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ABSTRACT: 

Relative pose estimation using a monocular camera is one of the most common approaches for aiding vehicle’s navigation. It involves 
determining the position and orientation of a vehicle relative to its surroundings using only a single camera. This can be achieved through 
four main steps: feature detection and matching, motion estimation, filtering and optimization, and scale estimation. Feature tracking involves 
detecting and tracking distinctive visual features in the environment, such as corners or edges, and using their relative motion to estimate the 
camera's movement. This approach can be prone to errors due to feature detection and tracking difficulties, as well as issues with moving 
objects, occlusions, and changes in lighting conditions. These typical computer vision approaches are computationally intensive and may 
require significant processing power as well, which limits their real time application. This paper proposes a hybrid deep neural network 
approach for estimating the relative attitude of a vehicle using a monocular camera to aid in vehicle navigation. The proposed neural network 
adopts a relatively shallow architecture to minimize the computational cost and to meet the real-time requirements of low-cost processing 
systems. The network is trained using the KITTI dataset and can estimate the relative attitude of the vehicle with a RMSE of relative 
orientation of 0.017 degrees per frame. The processing time of the proposed approach is around 28 ms per frame including both the tracking 
and network prediction steps, which is significantly faster than the typical estimation pipelines. The results show that the proposed approach 
is a viable alternative to conventional computer vision methods and can significantly reduce computational costs, deal with the confusing 
scenarios of the moving objects while maintaining a good accuracy in estimating ego-motion.  

1. INTRODUCTION

In recent years, vision-aided techniques for autonomous vehicle 
navigation have emerged as a promising alternative for pose 
estimation. Compared to other navigation systems, vision-aided 
navigation systems can be relatively cost-effective, as they can 
use off-the-shelf hardware and software components.  

Vision-based techniques are not affected by wheel slip in uneven 
terrain, making them more robust in challenging environments. 
Moreover, localization with imagery can be compatible with 
other computer vision tasks, such as classification and object 
detection, enabling the development of more complex systems 
for better situational awareness and informed decision making.  

The typical pipeline of computer vision approaches for pose 
estimation involves four main steps: feature detection and 
matching, motion estimation, filtering and optimization, and scale 
estimation. Feature detection and matching involves identifying 
and tracking distinctive features in the images. Motion estimation 
involves computing the camera's motion by analysing the changes 
in the positions of the tracked features between frames. Filtering 
and optimization involve smoothing the estimated motion to 
reduce errors and improve accuracy. Finally, scale estimation 
involves determining the scale of the estimated motion using 
external sources of information, such as GNSS, IMU sensors or 
odometer. 

Recently, deep neural networks (DNNs) have shown promising 
results in various computer vision and image processing 
applications, outperforming traditional techniques. Also, the 
deep learning neural networks have been recently introduced in 
the field of localization and pose estimation. This research paper 
proposes a hybrid approach combining deep learning and 

computer vision algorithms for reduced computational cost, and 
enhanced adaptability to various environmental conditions.  

By using a monocular camera and a regression-based deep neural 
network, we aim to approximate the changes in consecutive 
frames and the relative vehicle pose. Additionally, an analysis of 
processing times was conducted for both the hybrid and 
traditional computer vision techniques to compare the efficiency 
of each approach. The proposed method demonstrates promising 
results and holds potential for further research and application in 
real-world scenarios. 

2. RELATED WORK

Relative pose estimation techniques can be divided into two main 
categories: computer vision-based algorithms and more recently, 
deep learning-based algorithms. Computer vision algorithms 
have a superior performance in terms of accuracy and robustness. 
The typical workflow of computer vision algorithms is extracting 
and matching a set of image features, constructing multiview 
geometry then attempting to estimate motion from a sequence of 
images. 

These methods typically apply feature detection methods like 
FAST (Rosten et al. 2006), SURF (Bay et al. 2008), ORB (Rublee 
et al. 2011), SIFT (Lowe, D. G. ,2004) and BRIEF (Calonder et 
al. 2010) to extract points of interest. The Kanade– Lucas–Tomasi 
(KLT) (Tomasi et al. 1991) feature tracker is one of the most 
common feature point tracking methods to track points in the 
sequential frames. 

