the proposed procedure to process data from two
types of alignment experiments: (i) Experiment A, which as-
sesses the alignment quality using eight TLS scanners, and
(ii) Experiment B, which evaluates the alignment stability with
changes of the ambient temperature using four TLS scanners.

5.1 Experiment A: alignment quality assessment

We set up this experiment in a room of approximately 10 x 10
x 3 m3. Roughly 250 artificial targets (checkerboard, rotated
checkerboard, and round checkerboard printed on A4 paper)
are approximately uniformly distributed on the ceiling, walls,
and floor. To obtain more generalizable results, we use eight
TLS scanners, including two Faro Focus3D X330 (indicated as
Faro Focus3D X330 (a) and (b) subsequently). We place these
scanners on a tripod in the middle of the room, one at a time,
and scan the entire FoV for each setup.

5.1.1 Scan settings The scan and image resolution are de-
tailed in Table 1. The image resolutions are typically fixed,
while the scan resolutions can be chosen by the user. For most
scanners we choose scan resolutions that closely match the re-
spective image resolution. For Leica C10, however, considering
the time efficiency, we choose a scan resolution of 0.50 mrad,
instead of 0.14 mrad.

Scanner Beam div. Scan res. Image res.
(mrad) (mrad) (mrad)

Leica BLK360 G1 0.68 0.50 0.40
Leica C10 0.14 0.50 0.15
Leica P50 0.39 0.16 0.15

Leica RTC360 0.50 0.30 0.28
Faro Focus3D S120 0.54 0.61 0.69
Faro Focus3D X330 0.54 0.61 0.69
Z+F IMAGER 5016 0.60 0.63 0.66
* According to scanner manuals, Leica BLK360 G1 and Leica

RTC360 are equipped with three non-co-axial RGB cameras, while
other scanners have a single co-axial RGB camera.

Table 1. Configurations of used scanners. div.: divergence, res.:
resolution. Note that the beam divergence and image resolution
values are based on data sheets, and the beam divergence values

are converted to the full angle (Gaussian beam, 1/e2 points).

5.1.2 Result analysis Note that the scanners we used have
not been calibrated and have not been in maintenance with the
manufacturer before the experiments and thus the results do not
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Figure 5. Visualization of homogenized horizontal and vertical angle deviations on vertical-horizontal angle maps. The arrow
direction represents the deviation direction. Note that the small arrow at the right-upper corner represents the scale of the arrows.

represent the quality of the scanner series in optimal working
condition. Rather, our results present a snapshot of the align-
ment quality for the specific instruments used herein at the spe-
cific point in time.

We first visualize the homogenized horizontal and vertical angle
deviations on vertical-horizontal angle maps, as described in
Figure 5(a) - 5(h) (Note that Figure 5(i) and also Figure 6(i) will
be explained in the last paragraph of this section). The results
demonstrate that the Leica C10 exhibits deviations that primar-
ily point towards the right direction in the horizontal angle. The
Z+F IMAGER 5016 shows larger deviations predominantly ori-
ented upwards in the vertical angle. For the Z+F IMAGER
5016, there are three distinct groups aligning with different el-
evation angle ranges. Specifically, almost all targets above 70°
exhibit nearly constant deviation in vertical angle, almost all
targets within approximately 15° from the horizon exhibit virtu-
ally no deviations, and the targets at very low elevations (around
120°) exhibit again nearly constant positive vertical deviations.
The Leica BLK360 G1, Leica P50 and Leica RTC360 exhibit
angle deviations of varying magnitudes, whereas the Faro Fo-
cus3D S120 and two Faro Faro Focus3D X330 indicate merely
negligible angle deviations. It is worth noting that misalignment
between cameras may occur in scanners with multiple RGB
cameras, e.g., the Leica RTC360 and BLK360 G1. However,
we leave a potential analysis of different deviations per camera
for future works.

