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ABSTRACT: 

Recently, Deep learning algorithms are becoming increasingly instrumental in autonomous driving by identifying and acknowledging 

road entities to ensure secure navigation and decision-making. Autonomous car datasets play a vital role in developing and evaluating 

perception systems. Nevertheless, the majority of current datasets are acquired using Light Detection and Ranging (LiDAR) and camera 

sensors. Utilizing deep neural networks yields remarkable outcomes in object recognition, especially when applied to analyze data 

from cameras and LiDAR sensors which perform poorly under adverse weather conditions such as rain, fog, and snow due to the sensor 

wavelengths. This paper aims to evaluate the ability to use RADAR dataset for detecting objects in adverse weather conditions, when 

LiDAR and Cameras may fail to be effective. This paper presents two experiments for object detection using Faster-RCNN architecture 

with Resnet-50 backbone and COCO evaluation metrics. Experiment 1 is object detection over only one class, while Experiment 2 is 

object detection over eight classes. The results show that as expected the average precision (AP) of detecting one class is (47.2) which 

is better than the results from detecting eight classes (27.4). Comparing my results from experiment 1 to the literature results which 

achieved an overall AP (45.77), my result was slightly better in accuracy than the literature mainly due to hyper-parameters 

optimization. The outcomes of object detection and recognition based on RADAR indicate the potential effectiveness of RADAR data 

in automotive applications particularly in adverse weather conditions, where vision and LiDAR may encounter limitations. 

1. INTRODUCTION

Recently, the technology of autonomous driving has received 

much attention. The system of autonomous driving mainly 

consists of three sequential modules of perception, planning, and 

control. As the modules of planning and control rely on the output 

of the perception module, The perception module needs to be 

robust even under all driving weather conditions. Identifying 

objects is a fundamental task for autonomous vehicles. In the 

process of generating a virtual map of the environment, it is 

essential to recognize pivotal elements like vehicles, pedestrians, 

street fixtures, walls, traffic signs, junctions, and more. 

Therefore, focusing on these objects and forecasting their 

movements becomes imperative for developing a secure 

perception system for autonomous cars (Sheeny, 2020). 

The pivotal question at hand is whether we are prepared to 

introduce fully autonomous vehicles. It is well-known that the 

majority of self-driving cars rely on cameras and Light Detection 

and Ranging (LiDAR) systems, which are not resilient in adverse 

weather conditions. A telling instance is the Competition of 

Automobile Technology in South Korea in 2014 (KAIST, 2014), 

where four teams, each with twelve autonomous cars, were 

tasked with completing various challenges in an urban setting. 

Despite the success of all four teams on the first day, which 

featured favorable weather conditions, the second day's rain, 

slippery roads, and wet conditions resulted in crashes for two of 

the initially successful teams. This competition underscored the 

ongoing lack of readiness to deploy fully autonomous cars on 

public roads during bad weather. Addressing the challenges 

posed by adverse weather conditions is essential in the 

development of autonomous vehicles (Sheeny, 2020). 

Radio Detection and Ranging (RADAR) sensors have the ability 

to penetrate rain, snow, and fog (Skolnik, 1980). Establishing 

robust approaches based on RADAR will result in the creation of 

a more secure perception system, facilitating the realization of 

complete autonomy under diverse weather conditions. RADAR, 

while producing images with lower resolution in contrast to video 

and LiDAR, poses a challenging task in designing an object 

recognition system tailored for adverse weather (Sheeny, 2020). 

The computer vision community and RADAR community have 

different meaning of detection term. In RADAR communities, 

detection is confined to identifying regions without assigning 

classes (ex. Constant False Alarm Rate (CFAR) (Skolnik, 1980) 

algorithm). Conversely, in computer vision communities, 

detection encompasses both the localization of regions (usually 

rectangular boxes) and their classification (ex. Faster R-CNN 

algorithm. There are three important terms which are:  

• Classification: In the context of classification, the term

involves categorizing the entire image without

specifying the object's location (ex. AlexNet

(Krizhevsky et al., 2017) ). The main metric employed

for classification is accuracy.

• Detection: Concerning detection, it encompasses the

localization of potential regions followed by their

classification (ex. Faster R-CNN (Ren et al., 2016) ).

The key metric for classification in this scenario is

Average Precision (AP) (Everingham et al., 2010).

• Recognition: as a term, is applied in a broader context,

encompassing instances where classification occurs

within a detection framework or independently.