As the matching algorithms essentially rely on the image intensity 
values, some points could share the same appearance however 
they do not belong to the same object point. That is why it is 
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essential to remove outliers from matched points after matching 
algorithm. The most popular method for outlier removal is 
RANSAC (Fischler et al. 1981). Some other robust estimation 
methods are M-estimation (Torr et al. 1997), case deletion, and 
explicitly fitting and removing outliers (Sim et al.2006). 
However, even though the computer vision methods have a robust 
accuracy, but they are computationally expensive and still 
challenging in real-time applications. To overcome the large 
computational requirements of these methods, some approaches 
(Scaramuzza et al.2009), (Engel et al.2013) and (Forster et 
al.2014) were proposed to try to simplify the computations and 
enhance the performance of monocular relative pose estimation. 
Besides, the computer vision algorithms make use of geometry 
reconstruction from matched image points to estimate the camera 
pose state; that is why, the geometry-based methods cannot work 
well on some conditions like: i) image frame without obvious 
texture information or strong interest points, (ii) environment with 
light intensity changing abruptly, or (iii) when the vehicle is 
moving at a high speed as the consecutive frames should have 
sufficient overlap for matching process. Moreover, the real scale 
estimation and camera calibration parameters are very essential 
parts for pose estimation process.  
 
Recently, some deep learning-based VO methods have been 
developed without explicitly using any geometric reconstruction. 
The deep learning methods have achieved promising results in 
estimating optical flow or estimating 6 DoF poses. The network 
called PoseNet (Kendall et al. 2015) uses CNNs to learn mapping 
from images to estimate absolute six-DoF poses. FlowNet 
(Dosovitskiy et al. 2015) makes use of optical flow between 
images. GeoNet, (Yin et al. 2018) is an unsupervised learning 
framework for optical flow, monocular depth, and ego-motion 
estimation from videos. VLocNet, (Valada et al. 2018) is another 
CNN architecture for six-DoF pose regression and odometry 
estimation from consecutive monocular images. 
  
 

3. METHODOLOGY 

The conventional computer vision approaches for pose estimation 
begin with feature extraction such as corners or edges from 
images. This may be simple corner detector as Harris, Förstner, 
and Moravec or more sophisticated feature extraction algorithms 
were tested SIFT, FAST, SURF, ORB, and BRISK.  
 
SIFT is designed to identify and describe local features in an 
image that are invariant to scale, rotation, and translation. While, 
FAST is a fast and efficient algorithm that operates by analysing 
a small set of contiguous pixels in a circular pattern around each 
candidate corner location, allowing it to rapidly detect corners. 
The SURF algorithm identifies interest points in an image using 
a scale-space extrema detection method and uses a unique 
representation of image patches called a "Haar wavelet response" 
to efficiently extract feature descriptors. BRIEF is a fast algorithm 
that selects pairs of pixels at random within a small patch around 
a given point to compute binary codes for feature descriptors. 
ORB combines the speed of the FAST corner detector with the 
robustness of the BRIEF descriptor by using a multi-scale 
pyramid approach and assigning an orientation to each corner. 
BRISK is another feature extraction and descriptor algorithm that 
is scale invariant but has limited invariance to rotation. 
 
The second step after feature extraction is to match these features 
between the consecutive images. As the matching algorithms 
essentially depend on the point appearance, some points could 
share the same appearance although they do not belong to the 
same object point. Therefore, matching outliers’ removal is the 
third step in the relative pose estimation procedures of computer 
vision approaches. A Matching outlier detection and filtering 

algorithm such as the standard RANSAC, Least Median of 
Squares (LMedS), Normalized eight-point algorithm 
(Norm8Point), or M-estimator SAmple Consensus (MSAC) are 
typically used. RANSAC works by randomly selecting a minimal 
subset of matched points, computing the transformation 
parameters based on these points, and testing the accuracy of the 
estimated transformation by counting the number of inliers. 
LMedS seeks to minimize the median of the squared errors 
between the matched points and the estimated fundamental 
matrix. The normalized eight-point algorithm improves the 
robustness and accuracy of the eight-point algorithm by 
normalizing the input data. MSAC is an extension of RANSAC 
that uses an M-estimator function to better handle outliers in the 
input data. 
 
The final step to estimate the relative pose between two image 
frames is to decompose the fundamental matrix that relates 
corresponding points in two views of the same scene. The 
decomposition of fundamental matrix provides information about 
the relative orientation and position of the image views. 
 

3.1 Deep learning network 

The proposed method for relative pose estimation uses a 
regression deep neural network to determine the relative vehicle 
orientation as a function of optical flow between successive 
frames. The optical flow is the apparent motion of the point or 
objects of the scene due to the motion of the imaging platform. 
Optical flow is a computer vision technique that is used to 
estimate the motion of objects in an image sequence. It analyses 
the similarities between pixel neighbourhoods along consecutive 
frames in an image sequence to determine the apparent motion of 
objects in the scene. 
 
