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ABSTRACT: 

Lane Detection is a critical component of an autonomous driving system that can be integrated alongside with High-definition (HD) 

map to improve accuracy and reliability of the system. Typically, lane detection is achieved using computer vision algorithms such as 

edge detection and Hough transform, deep learning-based algorithms, or motion-based algorithms to detect and track the lanes on the 

road. However, these approaches can contain incorrectly detected line segments with outliers. To address these issues, we proposed a 

vanishing point aided lane detection method that utilizes both camera and LiDAR sensors, and then employs a RANSAC-based post-

processing method to remove potential outliers to improve the accuracy of the detected lanes. We evaluated this method on four datasets 

provided from the KITTI Benchmark Suite and achieved a total precision of 87%.  

1. INTRODUCTION

1.1 Background 

With more robust algorithms and advanced sensor technologies, 

autonomous vehicles (AV) are becoming more accessible and 

adept to deal with complex environments. One of the emerged 

concepts to improve and aid autonomous driving is High-

definition (HD) map, which provides high precision and 

informative level of geospatial information. A HD map contains 

critical properties of the road network such as roads, traffic lights, 

markings, and signs. Lane-level maps are especially significant 

for the construction of HD map as it provides semantic 

segmentation of the road roads and lanes (Zhou et al., 2021). 

Such crucial steps can be achieved through lane detection 

techniques as it enables the localization of the road and 

establishes the relative position of the autonomous vehicle.  

Many researches have explored the approach of lane detections 

using sensor technologies. (Low et al., 2014) proposed an 

optimized Canny edge detection and Hough Transform to detect 

the left and right lane markers using front-viewed camera system. 

(Kim et al., 2018) used another method with stereo camera 

alongside with Dynamic programming and the Kalman filter to 

trace the white line markings to detect lanes. Some attempted to 

use LiDAR sensor to directly detect lane features in 3D 

environment. (Huang et al., 2021) proposed a constrained 

RANSAC algorithm to select the road region, then apply a road 

curb detection method and an adaptive threshold selection to 

identify the lane boundaries from LiDAR point cloud.  

Some also attempted both or more sensors, (Bai et al., 2018) used 

a multi-sensor system to extract autonomous navigation features 

such as road curb detection, lane detection and traffic sign 

recognition using vision-based lane detection, Z-variance method 

and Haar-like feature-based method.  (Zou et al., 2020) evaluated 

deep-learning-based algorithm that achieved lane detection in 

typical scenarios. However, there are still challenging problems 

with these techniques where the detected lane and road features 

can contain outliers that are hard to eliminate, and difficult to fuse 

with other sensor frameworks in an autonomous driving system. 

To address these issues, we propose a method that can be 

summarized in two configurations. First, we use vanishing point 

aided method as constraints to detect boundary and inner lanes 

and apply coordinates transformation to standardize the 

information. Then, we use a RANSAC-based algorithm to 

estimate the best parametric line that closely resembles straight 

boundary lanes to remove potential outliers. The proposed 

solution is evaluated based on KITTI datasets (Geiger et al., 

2013), and the results obtained are evaluated with manually 

labelled data.   

2. RELATED WORK

Lane detection is a crucial part of autonomous driving systems 

that has received significant attention from researchers. To 

ensure road safety and improve robustness of lane detection 

performance, numerous studies have been conducted. These 

studies have led to development of reliable and effective 

techniques, ranging from traditional computer vision methods to 

deep learning-based methods.  

Traditional computer vision techniques have been widely used to 

detect lane markings on the road surface, such as Canny edge 

detection and Hough transform (Low et al., 2014). While our 

proposed method also employs these techniques, simply 

averaging the detected lines is not a reliable solution. This 

approach can lead to noisy environments and can only detect two 

dominant left and right lanes. Additionally, averaging the lines 

can lead to significant errors if a false line is identified, which 

can cause the lane location to be skewed.  