1.1 Problem Statement 

The systems of autonomous cars usually used LiDAR and video 

sensors. Is it feasible to employ LiDAR and video in bad weather 

conditions? Figure 1 illustrates the application of the state-of-the-

art object detection algorithm (Faster R-CNN (Ren et al., 2016)) 

trained on MS-COCO (Fleet et al., 2014)  in various foggy road 

scenarios. The results depicted in Figure 1 indicate that the 

network successfully detects vehicles in only two images, while 

it struggles to identify pedestrians or vehicles in the remaining 
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images. In adverse weather conditions, a perception system 

relying on a video sensor might fail to detect crucial objects due 

to signal attenuation and the need for alternative sensing 

methods, on the other hand, the RADAR sensor is a key aspect 

to treat the bad weather problem. The problem addressed in this 

paper is object recognition for all weather scenarios (night, 

sunny, rain, fog, and snow) based on RADAR sensing. Despite 

the capability of RADAR sensors to penetrate fog, rain, and 

snow, they offer relatively limited spatial resolution (especially 

in cross-range) (Sheeny, 2020). 

 

 

Figure 1. Faster R-CNN algorithm was utilized on numerous 

images during inclement weather. The training for this network 

was conducted using MS-COCO (Fleet et al., 2014). This figure 

shows that camera sensor fails to recognise objects under adverse 

weather conditions. 

 

1.2 Objective 

The primary goal of this paper is to detect and recognize objects 

for automotive applications by using resilient RADAR images 

across diverse weather conditions. 

 

1.3 OBJECT DETECTION CHALLENGES 

Deep learning and Computer vision methods can be used for 

solving the challenges of object detection. These challenges are: 

 

1.3.1 Object classification in digital image: Object 

classification involves determining the category of an object 

within an image. Traditional machine learning algorithms are 

outperformed by conventional neural networks (CNNs) in 

achieving more accurate image classification, in achieving more 

accurate image classification. For multi-class object 

classification, the CNN-RNN (Recurrent Neural Network) 

model, as proposed by (Wang et al., 2013), yields improved 

results. 

 

1.3.2 Object localization in digital image: Object 

localization issue entails determining the precise location of an 

object within a digital image. It involves identifying the existence 

of an object by precisely determining its position in the digital 

image, typically represented using bounding boxes. These 

bounding boxes are defined by the coordinates of the object 

within the image. Object localization combines both 

classification and pinpointing the object's location. According to 

(Bazzani et al., 2016), an effective object localization model 

should have the capability of predicting the object class along 

with its associated bounding box. 

 

1.3.3 Object detection in image: Within the field of 

Computer vision, the object detection challenge focuses on the 

identification and recognition of multiple objects within a single 

image. Objects in digital images may be associated with specific 

classes. Various machine learning algorithms, such as support 

vector machines (SVMs), CNN-based deep learning models, and 

naïve Bayes, are employed for object detection and identification 

(classification). Object detection involves outlining the detected 

object with a bounding box, while object recognition involves 

labeling the object with a tag. The accuracy of the bounding 

boxes predicted by deep learning models can be assessed using 

the Intersection over Union (IoU) technique. This evaluation 

method measures how precisely the model delineates a box 

around the object, with IoU scores ranging from 0 to 1. The score 

is computed by dividing the common area of the two boxes by 

the area of their union (Bazzani et al., 2016). A higher IoU score 

indicates a more accurate bounding box, typically a score 

exceeding 0.5 is considered indicative of a more precise 

prediction. 

 

2. LITERATURE REVIEW  

Presently, various methods have been employed to facilitate the 

successful detection of vehicles by Autonomous Vehicles (AV) 

under challenging lighting conditions (night scene) and under 

adverse weather conditions (sunny, rainy, and snowy) (Kelly et 

al., 2006). LiDAR (Ramasamy et al., 2016) detects vehicles 

during bad weather however, it encounters difficulties in 

accurately interpreting road lane markers crucial for vehicle 

detection. Additionally, LiDAR proves ineffective during heavy 

rain or when low-hanging clouds affect it due to refraction effects 

(Ramasamy et al., 2016) (Wang et al., 2013). Moreover, LiDAR 

requires supplementary cameras to identify obstacles.   

Consequently, the deployment of the LiDAR and camera sensor 

combination may be challenging in various situations, and it is 

highly susceptible to sensor failures. Moreover, rain and fog can 

disrupt the laser light emitted by LiDAR sensors (Sucgang et al., 

2017) (Wang et al., 2013). Another approach is using RADAR 

for vehicle detections, where radio waves are employed to 

identify the presence of objects in the atmosphere (Reina et al., 

2015). In the AV sector, RADAR is employed to determine the 

distance, angle, and speed of vehicles. Additionally, it is utilized 

for detecting precipitation as well as other meteorological events, 

issuing warnings to vehicles about potential impacts and enabling 

drivers to apply brakes. Nevertheless, RADAR usually has 

constrained coverage, extending up to a distance of 200 meters 

(Appiah and Bandaru, 2011). 