By tracking the motion of pixels over time, optical flow 
algorithms can estimate the direction and speed of the object's 
motion. It is defined mathematically as the apparent velocities vx, 
vy of the image point between two frames.  
 
One of the most widely used optical flow algorithms is the Lucas-
Kanade method, which computes the flow field by solving a linear 
system of equations for each pixel in a local neighbourhood. The 
algorithm assumes that the motion of pixels in the neighbourhood 
is similar and estimates the flow vector that minimizes the sum of 
squared differences between the corresponding pixels in the two 
frames. The Lucas-Kanade method is computationally efficient 
and can be easily parallelized, making it suitable for real-time 
applications. 
 
The velocity of the point through the successive frames is affected 
by many factors: the distance of the point from the moving 
platform, velocity of the platform, the complexity of the motion 
in the scene (e.g., cars, pedestrians...etc.). Therefore, predicting 
pose from the optical flow is not straight forward. 
 
The proposed deep neural network attempts to learn the complex 
motion within the scene (static objects, moving objects, near 
objects, far objects, …etc.), overcome the problem of variation in 
light conditions, and make predictions with good estimates for 3-
D pose angular rotation. 
 
To do so, the experiment was implemented using KITTI landmark 
dataset which is one of the most popular datasets in mobile 
robotics and autonomous driving. The KITTI dataset is a large-
scale benchmark dataset for computer vision tasks related to 
autonomous driving. It is named after the Karlsruhe Institute of 
technology and Toyota Technological Institute at Chicago, where 
it was created. It consists of multiple drives with different traffic 
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scenarios recorded with multiple sensors, including RGB, grey 
scale stereo cameras, 3D laser scanner along with ground truth 
data provided by navigation system (OXTS RT3003 inertial and 
GPS navigation system, 6 axis, 100 Hz, L1/L2 RTK, resolution: 
0.02m / 0.1). Around 76,624 grey scale frame images from 
KITTI dataset as well as their ground truth navigation data were 
used for training the proposed network. 
 
The project workflow is as follows: 
 

1. Generate equally spaced grid of points to serve as points 
of interest other than generating real interest points by 
either SIFT, SURF, Harris…, or any other operator 
which is computationally expensive.  The grid size was 
selected to be 10 pixels, which produces (36x121) 
points in each frame (uniformly distributed). Figure 1. 
shows the distribution of the point on an image sample. 

 
Figure 1. The regular grid of 10-pixel spacing points 

superimposed on the image. 
 

2. Generate optical flow images for the points generated 
in step 1. using KANADE-LUCAS-TOMASI (KLT) as 
a point tracker. Then, the computed (vx, vy, confidence 
score) at each point are used to generate synthetic 
images (with layers vx, vy, score) that represent the 
optical flow of the original images. Figure 2 shows two 
successive frames (a), (b) and the generated synthetic 
image (c) from the optical flow which serves as the 
input for the proposed network.  

 

 
(a) 

(b) 

(c) 
Figure 2. The first frame (a), the successive frame (b), and the generated synthetic image of the image pair (c). 
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3. Generate labels for each frame by computing the 
relative pose change of vehicle from the ground truth of 
the navigation data as (∆ roll, ∆ pitch, ∆ heading) 

 
3.1.1 NETWORK ARCHITECTURE 
 
The proposed network architecture is illustrated in Figure 3. The 
architecture consists mainly of two convolutional layers each 
followed by average pooling and two fully connected layers ends 

with regression of relative orientation of the pose. While deeper 
architecture can typically improve the network performance, a 
relatively shallow architecture has been adopted to reduce the 
computational cost and to meet the real-time requirements on 
low-cost processing systems. Using KLT based optical flow 
synthetic images as inputs can significantly help reduce the need 
for a deeper architecture as a major part of the estimation process 
has been provided to the network. 

 
Figure 3. The proposed Network Architecture. 

 
 
First, the 3-channel synthetic image input (layer for vx, other for 
vy, and the third of score) is convolved by the first layer of 32 
filters with a spatial extent of 3x3, stride=2 and padding=1. This 
convolutional layer is followed by a ReLU activation function and 
an average pooling layer.  
 
The second convolution layer is 64 filters with a spatial extent of 
3x3, stride=2 and padding=1. This convolutional layer is also 
followed by a ReLU activation function and an average pooling 
layer. Then two fully connected layers with 896 and 800 nodes 
respectively are used to estimate the three relative angular 
orientation of pose. 
 