Another similar approach leverages the vanishing point in 

addition to Canny and Hough transform was attempted in (Youjin 

et al., 2018) and (Kong et al., 2009). The methods involve 

estimating the vanishing point where parallel lane lines appear to 

converge at the end of the road in the image. To detect the 

vanishing point, (Youjin et al., 2018) computed the intersection 

of all the lines detected to find the most common intersection 

point, which requires significant processing time, particularly in 

noisy environments. To reduce the processing time, we propose 

a new approach that first identifies the two outer road boundary 
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lanes using lane properties first and then simply intersects them 

to locate the vanishing point. 

In terms of deep learning-based algorithms, previous works have 

shown promising results in lane detection. For instance, (Zou et 

al., 2020) developed their algorithm by integrating the 

convolutional and recurrent neural networks (CNN and RNN). 

CNN is responsible for extracting lane features from a single 

frame, which are subsequently sent to RNN for lane prediction. 

This approach is robust and provides accurate results, however, 

it can be time- consuming and its result cannot be used to 

generating a HD map.  

Furthermore, approach that utilizes both camera and LiDAR 

sensors has also been proposed for lane detection. This method 

involves implementing a deep neural network to directly estimate 

lane markings as well as the ground height in 3D space (Bai et 

al., 2018). While this approach is efficient and provides accurate 

results in many cases, it struggles when there are heavy 

occlusions, or some frames are missing lane marks. To overcome 

this issue, we propose using k-mean algorithms and RANAC to 

remove outliers and construct continuous lanes. 

(Li et al., 2014) proposed a feature-level fusion method from the 

LiDAR and vision data to detect the lanes. The method first using 

fusion data to detect curb points, then using two more layers to 

filter the data and define the optimal driveable area. Then, the 

driveable area’s image is processed using vision-based 

algorithms to detect lanes. However, the optimal driveable region 

is limited due to other obstacles along the road. 

To address these challenges, we proposed a different approach to 

detect lane markings rapidly by rigorous pre-processing 

leveraging the vanishing point, followed by post processing using 

a multi sensor system to accurately detect lanes that can be used 

for HD map. 

3. METHOD

3.1 Overview 

Figure 1 illustrates the workflow of the processing steps, we first 

attempt to identify the two outer road boundary lanes using 

images captured by cameras and image processing techniques 

with noise reduction threshold.  The vanishing point is identified 

as constraint, which would be the convergence point of lane lines 

in the context of lane detection to detect any inner lanes through 

a mask region created. The vanishing point was identified simply 

by intersecting the two boundary lanes. The LiDAR point cloud 

is processed using RANSAC to extract a parametric plane that 

resemble the road surface, which is used for 3D-reconsturction 

and coordinate transformation of the output into local ENU frame 

and global frame. Finally, the post-processing is applied on the 

detected lanes and road features in the local ENU frame.  

Figure 1. Flowchart of the proposed method implementing 

vanishing point based constraint and post-processing step 

3.2 Coordinate System Definition 

This section outlines the local and global coordinate frames used 

by transformation, post-processing, and trajectory odometry 

visualization. Each sensor’s local frames are defined in the KITTI 

Benchmark Suit’s setup.  

Figure 2. Coordinate system definition of the setup with the 

image, local sensor, ENU and global frames. 

Figure 2 illustrates the camera, LiDAR sensor and INS/body 

frame definition, as well as the orientation of local ENU frame 

and the global frame. Prior to data collection used for the KITTI 

Benchmark Suite, all sensors have been calibrated, and the 

calibration parameters for each specific dataset were provided, 

including the projection matrix, extrinsic and intrinsic parameters 

for the digital camera, as well as the rotation and translation 
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information between each sensor within the established rigid 

body system.  

 

Local ENU 

 

To perform post-processing, the coordinate frame is first 

transformed into the body frame, with the origin aligned on the 

INS sensor. Then, the orientation and position information 

obtained from the INS are used to obtain the pose information to 

transform points into a local ENU frame. The origin of this frame 

is the body frame of the first frame of the evaluated dataset. 