 

Over the past two decades, research in the field of autonomous 

cars has experienced rapid growth. The DARPA Grand 

Challenge, established with the aim of supporting significant 

technological advancements with military applications, has been 

instrumental in this growth. The challenges conducted in 2004, 

2005, and 2007 specifically concentrated on the development of 

autonomous cars capable of covering extensive distances in both 
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urban and off-road environments. Numerous universities 

participated in these competitions, contributing to the progress of 

cutting-edge tasks like localization, mapping, and obstacle 

detection. (Thrun et al., 2006). 

 

(Pfennigbauer et al., 2014) outlines the capabilities of LiDAR in 

scenarios with fog. The study involved an experiment conducted 

in a chamber filled with fog of varying visibilities, while an 

object was positioned at a distance of 100 meters. The results 

revealed that the full waveform of the LiDAR generated a 

pronounced unwanted return signal, representing the presence of 

fog. Despite this, it also successfully captured signals from 

objects in conditions with a measured visibility of 40 meters. 

LiDAR demonstrates potential for sensing in moderately foggy 

weather. Through appropriate full waveform processing, it is 

possible to mitigate the effects of fog on the image. However, in 

scenarios with dense fog, the detection of objects at long 

distances becomes challenging. 

 

(Premebida et al., 2007) noted that video and LiDAR serve as the 

primary sensors in the ongoing development of autonomous 

vehicles. Video offers high-color resolution, while LiDAR 

provides accurate 3D point cloud estimation. When two cameras 

are employed, video can also supply 3D information. Both 

sensors find application in tasks such as vehicle detection, 

pedestrian recognition (Ren et al., 2016), (Bartsch et al., 2012), 

and 3D mapping (Krishnan and Kollipara, 2014), (Cadena et al., 

2016). Leveraging its ability to capture color information, video 

is additionally employed for tasks like traffic sign recognition 

(Wu et al., 2013) and lane detection (Ghafoorian et al., 2019). 

Often, to achieve a more comprehensive scene representation, a 

fused representation of both sensors is employed. (Premebida et 

al., 2007). 

 

(Radecki et al., 2016) conveyed that both video and LiDAR 

sensors exhibit suboptimal performance in bad weather 

conditions due to their reliance on the optical electromagnetic 

spectrum, which is impeded by rain, fog, and snow. In contrast, 

RADAR sensors utilize radio waves that can penetrate through 

such weather conditions. However, the trade-off is that RADAR 

provides lower resolution compared to LiDAR and video. To 

harness the strengths of both sensor types, sensor fusion 

approaches have incorporated RADAR sensors.  

 

(Grimes and Jones, 1974) provide a comprehensive overview of 

autonomous RADAR, examining the challenges and potential 

advancements in RADAR technology. The paper specifically 

delves into applications related to speed sensing, predictive crash 

sensing, and obstacle detection. It also explores the impact of 

various weather conditions on RADAR systems, demonstrating 

how attenuation varies with different types of weather. 

Ultimately, the authors highlight the promising prospect of 

achieving target recognition through RADAR technology. 

 

(Rasshofer, 2007) examines the functional requirements for 

RADAR in automotive contexts, addressing aspects such as high 

performance, cost, and system architecture. The paper initially 

explores the feasibility of RADAR imaging using current 

technology, highlighting the challenge of poor angle resolution. 

The authors emphasize that enhancing this aspect could greatly 

improve the potential of high-resolution RADARs. Additionally, 

the paper explores the use of low-THz bands in automotive 

scenarios, deeming it promising. However, the potential impact 

of rain, fog, and snow must be meticulously considered during 

the development of such sensors. 

 

(Bartsch et al., 2012) employed a 24 GHz RADAR to classify 

pedestrians based on the object area's shape and Doppler 

spectrum features. The classification process involved analyzing 

the probability of each feature, and a straightforward decision 

model based on these features was utilized. The outcomes 

revealed that under optimal scenarios, they attained a 

classification rate of 95%, However, in situations where 

pedestrians appeared in gaps between cars due to the low 

resolution of the RADAR sensors, the classification rates 

dropped significantly to 29.4%. 