We further compare angular deviations with beam divergences,

image resolutions, and scan resolutions, as illustrated in Figure
6(a) - 6(h). Notably, the Leica C10 exhibits angular deviations
surpassing the maximum threshold of the beam divergence, im-
age resolution and scan resolution in 93.8% of cases. This im-
plies that the majority of the target centers exhibit a large mis-
alignment between their geometry and colors, with deviations
extending to at least one point/pixel spacing. In contrast, the
Z+F IMAGER 5016 displays 30.0% of angular deviations ex-
ceeding the maximum threshold. All the horizontal angle de-
viations for the Leica C10 are positive. For the Z+F IMAGER
5016, all the larger deviations are negative vertical angle devi-
ations. These patterns are also visible in Figure 5(b) and Fig-
ure 5(h), and suggest the presence of systematic errors of the
camera to LiDAR unit alignment used for colorizing the point
clouds of these scanners.

The Leica BLK360 G1 has 28.1% of angular deviations sur-
passing the maximum threshold. For the Leica P50, we observe
that most deviations are in the negative vertical angle direction,
with 21.5% of angular deviations surpassing the maximum
threshold. The Leica RTC360 tested herein has only 5.4% of
angular deviations surpassing our outlier threshold, and the
distribution is overall spatially more random, although Figure
5(d) suggests that there may be some systematics related to
the three different cameras. Conversely, the results of the Faro
Focus3D S120 and two Faro Focus3D X330 exhibit only negli-
gible angular deviations, all of which are by far smaller than the
beam divergence, image and scan resolution. While this could
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Figure 6. Distribution of angular deviations. Angular deviations are computed according to Equation 4. The three different circles
represent the value of the beam divergence, image resolution, and scan resolution. For each individual scanner, the percentage (e.g.,
0.0% out in Figure 6(g)) indicates the percentage of angular deviations that exceed the maximum threshold of the beam divergence,

image resolution, and scan resolution for each individual scanner.

be related to excellent RGB camera to LiDAR unit calibration
and very stable relative orientation of the two, the results (also
of the temperature tests, see Section 5.2) and a patent search
as well as the analysis of Faro data exported using a different
software (see next paragraph) strongly suggest that the images
and point clouds are well aligned numerically in the point
cloud colorization process within the Faro SCENE software.

In addition, we notice that Leica software (e.g., Cyclone RE-
GISTER 360) allows users to import raw scan projects from
scanners of other manufacturers. Thus, we utilize the Cyclone
REGISTER 360 to colorize the point cloud obtained from the
Faro Focus3D X330 (a), and present the results in Figure 5(i)
and Figure 6(i). Notably, the colored point cloud colorized us-
ing the Cyclone REGISTER 360 exhibits significant deviations,
particularly in the horizontal angle direction, when compared
to the result colorized using the software (i.e., Faro SCENE)
provided by its own manufacturer as shown in Figure 5(f). Fur-
thermore, Figure 6(i) shows that 95.7% of angular deviations
exceed the maximum threshold, whereas the result in Figure
6(f) indicates that no angular deviation exceeds the maximum

threshold. This comparison indicates (1) that the assessment
of the alignment quality refers to the system of scanner and all
software used to output or produce the colorized point clouds,
not just the scanner itself, and (2) that the Faro SCENE either
uses numerical parameters for the alignment which are not used
by or not accessible to the Cyclone REGISTER 360, or the Faro
SCENE includes a data driven alignment of RGB images and
point clouds.

5.2 Experiment B: alignment stability evaluation

We conduct an additional analysis to evaluate how stable TLS
scanner alignment is under varying ambient temperatures. The
experiment is carried out in a climate chamber with dimensions
of 4.0 x 3.0 x 2.2 m3. We raise the temperature increment-
ally from 5 ◦C to 40 ◦C, and do scanning at each 5 ◦C inter-
val. In this experiment, we use four scanners, including Leica
BLK360 G1, Leica RTC360, Faro Focus3D X330 (a), and Z+F
IMAGER 5016, and ten artificial targets, including four rotated
checkerboard targets on tripods and six checkerboard targets on
the chamber surface.
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Figure 7. Visualization of homogenized horizontal and
vertical angle deviations of four scanners on vertical-horizontal

angle maps at three different ambient temperatures (i.e., 5,
25, and 40 ◦C). First row to last row: Leica BLK360 G1, Leica

RTC360, Faro Focus3D X330 (a), and Z+F IMAGER 5016.