 

(1) is used to transform a point x in the body frame to the local 

ENU frame. (2)  is the transformation matrix’s construction. This 

matrix is used to transform the coordinates from the body frame 

to the local ENU frame.   

 

 

𝑋𝐸𝑁𝑈  = 𝑇𝐵𝑜𝑑𝑦
𝐿𝑜𝑐𝑎𝑙 𝐸𝑁𝑈  𝑋𝑙𝑜𝑐𝑎𝑙                       (1) 

 

 𝑇𝐵𝑜𝑑𝑦
𝐿𝑜𝑐𝑎𝑙 𝐸𝑁𝑈 = [𝑅;  𝑡; 0 0 0 1]                          (2) 

 

where  𝑇𝐵𝑜𝑑𝑦
𝐿𝑜𝑐𝑎𝑙 𝐸𝑁𝑈 = transformation matric  

 𝑋𝑙𝑜𝑐𝑎𝑙  = coordinates in local sensor frame 

 𝑋𝐸𝑁𝑈  = local ENU frame origin at the first frame’s   

                body frame 

 𝑅 = rotation matrix 

 𝑡 = translation vector 

 

(3) and (4) compute the rotation and translation 

information using the INS readings. 𝑋𝐺𝑟𝑜𝑢𝑛𝑑 𝑇𝑟𝑢𝑡ℎ  and 

𝑌𝐺𝑟𝑜𝑢𝑛 𝑇𝑟𝑢𝑡ℎ are first transformed from latitude and longitude. 

 
𝑅 = 𝑅𝑥𝑅𝑦𝑅𝑧                            (3) 

 

  𝑡 =
𝑋𝐺𝑟𝑜𝑢𝑛𝑑 𝑇𝑟𝑢𝑡ℎ

𝑌𝐺𝑟𝑜𝑢𝑛 𝑇𝑟𝑢𝑡ℎ

ℎ

                            (4) 

 

where  𝑅𝑥𝑅𝑦𝑅𝑧 = rotation matrices based on roll, pitch, and  

                yaw 

 𝑋𝐺𝑟𝑜𝑢𝑛𝑑 𝑇𝑟𝑢𝑡ℎ, 𝑌𝐺𝑟𝑜𝑢𝑛 𝑇𝑟𝑢𝑡ℎ = coordinates in Mercator                  

                coordinates frame 

 ℎ = altitude 

 

Global Coordinate System 

 

The local ENU frame obtained can be transformed into ground 

truth frame. To obtain the positioning information, the INS data 

is measured based on WGS84 datum. By following the approach 

from (1), the latitude and longitude information can be derived 

from the local ENU coordinate frame. To align with the ground 

truth frame, the inverse of the transformation matrix from (2) is 

used. 

 

3.3 Vanishing Point Aided Lane Detection 

As illustrated in Figure 1, lane detection begins with applying 

Canny edge detection, followed by Hough transform. Canny edge 

detection mainly involves identifying sudden changes in intensity 

values between neighbouring pixels to detect edges. When 

implementing Canny edge detection (Li et al., 2020), it was 

critical to choose the proper sigma, which is known as the 

standard deviation of the Gaussian filter; a smaller filter detects 

small and sharp lines, whereas a large filter applies more blurring, 

thus it needs longer processing time. Another important 

parameter needed to adjust was “aperture size” when calling the 

Canny function. It indicates the order of Sobel filter used to 

compute the gradient. In order to capture more detailed edge 

information, the aperture size was specified as 5 so that possible 

lane edges cannot be missed. Once all edges were detected, 

Hough transform was applied to detect straight lines among the 

edges, which is an effective feature extraction technique to find a 

certain shape such as a circle or line by voting program (Li et al., 

2020) .The line features extracted by Hough transform, however, 

contained a lot of noise as shown in Figure 3.  

 

Thresholds: To remove all non-lane markings, four thresholds 

were established based on the characteristic of lanes: 

• Line Direction:  

When considering the two road boundary lanes, they 

cannot be either vertical or horizontal, but instead lie at 

an angle between 15° and 75° from the x-axis (Fig. #). 