 

(Nordenmark and Forsgren, 2015) employed four short-range 

mono-pulse Doppler RADARs operating at 77 GHz to categorize 

four classes (car, truck, pedestrian, and bicycle). Each image in 

their dataset contained one target. Detection was performed using 

the Density-based spatial clustering of applications with noise 

algorithm (DBSCAN). Feature extraction relied on parameters 

such as minimum object length, object area, number of 

detections, density, mean Doppler velocity, variance Doppler 

velocity, amplitude per distance, and variance of amplitude. The 

classification experiment employed Support Vector Machines 

(SVM). The outcomes demonstrated an impressive average 

accuracy of 95%. 

 

The current limitations in the range and azimuth capabilities of 

RADAR technology present a significant challenge in achieving 

reliable target recognition rates for autonomous vehicles across 

various scenarios. Currently, sensor fusion with LiDAR and 

video is employed to attain dependable recognition. However, in 

adverse weather conditions, the performance of LiDAR and 

video degrades. The advancement of high-resolution RADAR 

sensors is expected to enhance the development of a more reliable 

recognition system suitable for use in all weather conditions. In 

the paper by (Roos et al., 2019), the authors outline the current 

challenges in developing RADAR systems for autonomous 

vehicles. They illustrate the evolution of RADAR from a 

detection-only system to a high-resolution perception sensor, 

highlighting the ongoing progress in achieving high resolution in 

current RADAR systems. 

 

Cutting-edge algorithms for object recognition and detection in 

LiDAR-based automotive scenarios rely on deep neural 

networks. Research papers such as (Engelcke et al., 2017)(Li et 

al., 2016) have introduced convolutional neural networks 

specifically designed for detecting and recognizing cars. Another 

notable method is SA-SSD3D developed by He et al (He et al., 

2020), which adapts the Single Shot Multibox Detector (SSD) to 

a 3D point cloud. This approach incorporates an auxiliary 

network to convert the voxel representation into a 3D point cloud, 

enhancing the accuracy of predicted bounding box locations. 

 

3. DATA SET (RADIATE)  

In many existing datasets offering RADAR data for automotive 

applications, the RADAR is typically employed solely as a basic 

detector., e.g., the NuScenes dataset (Caesar et al., 2020) gives 

sparse 2D point clouds (does not contain odometry data, and data 

during Fog and Snow). Recently, both Oxford Robotcar (does not 

contain data during Fog and Snow and object detection, object 

tracking) and MulRan datasets (excluding data from nighttime, 

fog, rain, and snow, as well as object detection and tracking) 

furnish information obtained through a scanning Navtech 

RADAR across diverse weather conditions. Nonetheless, these 

datasets do not include object annotations, as their primary 

purpose is geared towards Simultaneous Localization and 

Mapping (SLAM) and place recognition for long-term 

autonomy. The Astyx dataset (acks data during nighttime, fog, 
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rain, and snow, and does not include object tracking or 

odometry). It offers denser data but has annotations for only 500 

frames and is limited in terms of weather variability. In contrast, 

the RADIATE dataset is extensive (encompasses radar, lidar, 

camera, nighttime, fog, rain, snow, as well as object detection, 

object tracking, and odometry) (Sheeny, 2020), (Sheeny et al., 

2021). 

 
The RADIATE dataset obtained through the Navtech CTS350-X 

(Sheeny et al., 2021) RADAR between February 2019 and 

February 2020. This scanning RADAR generates 360° high-

resolution range-azimuth images. The RADAR boasts a 

maximum range of 100 m, along with 17.5 cm range resolution, 

1.8° azimuth resolution, in addition to 1.8° elevation resolution. 

The RADIATE data was collected in seven different scenarios 

(overcast (motorway), rain (suburban), sunny (parked), 

sunny/overcast (urban), fog (suburban), night (motorway), and 

snow (suburban)) with Eight different labeled objects (vans, 

truck, buses, cars, motorbikes, bicycle, pedestrian, and group of 

pedestrians). Examples of RADAR images in polar (raw polar 

format with resolution 400 x 576 (azimuth x range)). Subsequent 

to projecting each point, bilinear interpolation is employed to fill 

voids without values, yielding images with a resolution of 1152 

x 1152 (Sheeny, 2020). 

4. METHODOLOGY AND EXPERIMENTS 

4.1   Select Object detection architecture & Backbone 

networks. 

The methods of object detection can be classified into two groups 

based on deep neural networks: one-stage detector and two-stage 

detector (Sheeny, 2020). 

 

• Two-stage detectors employ a dual-step process for 

object detection. In the initial stage, they identify 

potential regions, and in the subsequent stage, they 

classify each identified region. Examples of two-stage 

detectors include Overfeat (Sermanet et al., 2014), R-

CNN, Fast R-CNN, and Faster R-CNN (Ren et al., 

2016). 