3.1.2 TRAINING NETWORK 
 
The Loss function chosen was Mean Square Error (MSE) 
between the model output and the target value defined by the 
label. 
 

MSE =  
1

𝑛
෍(𝑦௜ − 𝑦పෝ)ଶ

௡

௜ୀଵ

                      (1) 

where      MSE = mean squared error 
n = number of data points 
𝑦௜= predicted values 
𝑦పෝ= target values 

 
 

The batch size was chosen to be 128 and the initial learning rate 
was 1e-5, which has been tuned through several trials to get the 
optimal value. The stochastic gradient optimization method 
chosen was Adaptive Moment Estimation (Adam). This method 
keeps an exponentially decaying average of past gradients. The 
decay rate was chosen to be 0.01. 
 
 

 
3.1.3 THE ACCURACY MEASURES 
 
To evaluate the accuracy predicted relative angular estimates, 
the following accuracy measures are selected: 

1. The loss function as MSE between the output and target 
value Eq .1. 

2. The roll angle mean error (deg).  
3. The roll angle standard deviation of error (deg). 
4. The pitch angle mean error (deg). 
5. The pitch angle standard deviation of error (deg). 
6. The RMSE of relative orientation (deg/frame). 
7. The heading angle mean error (deg). 
8. The heading angle standard deviation of error (deg). 
9. Accumulated heading angle error per minute (deg). 
 

4. EXPERIMENTAL RESULTS AND ANALYSIS 

As mentioned before, the first step in relative pose estimation 
using computer vision approaches is feature extraction. A 
comparison between processing times for five popular feature 
extraction algorithms SURF, ORB, FAST, BRISK and SIFT is 
implemented. The results indicated in table 1 show that the least 
processing time (around 2 ms) is for FAST algorithm, while the 
maximum processing time is for BRISK with an average 180 ms. 

Table 1. The processing time of different feature extraction and 
matching algorithms of consecutive frames in (ms) 

  Average processing time per pair (ms) 
SURF 26.471 
ORB 19.198 
FAST 2.374 

BRISK 179.356 
SIFT 129.3767 

The second step is to match the extracted features between the 
successive frames. Figure 4 shows a sample of successive frames 
coloured as red and cyan. In Figure 4, the matched points with the 
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SURF features including outliers are indicated by green crosses 
and red circles. As shown in the figure, there are some outliers in 
the matched points therefore an outlier detection and removal 
algorithm is necessary. Figure 5 shows the same images with the 
correct matched points after outlier points removal with the 
MSAC algorithm. Table 2 shows the processing time for 
consecutive frames with different outlier removal algorithms. The 
standard method RANSAC has the largest processing time, while 
its variant MSAC converges faster, with approximately half the 
processing time of RANSAC. The least processing time is for the 
Norm8Point about 2 ms. However, in practice Norm8Point 
algorithm cannot be used solely as it does not involve iterative 
outlier removal and therefore is prone to significant matching 
errors. 
 

Table 2. Processing time of different outlier removal 
algorithms processing consecutive frames in (ms) 

  Average processing time per pair (ms) 
RANSAC 159.344 

LMedS 170.428 
Norm8Point 2.078 

MSAC 54.081 

 
Figure 4. Putatively matched points (including outliers). 

 
Figure 5. Matched points (inlier only). 

 
4.1 Training for DL Neural Networks 

As previously discussed, the computer vision algorithms require 
enough reliably matched interest points and are sensitive to the 
environment light conditions. Moreover, the computer vision 
algorithms are computationally expensive in real time 
applications as indicated in Table 1 and Table 2.  The experiments 
of the proposed neural network were implemented with a 12th 
Gen Intel® Core™ i7 Processor H-Series laptop with NVIDIA® 
GeForce RTX™ 3070 GPU and installed RAM 16GB.  
 
The training involves several trials with different 
hyperparameters. The final trial consists of 1000 epoch each of 
which took an average of 6.5 seconds. Table 3. Indicates the 
results obtained by a test data of 3825 frames. The RMSE of 
relative orientation is 0.017278 (degree/frame). The largest error 
component results from the heading angle whose accumulated 
error per minute drive was -0.696657 degrees. 
 
The results show the prediction time for 3825 frames was 8.4863 
(ms), which approximately equals an average of 0.22 (ms) per 
hundred frames. If we added the average processing time of KLT 
per frames pair which equals 28 (ms) and compare the results with 
the shortest possible conventional pipeline as a combination of 
FAST (2.374 ms) per pair and MSAC outlier detection and 
removal algorithm (54.081 ms); our proposed method will 
consume about a half processing time of the conventional method. 