• Y values: 

As lanes always exist in the bottom part of an image, 

the y pixel value was used as constraints. Any lines 

having the y value below one third of the image height 

were discarded, while lines having the y value close to 

the image height were kept. 

• Minimum line length: 

The minimum line length to keep was set to 40 pixels. 

 

𝑙 =  √(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2            (5) 

 

𝑙 > 40 

 

 where  𝑙 = detected line’s length  

   𝑥1, 𝑦1, 𝑥2, 𝑦2 = image coordinates 

• Location: 

Since lanes can be divided into left and right lanes, 

each line can be determined as either a left or right lane 

based on its slope. If a line has a negative slope, but is 

located on the right side of the image, it will most likely 

be a false lane and vice versa for a line with a positive 

slope. 

 

𝑠 =  
𝑦2−𝑦1

𝑥2−𝑥1
                           (6) 

 

 where  𝑠 = slope  

   𝑥1, 𝑦1, 𝑥2, 𝑦2 = image coordinates 
 

 
𝐼𝑚𝑎𝑔𝑒 𝑤𝑖𝑑𝑡ℎ

2
+ 50(𝑏𝑢𝑓𝑓𝑒𝑟) > 𝑥1 𝑎𝑛𝑑 𝑠𝑙𝑜𝑝𝑒 < 0 → 𝑙𝑒𝑓𝑡 𝑙𝑎𝑛𝑒   (7) 

 
𝐼𝑚𝑎𝑔𝑒 𝑤𝑖𝑑𝑡ℎ

2
+ 50(𝑏𝑢𝑓𝑓𝑒𝑟) < 𝑥4 𝑎𝑛𝑑 𝑠𝑙𝑜𝑝𝑒 > 0 → 𝑟𝑖𝑔ℎ𝑡 𝑙𝑎𝑛𝑒  (8) 

 

 
 
 

 

Figure 3. Detected edges and lines on the image before noise 

reduction and vanishing point. 

 

Horizontal Angle 

Threshold 

Detected 

Edges & Lines  
Height 

Threshold 
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After filtering out lines that did not satisfy all four threshold 

values, we chose the two road boundary lanes based on both their 

slope angle and y-values. The filtered boundary lines were stored 

as the left and right lanes and determined the boundary lane for 

each side as the line with the minimum y-value of the end point 

and the start point, respectively. However, to avoid mistakenly 

identifying the middle lane as an outer lane, we used an angle 

criterion based on the line with the smallest horizontal angle and 

a small y-value. If the difference between the minimum value and 

the line's y-value was less than 10 pixels, it was identified as the 

outer lane. 

 

Vanishing point: The vanishing point was detected by 

intersecting the two outer lanes, and then the middle lanes were 

identified by finding lines passing through it. Non-lane markings 

that pass through the vanishing point were eliminated using a lane 

width threshold, requiring the x-intercept of the outer lanes and 

middle lanes to be larger than 350 pixels.  

 

3.4 3D-Reconsturction 

The detected lanes in the image frame are reconstructed into a 3D 

frame by utilizing the road surface as a reference plane to 

estimate the depth information. The lanes are assumed to be 

located on the road surface, which leads to the acquisition of 

similar height information. Fig. 4 depicts the LiDAR points that 

are initially classified as ground points by considering the 

vehicle’s dimension. As the segmented ground points are 

assumed to follow a parametric plane model that closely 

resemble a road surface, the RANSAC algorithm is employed to 

determine the best-fit plane that estimates the road surface at the 

evaluated time frame.  

 
(a) 

 
(b) 

Figure 4. Segmented ground points and road surface plane 

 

Once the model plane parameters are obtained, they are used to 

estimate the depth information using planar holography 

technique. Figure 2 (b), shows any points that are assumed to be 

on the road surface can be re-projected onto the road surface 

plane by computing the scale parameter, λ.  