• One-stage detectors employ an end-to-end network for 

simultaneous detection and classification in a single 

pass. The primary advantage of these methods lies in 

their speed, as they operate in a single pass without 

encountering bottlenecks associated with a region 

proposal algorithm. Examples of one-stage detectors 

include SSD (Fleet et al., 2014), RetinaNet (Lin et al., 

2017), and YOLO (Redmon et al., 2016). 

 

The assessment of various deep learning-based object detectors 

with different Convolutional Neural Network (CNN) 

architectures, focusing on the Average Precision (AP) as a 

primary evaluation factor for detectors and feature extractors, 

reveals an enhancement in AP values with increased depth of the 

backbone network. As a result, there is an enhancement in AP 

when transitioning from AlexNet to the ResNet-50 architecture. 

However, further increasing depth leads to a decline in 

performance, as observed in the AP results for Resnet-101, 

Inception-v3, and EfficientNet-B0. This decline is attributed to 

the reliance of object detectors on features at the end of the 

backbone architecture for object detection. Excessive depth can 

lead to feature maps with very low resolution, contributing to a 

deterioration in object detection performance. Faster RCNN 

surpassed other detectors, achieving the highest AP of 0.97 when 

utilizing ResNet-50 as the backbone feature extraction network 

(Azam et al., 2022).  

The object detection processing time is a crucial consideration in 

evaluating various detectors and feature extractors The 

comparison involves assessing the average time of detection for 

each deep learning-based object detector In addition to each 

backbone feature extractor calculated on a single GPU shows that 

both YOLOv2 and v3 take similar time to detect objects. 

Furthermore, these object detectors outperform region proposal-

based object detectors by at least a factor of five. On the other 

hand, Faster-RCNN with Resnet 50 got 1.7 seconds per frame 

which is slow for RADAR detection but as RADAR data is very 

challenging, so we need high performance, which is provided on 

faster RCNN with Resnet 50, in addition to the comparison done 

using only single GPU but in the case of RADAR detection it will 

be available hardware with high specifications which will 

increase the detection speed(Azam et al., 2022). 

 

Prior to the introduction of faster R-CNN, advanced models for 

vehicle detection relied on selective search to approximate target 

locations. The networks like SPPnet(He et al., 2015) and fast R-

CNN succeeded in reducing the operational time of detection 

networks, but the computations remained time-intensive. In 

comparison to R-CNN and fast R-CNN, faster R-CNN 

consolidates the four fundamental steps of object detection—

candidate region generation, feature extraction, classification, 

and location refinement—into an integrated deep network 

framework. This integration is particularly beneficial because the 

candidate region selection algorithm (Selective Search) 

consumed a significant amount of time during detection. Faster 

R-CNN introduces the use of CNN RPNs (Region Proposal 

Networks) to handle candidate region selection. The RPN 

network initially generates region proposals and subsequently 

classifies them, employing a two-stage processing approach. The 

feature map of the convolutional layer of the region detector in 

the fast R-CNN serves to generate candidate regions for the 

RPNs. Building upon feature mapping, several backward 

convolutional layers are added to create a regional 

recommendation network, representing a fully convolutional 

network (FCN) (Long et al., 2015). 

 

The core concept of the RPN network is as follows: within the 

extracted feature map, a feature vector is derived through a 

sliding window and then sent to two layers, the bounding box 

regression layer and the bounding box classification layer. A 

sliding window is applied to traverse every point on the feature 

map, establishing k anchor boxes at each point. Although these k 

anchor boxes are used to extract features from the feature map, 

their effectiveness is limited. To enhance performance, a 

classifier and a box regression are employed. There are two 

parallel loss functions, softmax, and smoothL1, that classify and 

regress each region of interest (RoI) respectively. In this way, the 

model can get a real category and more precise coordinates, 

length, and width of each RoI (Long et al., 2015). 