Table 3. Results of the proposed pose estimation approach 
Total number of test frames 3825 

RMSE of relative orientation (deg/frame) 0.017278 

Relative roll angle mean error (deg/frame) 0.0008966 

Relative roll angle std of error (deg) 0.0136598 

Relative pitch angle mean error(deg/frame) 0.0039906 

Relative pitch angle std of error (deg) 0.0085616 

Relative heading angle mean error (deg/frame) -0.0011611 

Relative heading angle std of error (deg) 0.024852 

Accumulated heading angle error per minute (deg) -0.696657 

Prediction took (ms) 8.4863 
 
Table 4 shows three different scenarios for processing hundred 
frame pairs in (ms); the first is our proposed method, the second 
is a combination of the fastest image detection and matching 
algorithm (FAST) with the fastest matching outlier and detection 
algorithm (MSAC) and the third is the most common approach 
using SIFT as detector and the standard RANSAC as outlier 
detection and removal algorithm. 

Table 4. Processing time in (ms) of different scenarios for 
processing hundred frame pairs.  

Proposed Scenario 2 Scenario 3 
KLT 2800 FAST 237.4 SIFT 12937.67 
NN 0.22 MSAC 5408.1 RANSAC 15934.4 

2800.22 (ms) 5645.5 (ms) 28872.07 (ms) 
 
Figure 6 shows the predicted trajectory vs. the ground truth, for 
the first 1000 frames of a test drive with the accumulated heading 
angle error per min of -0.696657⁰. The Figure 7  through Figure 9 
show the trajectories of the successive three thousand frames in 
the same test drive. 
 

 
Figure 6. Predicted trajectory vs. Ground truth  

(Frames 1-1000). 
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Figure 7. Predicted trajectory vs. Ground truth  

(Frames 1001-2000). 
 

 
Figure 8. Predicted trajectory vs. Ground truth  

(Frames 2001-3000). 
 

 
Figure 9. Predicted trajectory vs. Ground truth  

(Frames 3001-4000). 
 
As shown in the Figures Figure 6 through Figure 9, the drift of 
the predicted trajectory increases with the number of frames. With 

fewer degrees of freedom, the system becomes more constrained. 
Therefore, both errors in attitude and displacement components 
are accumulated in the resulting attitude estimate. Any slight 
variations in displacement components can have a relatively 
substantial impact on the attitude. To improve the performance in 
the future, the network architecture can be extended to predict 
displacement components, other than orientation components 
only. 
 
The behaviour of the proposed network through a whole test drive 
distance can be shown in the Figure 10 through Figure 12. of 
sequence 00 is shown in Figure 10. The Figure 10 through Figure 
12 show the predicted trajectory vs. ground truth for KITTI drive 
sequences 00, 05 and 10, respectively. 
 

 
Figure 10. Predicted trajectory vs. Ground truth  

(Sequence_00). 
 

 
Figure 11. Predicted trajectory vs. Ground truth  

(Sequence_05). 
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Figure 12. Predicted trajectory vs. Ground truth  

(Sequence_10). 
 

5. CONCLUSION 

The proposed neural network has demonstrated its ability to 
capture input-output dependencies effectively, resulting in less 
than one degree of accumulated heading angle error per minute 
drive, despite being built with few layers to reduce its 
computational cost. 
  
While computer vision techniques are mathematically based and 
easy to trace, their pair-wise computations based on feature 
extraction, matching, and tracking are time-consuming, which is 
a crucial issue for real-time applications, such as autonomous 
driving vehicles. On the other hand, deep learning neural 
networks have emerged as a game changer in solving complex 
computer vision tasks and delivering predictions within 
milliseconds. Even though the neural networks require tons of 
data to learn; but once they learn, prediction can be achieved in a 
relatively short time, especially if simple architectures are 
adopted.  
 
The proposed approach could deal with the confusing scenarios 
of the moving objects, occlusions, and changes in lighting 
conditions. The proposed network can estimate the relative 
attitude of the vehicle with a RMSE of relative orientation with 
0.017 degrees per frame. The prediction time takes 0.22 
milliseconds per hundred frames. This minimized computational 
cost can meet the real-time requirements on low-cost processing 
systems. Further tuning of the grid parameters and effective 
region of interests can significantly reduce the computational 
burden of the proposed approach. 
 
For future work, the network architecture can be modified to 
incorporate Recurrent with CNN architecture to capture the 
sequential dependencies of frames as the pose changes gradually 
over time. This modification can enhance the results further. 
Additionally, an extension to predict displacement components, 
other than orientation components only, can be explored. 
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