 

3.5 RANSAC-Based Outlier Removal 

The final fused detected lanes in the evaluated dataset comprise 

the two outer boundary lanes and inner lanes. When transformed 

into the local ENU frame, the lanes are not grouped or indexed, 

and they are subject to outliers and noise. It should be noted that 

the proposed method is tested mainly in rural areas where the 

road is mostly straight with minimal curvature and in a limited 

time frame. Thus, the effectiveness of the proposed method may 

not work well in urban environments with more intricate 

environment.  

 

Performing the post-processing in the local ENU frame can be 

challenging as outliers may obscure the data sequence. To 

address this, we apply the K-means clustering algorithm (Forgy, 

1965) to group detected boundary lane points into two clusters, 

representing the left and right boundaries of the lane. Each set of 

grouped lane points is then evaluated using a modified RANSAC 

algorithm to determine a 3D best-fit line that passes through the 

identified inliers, resulting in a polished detected straight lane. 

 

 
 

Figure 5. Grouped left and right lanes evaluated in the local 

ENU frame. 

  

The remaining inliers are re-fitted with a 3D line model to 

construct a best-fit line that resemble a single lane. The 

experimental result of this process is presented in the next 

section. 

 

4. EXPERIMENTAL RESULTS 

We evaluated our lane detection tool using The KITTI Vision 

Benchmark Suite, which provides a comprehensive dataset 

including images, LiDAR, and INS data. Initially, we used the 

"2011_09_26_drive_0027" dataset from the raw road category, 

which was collected on a simple two-lane straight road in a rural 

area.  

 

 

Dataset 
Number 
of frames 

Description TP FP FN Accuracy(%) Precision(%) 

2011_09_26_drive_0002 76 Urban areas with train tracks and bike lane 139 32 65 59 81 

2011_09_26_drive_0015 296 Countryside with train tracks and some incoming cars 464 66 203 63 88 

2011_09_26_drive_0027 187 Straight road with less incoming cars 456 11 108 79 98 

2011_09_26_drive_0028 429 Curvy road with many incoming cars 201 72 375 31 74 

Total   1260 181 751 57 87 

Table 1. KITTI dataset evaluation result with data descriptions 
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Once the algorithm provided accurate results with this dataset, 

we applied it to more datasets for testing, which provided more 

diverse and intricate environments. The algorithm was then 

further refined to ensure robustness and accuracy with the new 

data set. 

 

4.1  Results 

The images in Figure 7 shows the results of applying the 

vanishing point constraint and noise reduction threshold 

requirements to the training dataset. The boundary and inner 

lanes were determined separately and visualized in cyan and blue, 

respectively. While inner lanes are typically drawn with a dotted 

line, we presented them as a straight continuous line to improve 

visualization by connecting them all the way to the vanishing 

point, shown as a green dot. 

 

  

 
 

 
 

 

Figure 6. Detected boundary and inner lanes 

 

Figure 7 shows the detected lanes and the corresponding road 

features in both image and LiDAR frames. The detected lanes are 

represented by green lines, and the corresponding road feature is 

labelled in red.  

 
(a) 

 
(b) 

Figure 7. Detected Lanes and extracted road features 

represented in image frame (a) and LiDAR frame (b). Note that 

in (b), the vanishing point is not visible in the captured image 

due to zoomed-in affect 

 

Fig. 8, shows the final output of the evaluated dataset, 

“2011_09_26_drive_0027”, including the final detected 

boundary lanes projected onto the ground truth frame, local ENU 

frame and the labelled road features based on the detected lanes 

from the overall LiDAR point clouds.  

 

 

 

Figure 8. Detected lanes and road transformed in the local ENU 

frame and global frame 

 

Figure 9 shows the post-processing results obtained in birds-

view, the blue points represent the outliers, green points represent 

the inlier, and the red lines are the final corrected lanes.  

 

Figure 9. Post-processing results in (a) local ENU frame (top-

down view) and (b) global frame 

 

 

4.2 Comparison  

CV-Based Algorithm 

 

One common state-of-art approach is to use simple Canny edge 

detection alongside Hough Transform to detect any lanes based 

on images. Using this algorithm on KITTI dataset of 0027, frame 

04, as an example, the region of interest is first selected and 

masked out to perform canny edge detection and Hough 

Transform. The selection mechanism is simply constructed by 

creating a triangle shaped area from the centre to the bottom two 

corners of the image. 