 

The RPN is equipped with a loss function that considers both the 

object's class and its location. The formulated loss functions for 

RPN are represented by Eq. (1): 

 

L({pi}, {ti}) =  
1

Ncls
 ∑ Lcls(pi, pi

∗) +  λ
1

Nloc
i ∑ pi

∗Lloc(ti, ti
∗)i   (1) 

In this context, "i" represents the index of an anchor within a 
mini-batch, and pi  denotes the predicted probability of anchor 
"i" being an object. The label of ground-truth pi

∗ is assigned 1 if 
the anchor is positive and is assigned 0 if the anchor is negative. 
The vector ti signifies the 4 parameterized coordinates of the 
predicted bounding box, while ti

∗ represents the corresponding 
parameters of the ground-truth box associated with a positive 
anchor. The classification loss denoted as Lcls is log loss 
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computed over two classes (object vs. not object). Regarding the 
regression loss, denoted as Lloc (ti, ti

∗) = R (ti− ti
∗) where R 

denotes the robust loss function (smooth L1). The term pi
∗Lloc 

indicates that the regression loss is activate only for positive 
anchors (pi

∗ = 1) and is inactive otherwise (pi
∗= 0). The cls and 

loc layers produce outputs represented by {pi} and {ti} 
correspondingly. 
 
ResNet-50 (He et al., 2016) employs residual layers, which are 

convolutional neural networks (CNNs) featuring “Shortcut 

connections”. These connections bypass the current layer, and the 

excluded output is incorporated into the output after the 

convolution is executed. ResNet involves a trade-off between 

accuracy and network depth: a smaller network leads to faster 

performance. 50-layer ResNet formed by replacing each 2-layer 

block in the 34-layer net with this 3-layer bottleneck block, 

resulting in a 50-layer ResNet.  The 50-layer ResNets is more 

accurate than the 34-layer ones by considerable margins (Sheeny, 

2020) . 

 

So, I adopted the Faster R-CNN (Ren et al., 2016) architecture 

with Resnet-50 as a backbone to illustrate the application of 

RADIATE for RADAR-based object detection. Two adjustments 

were incorporated into the original architecture to enhance its 

compatibility with RADAR detection: 

• Pre-defined sizes were used for anchor generation [8, 

16, 32, 64, 128] because vehicle volumes are    typically 

well-known and RADAR images provide metric 

scales, different from camera images. 

• I modified the Region Proposal Network (RPN) from 

Faster R-CNN to output the bounding box and a 

rotation angle in which the bounding boxes are 

represented by x, y, width, height, and angle. 

4.2   Experiments 

This section discusses the experimental setup, dataset, 

hyperparameters, and evaluation metrics. 

 

4.2.1 Platform specifications and requirements: The 

experiments are performed on Google Colab and the evaluation 

is done by using COCO evaluation Metrics. The COCO 

evaluation library needs two requirements first, the annotation 

file should be in coco format but the annotation file which 

provided with the RADAR data was in another format, so I 

design a code to convert the data annotation file format to COCO 

format. Second, the data images should contain 3 channels, but 

the RADAR data is gray images that have 1 channel, so I design 

a small code to build 3 channels for each image. 

 

4.2.2 Dataset specifications: The applied systems of Vehicle 

detection undergo training and testing on RADAR data 

(RADIATE Dataset) which contain 8 classes (Car, Van, Truck, 

Bus, Motorbike, Bicycle, Pedestrian, Group of Pedestrian) with 

labels. It consists of 5459 RADAR images with a resolution of 

1152 × 1152 pixels, employed for training the deep learning-

based object detectors (Incorporates data captured under both 

favorable and adverse weather conditions (night, rain, fog, and 

snow)), A set of 5,000 images, each with a resolution of 1152 × 

1152 pixels, was utilized for performance assessment and testing 

(data collected in both favorable and adverse weather conditions 

serving as a means for evaluation and benchmarking). 

 

4.2.3 Hyperparameters:  The hyperparameters of the 

Convolutional Neural Network (CNN) can be fine-tuned to 

achieve optimal training by selecting the best parameters, 

including the optimizer function, number of epochs, and learning 

rate. An epoch represents a complete pass of the data through the 

architecture. Typically, optimizer values are chosen to be large 

enough to minimize the loss for the system but not excessively 

large to prevent overfitting. In my experiments, the Stochastic 

Gradient Descent Method (SGDM) proved to be a more effective 

optimizer than ADAM, particularly for transfer learning. 

However, ADAM exhibited superior performance when training 

the model from the beginning. An appropriate initial learning rate 

of 0.001 is selected, and adjustments are made based on the 

observed higher false alarm rate for larger values, then divided 

by 2 after 30% of the iterations and then divided again by 2 after 

70% of the total iterations. The momentum value is 0.9 and the 

value of weight decay is 0.0001. Anchor boxes play a crucial role 

in tuning Faster RCNN object detectors, influencing their 

efficiency and precision. But in this paper, I predefined the size 

anchor boxes [8, 16, 32, 64, 128], since the sizes of vehicles are 

generally established, and RADAR images offer metric scales. 