In Figure 7, we observe that the Leica BLK360 G1 exhibits
quite similar magnitudes of deviations at all three temperatures,
but the deviation directions change considerably between 5 and
40 ◦C. The Leica RTC360 shows relatively small deviations at
25 ◦C, while the deviations at 5 and 40 ◦C exhibit relatively
large changes. In contrast, the Faro Focus3D X330 (a) remains
stable with no distinct deviation detected at different temperat-
ures. The Z+F IMAGER 5016 shows both larger and smaller
deviations at 25 ◦C, with its larger deviations becoming steeper
and smaller deviations becoming larger at both 5 and 40 ◦C.

For scanners that exhibit significant changes in either mag-
nitudes or directions of deviations with varying temperatures,
we infer that the variable temperatures affect the alignment sta-
bility between these scanners and their built-in RGB cameras.
Conversely, scanners that demonstrate a stable alignment across
varying temperatures may achieve this due to their stable design
or due to effective data driven alignment during the colorization
process within the scanner or in a separate software.

6. CONCLUSIONS

In this study, we present an artificial target detection and es-
timation procedure for quantifying the quality of the alignment
between the TLS point cloud geometry and colors. The code
used herein for the entire analysis from the colorized point
cloud to the plots and numeric output of the angular deviations

will be provided on GitHub. Our experiments verify the ef-
ficiency and effectiveness of the proposed procedure. More
importantly, our experimental results provide valuable insights
into both the quality and the stability of the alignment across
multiple commercial TLS scanners. The primary observations
from the experiments are as follows:
• The alignment of RGB colors and point cloud geometry

depends on the scanner and on the software used for the
colorization of the point cloud. Using different software
for colorizing the point cloud can lead to vastly different
alignment quality.

• While we found only negligibly small misalignments of
RGB colors and point cloud geometry for all three Faro
scanners used in combination with the Faro SCENE soft-
ware in our experiments, some point clouds produced by
other scanners and software exhibited misalignments ex-
ceeding the beam divergence, image and scan resolution.

• The maximum deviations were about 2 mrad perpendic-
ular to the line-of-sight when colorizing the point clouds
with the respective manufacturer’s software or scanner in-
built functions, while they were up to about 5 mrad when
using a different software.

• For one scanner almost all deviations (approximately
94%) attributed to misalignment of the RGB colors ex-
ceeded the beam divergence, image and scan resolution.
For several of the scanners used herein, changing ambient
temperature (tested at 5, 25 and 40°C) resulted in signific-
ant changes of the misalignments.

Given the widespread use of point cloud geometry and col-
ors from RGB-D cameras, we are convinced that exploiting
color information in addition to geometry and LiDAR intens-
ity can yield valuable benefits beyond the visualization pur-
pose also for TLS point clouds. However, our findings sug-
gest that there may be significant misalignments and these may
have to be addressed when utilizing the colored point clouds
for high-accuracy applications (e.g., millimeter-level deform-
ation monitoring). To tackle these issues, one can either (i)
use scanners and software assuring sufficiently accurate align-
ment—e.g., identified using the approach presented herein, (ii)
adopt additional alignment methods, such as utilizing an iter-
ative optimization method (Rotstein et al., 2022), or (iii) ap-
ply a calibration approach between TLS and an external RGB
camera (Omidalizarandi et al., 2019a). For scanners that ex-
hibit significant alignment instability due to ambient temper-
ature changes, only data-driven optimization approaches may
be applicable unless it is possible to ensure the temperature re-
mains stable during scanning. Our proposed procedure can be
employed to assess the current alignment status and even eval-
uate the effectiveness of adopted alignment methods.

Our future work will address the possibility of integrating RGB
colors with point cloud geometry to establish more reliable cor-
respondences. Potentially, we can utilize these correspondences
for point cloud registration and deformation analysis in geo-
detic monitoring.
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