 

Figure 10. Assumed interested region 

Inner Lane Boundary Lane Vanishing Point 
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The results are prominent in that it contains many noises, errors, 

and mistakes around the grass area near the road.  

 
 

Figure 11. Detected edges and lines with noises and significant 

outliers. 

 

The limitation of such a simple and efficient algorithm is that it 

cannot handle complex environments, especially when there are 

other environmental factors such as grass in the case of 

“2011_09_26_drive_0027” dataset. It was originally designed 

for highway environment when most of the road environments 

consist of road features.  

 

4.3 Evaluation 

To evaluate the performance of our lane detection algorithm, we 

employed the MATLAB Ground Truth Labeller App. This 

evaluation approach involved a semi-automated process, where 

the true lanes were manually labelled by human vision to 

compare against the detected lanes in a particular dataset.  

 

The evaluation of detected lanes composes confusion matrices 

based on comparing the predicted lane markings with the ground 

truth markings identified by visual inspection. To determine 

whether a predicted lane was accurate, we compared the slope 

and y-intercept of the detected line against those of the ground 

truth marking, using threshold values of 0.5 for the difference in 

slope and 100 pixels for the difference in y-intercept. True 

Positive (TP), the number of correctly detected lane markings. 

False Negative (FN), the number of missed lane markings, and 

False Positive (FP), the number of falsely detected lane markings. 

By analysing these metrics, the accuracy and precision can be 

calculated using the following equations: 

 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑃+𝐹𝑁
                            (9) 

 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                              (10) 

 

As can be seen in Table 1, it is evident that lane detection 

algorithm showed the highest performance on the 

“2011_09_26_drive_0027” dataset, with an accuracy of 79% and 

precision of 98%. This dataset was mainly used during the 

development of the algorithm, which could be a contributing 

factor to the superior result.  

 

However, the accuracy dropped significantly to 31% on the 

“2011_09_26_drive_0028”, which contained curvy roads and 

heavy traffic, making it challenging to detect lanes correctly.  On 

the other two dataset, the algorithm proved its robustness by 

identifying lanes accurately, even in the presence of train tracks 

in the images which can lead to more false positives. 

Consequently, the overall accuracy was calculated to be 57%. 

 

5. CONCLUSIONS 

In this paper, we proposed a vanishing point aided lane detection 

method, using camera and LiDAR sensors, and a RANSAC 

based post-processing method to remove outliers. By leveraging 

the characteristics of lanes, we successfully identified the lanes 

and vanishing point in noisy environments. Additionally, 

implementing RANSAC and k-means clustering algorithms 

effectively removed outliers among the detected lanes. Although 

the accuracy of the lane detection algorithm in image processing 

was 57%, we expect that the accuracy of the final parametric line 

will increase significantly after the outlier removal process.  

 

However, there are some limitations that need to be addressed in 

future work. One of the limitations is its inability to detect curved 

inner lanes as they would no longer pass through the vanishing 

point. One of the assumptions we made is that roads are straight 

so inner lanes will always pass the vanishing points. To overcome 

this limitation, we suggest considering the location of the 

vanishing point to identify winding roads and apply a different 

method to detect the curvy inner lanes. The post-processing 

assumed the final detected lanes are straight, which also imposes 

limitations on its functionality when handling curvy roads.  

 

For future work, the focus can be shifted on accommodating 

curvy lanes. To identify the curvy lanes, the direction of the curve 

should be considered based on the location of the vanishing point. 

This can be achieved by performing curve line fitting using the 

vanishing point and inner lines detected. Furthermore, the system 

can use other relevant information as constraints such as curbs to 

furth improve lane detection accuracy. The post-processing 

method can be optimized to adapt non-straight lines using more 

complexed parametric model.  
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