 

4.2.4 Evaluation metrics: In this paper, the  COCO 

evaluation Metrics (average precision (AP) metric with 

Intersection over Union (IoU) equal to 0.5) to assess and compare 

the accuracy of various object detection models. which is the 

same evaluation metrics used in the PASCAL VOC and DOTA. 

Therefore, Initially, the IoU is calculated for each bounding box 

with a confidence score exceeding a threshold 𝛾, in addition to 

computing the ground truth. Let 𝐴 denote the detected bounding 

box and 𝐵 represent the ground truth bounding box. The IoU is 

calculated as the ratio of the overlap area between the ground 

truth and predicted bounding boxes to their union, as described 

in Eq. (2). If the computed IoU exceeds the threshold 𝛾, the object 

is labeled as a true positive (TP) detection; otherwise, it is 

categorized as a false positive (FP). Following this, the precision 

value is calculated using Eq. (3). Throughout the two 

experiments, a threshold value of 𝛾 = 0.5 is employed to derive 

the results.  

 

The evaluation was applied after parts of iterations over 7 

different scenarios (Urban, Fog, Static, Motorway, Night, Rain, 

Snow. The accuracy assessment was done over 7 scenarios to 

identify the improvement opportunities. 

 

𝐼𝑜𝑈 =  
𝐴 ∩ 𝐵

𝐴 𝑈 𝐵
                              (2) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
               (3) 

 

4.2.5 Experiment 1:  First, this experiment started with 

training the RADAR data at which all the 8 classes were 

combined and named as vehicle which means detecting only one 

class (vehicle). This experiment is the same as the literature but 

with different hyper-parameters to check the efficiency of the 

model in detection.  

 

During the training with 130000 iterations, changing the hyper-

parameters and then evaluating the model after 40000, 80000, 

and 130000 iterations over 7 different scenarios (Urban, Fog, 

Static, Motorway, Night, Rain, Snow) to see if the hyper- 

parameters accepted and give good results and there is no 

overfitting or saturation happen or need to change them. This 

modification continues until we get to the best hyper-parameters 

which achieved the best performance and accuracy. 
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4.2.6 Experiment 2:  First, by checking the data and 

annotation file, it’s found that the annotation file contains 8 

different classes so, why we have 8 classes and detect only 1 class 

especially that the autonomous driving system needs to identify 

all the different objects to predict their movement and their 

volume, then beginning for training the RADAR data for all the 

8 classes to detect 8 classes (Car, Van, Truck, Bus, Motorbike, 

Bicycle, Pedestrian, Group of Pedestrian). During my research, I 

did not find any experiments on RADAR data detecting more 

than 1 class. During the training with 230000 iterations, changing 

the hyper-parameters and evaluating the model after 25000, 

60000, 90000,130000, 170000, and 230000 iterations over 7 

different scenarios (Urban, Fog, Static, Motorway, Night, Rain, 

Snow) to see if the hyper-parameters accepted and give good 

results and there is no overfitting of saturation happen or need to 

change them. This modification continues until we get to the best  
hyper-parameters which achieved the best performance and 

accuracy. 
 

5. RESULTS AND DISCUSSION 

5.1 Experiment 1 

no. of 

iteration 

U
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w
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n
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h
t 
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o

w
 

40000 41.2 84.8 94.7 22.4 46.1 28.3 3.7 

80000 37.5 92.8 95.8 23.2 44.4 23.7 1.5 

130000 36.3 90.7 95.3 21.3 49.5 32.2 5.6 

Table 1. Average precision over different scenarios 

The outcomes, as presented in TABLE 1, indicate that the bias is 

predominantly associated with the data type rather than the 

weather conditions. The static scenario when the vehicle is 

parked, stands out as the most straightforward, attaining nearly 

95% Average Precision (AP), likely due to the consistency in 

RADAR returns from the surrounding environment. Conversely, 

performance in snow and motorway data scenarios was 

suboptimal. The smaller size of the snow dataset, coupled with 

its absence from any training sets, likely impacted the results. 

Notably, the foggy scenario achieved an impressive 90% AP, 

showcasing RADAR's efficacy in challenging scenarios for 

optical sensors, such as dense fog. In the case of night data, a 

commendable result of close to 50% AP was achieved, 

highlighting RADAR's resilience to illumination challenges as an 

active sensor. While the results showed that the rain and urban 

scenarios achieved considerably better results which are 32.2%, 

and 36.3% respectively. The results show that, by increasing the 

training iterations, the average precision of some scenarios 

decreases, and it is an indication of overfitting and some 

increases.  Finally, comparing my results from experiment 1 

achieved an overall AP of (47.2) to the literature results (Sheeny 

et al., 2021) which achieved an overall AP of (45.77) TABLE 2, 

my result (2) was slightly better in accuracy over the literature 

(1) mainly due to hyperparameters optimization. 
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1  45.7 36.1 48.2 78.9 42.1 54.7 33.5 12.8 

2 47.2 36.3 90.7 95.3 21.3 49.5 32.2 5.6 

Table 2. comparison between this experimental results and 

literature results. 

 
 

Figure 3. Visualization of Experiment 1 Results (Red means 

correct detection, White means false detection, Yellow means 

misdetection). 

 

5.2 Experiment 2 

no. of 

iteration 

/ 

scenario 

U
rb

an
 

F
o

g
 

st
at

ic
 

M
o

to
r-

w
ay

 

n
ig

h
t  

ra
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sn
o

w
 

25000 0.4 36.5 3 2.7 2.3 0.5 0.96 

60000 0.45 37.8 1.8 2.6 2.2 0.22 0.65 

90000 0.45 38.6 2.1 3 2.6 0.33 0.7 

130000 8.9 34.2 54.2 5.1 15.2 11.6 21.7 

170000 8.6 34.4 57.7 6.7 16.9 10.9 24.5 

230000 8.9 41.4 59.7 14.7 25.3 11.5 30.4 

Table 3. Average precision over different scenarios. 

Concerning the results across 8 classes in each scenario, the bias 

is primarily associated with the data type rather than the weather 

conditions, as illustrated in TABLE 3. The static scenario 

(parked) is demonstrated to be the least challenging, achieving an 

approximate 60% Average Precision (AP). Results in rain, urban 

and motorway data performed worse. In the foggy scenario, I 

achieved 41% AP which is good results. Given the considerable 

challenge that fog poses for optical sensors, RADAR proves to 

be an effective solution for robust perception in dense fog 

conditions. While using the night data I achieved considerable 

results close to 25% AP which is good results. Finally, comparing 

my results from experiment 1 achieved an overall AP of (47.2) to 

the results from experiment 2 which achieved an overall AP of 

(27.4). As expected, the results from experiment 1 over 1 class 

were better than the results from experiment 2 over 8 classes in, 

as the model used to detect more than one object, if it detects the 

object but can’t recognize its class it will cause false negative will 

make the detection confusion, so it decreases the average 

precision and also, the representations of the eight classes in the 

data are not equivalent some classes have thousands of objects, 

and some have just tens of objects which make the average 

precision not very high.  the result showed that there is still 

potential for improvement. 

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-1/W1-2023 
ISPRS Geospatial Week 2023, 2–7 September 2023, Cairo, Egypt

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-1-W1-2023-657-2023 | © Author(s) 2023. CC BY 4.0 License.

 
662



 

 
 

Figure 4. Visualization of Experiment 2 Results (Red means 

correct detection, White means false detection, Yellow means 

misdetection). 

 

The results from the two experiments showed that the high AP 

achieved during the static scenario (parked), which means that 

collecting data while moving affected the quality of the images 

which affects the accuracy of detection objects. 

 

6. CONCLUSION 

The findings indicated that RADAR has the potential to serve as 

a perception sensor for autonomous vehicles, proving its 

functionality in different weather conditions. The results indicate 

that object detection utilizing RADAR is minimally impacted by 

weather conditions, particularly in foggy scenarios. When 

training the model under varying weather conditions, I obtained 

a 47.2% Average Precision (AP) for experiment 1. On the other 

hand, I achieved 27.4% AP for experiment 2, as expected the 

results of detecting one class are better than detecting 8 classes 

for two reasons. Firstly, when we are detecting one class, any 

object detected is related to this class but when we are detecting 

eight classes if the model detects an object without detecting its 

class, it will make the model confused which makes it 

misclassify. 

 

Secondly, as the representations of the eight classes in the data 

are not equivalent some classes have thousands of objects, and 

some have just tens of objects which makes the average precision 

not very high (decreasing the accuracy). Comparing my results 

from experiment 1 achieved an overall AP of (47.2) to the 

literature results which achieved an overall AP of (45.77), My 

result was slightly better in accuracy than the literature mainly 

due to hyper-parameters optimization. I trained the model on all 

objects (8 classes) in experiment 2, according to the result, there 

is still potential for improvement. 

 

I did an accuracy assessment over 7 scenarios to identify the 

improvement opportunities, I discovered that collecting data 

while moving affected the quality of the images which affects the 

accuracy of detection objects. 
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