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ABSTRACT:

The precision location-based services in complex environment is a challenge in the field of navigation and positioning. With the
continuous development of wireless communication technology in recent years, cellular network signals such as LTE and 5G have
emerged as unique advantages in navigation and positioning applications. This paper presents a time-of-arrival (TOA) estimation
method based on machine learning, which can use cellular network signals to obtain accurate ranging results in low signal-to-noise
ratio conditions. For this purpose, we first present the cellular network signals that can be applied in navigation and positioning.
Then, we describe in detail the process of TOA estimation based on machine learning. Finally, we carried out vehicular experiments
in an urban environment to test the performance of the proposed method. The test results demonstrate the feasibility of the proposed
method and achieve metre-level ranging accuracy.

1. INTRODUCTION

Location-based services (LBSs) in complex scenarios are the
key focus of scholars and research institutions in recent years.
Accurate location information has irreplaceable value in areas
such as autonomous driving, precision marketing and emer-
gency rescue. Traditional location services mostly provide loc-
ation information to users through global navigation satellite
system (GNSS) in outdoor open scenes. However, in complex
scenarios such as cities, canyons and indoors, the performance
of LBSs will be affected by the fading and refraction of GNSS
signals.

The acquisition of high-precision navigation observation inform-
ation through signal of opportunity (SOP) is a method to assist
GNSS for high precision positioning. At present, WiFi (Shu et
al., 2016, Yan et al., 2018, Gao et al., 2021), Bluetooth (Chen
et al., 2013, Faragher and Harle, 2015, Zhuang et al., 2018) and
cellular network signals (Driusso et al., 2017, Liu et al., 2023b,
Shamaei and Kassas, 2021, Chen et al., 2022, Liu et al., 2023a,
Ruan et al., 2022, Liu et al., 2022) are the widely used signals
of opportunity in wireless positioning technology. Although
WiFi and Bluetooth have the advantages of low-cost and low-
power consumption, they cannot provide high-precision LBSs
to a large number of users under a wide area because of the
limited coverage area of the base station (BS).

With the emergence and commercial application of the latest
generation of cellular network technology, the introduction of
multiple-input multiple-output (MIMO) and ultra-dense network
(UDN) has enabled 5G signals to show unique advantages in
wireless positioning technology. Researchers are gradually shift-
ing their focus to positioning technologies based on cellular
network signals. In (Driusso et al., 2017, Liu et al., 2023b),
the researchers have developed several high-precision software-
defined receivers (SDRs) for time-of-arrival (TOA) estimation
that can be used in complex environments based on LTE sig-
nals. In (Shamaei and Kassas, 2021), Kimia Shamaei et al. de-

Figure 1. Schematic of TOA estimation from cellular network
signals based on ML methods.

veloped an SDR for TOA estimation by jointly applying delay
lock loop (DLL) and phase lock loop (PLL) to achieve a con-
tinuous tracking of 5G signals. In (Chen et al., 2022), L. Chen
et al. developed an SDR for TOA estimation based on the car-
rier phase, which achieved tracking and ranging of 5G signals
in indoor environments.

At present, wireless signal tracking methods are commonly based
on the principle of DLL or PLL to develop SDRs. However,
this relatively sophisticated wireless positioning technique still
suffers from large errors in environments with low signal-to-
noise ratio (SNR) and severe multipath effect. With the devel-
opment of machine learning (ML) technology in recent years,
the deep learning method represented by convolution neural
network (CNN) has been widely used in indoor fingerprint po-
sitioning with its accurate regression and classification ability
for big data (Wang et al., 2015, Wang et al., 2020, Wang et
al., 2021). The fingerprint positioning systems such as DeepFi
(Wang et al., 2015), CiFi (Wang et al., 2020) and ResLoc (Wang
et al., 2021) have high positioning accuracy, but the limitations
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in the application range are still unresolved. In wireless signal
tracking methods, limited by the complex and variable channel
state and physical structure of wireless signals, no research has
been conducted to obtain navigation observations from wireless
signals using ML methods.

In this paper, we introduce ML into the wireless signal tracking
method and develop a opportunity navigation tracking system
based on ML to improve the accuracy of TOA estimation of
SDRs in a low SNR environment. As shown in Fig.1, we take
advantage of the accurate regression of support vector machine
(SVM) for complex problems with large amounts of data in the
developed SDR to fundamentally resolve the effect of noise on
the TOA estimation of received signal in traditional SDRs. The
specific contributions of this paper are shown below:

• In this paper, the ML is introduced into TOA estimation of
commercial downlink LTE signals to achieve highly accurate
and stable signal tracking in the form of an SDR without chan-
ging the hardware device architecture.

• This paper implements the acquisition of navigation reference
information at the device terminal for commercial downlink
LTE signals, which reduces the computational pressure on the
BSs while ensuring user privacy and data security.

• The proposed method was carried out through field tests, which
showed a better performance than the traditional method.

The remainder of this paper is organized as follows: Section
II introduces the cellular network signals that can be used in
navigation positioning. Section III details the main process of
the proposed method in this paper. Section IV shows the field
test. Section V is a conclusion of the paper.

2. CELLULAR SIGNALS IN NAVIGATION AND
POSITIONING

With the development of wireless communication technology,
cellular networks have undergone a radical change from 1G to
5G. The application of each generation of cellular network sig-
nals for LBSs has received a lot of attention from researchers.
In this section, we first introduce the cellular network signals
that can be applied in navigation and positioning. Then, we
provide a detailed description of the signal model in navigation
and positioning.

2.1 Signals in Navigation Positioning

At present, the cellular network signals represented by LTE and
5G are both set up with synchronization signal and reference
signal (Shamaei and Kassas, 2021, Liu et al., 2023a). In the
communication field, the synchronization signal is mainly used
for cell search to complete the coarse synchronization, and the
reference signal is used for channel estimation. In the field of
navigation and positioning, the reference signal in cellular net-
works can be well used for ranging and goniometry of wireless
signals because of its advantages of large bandwidth and peri-
odic emission.

In LTE networks, the cell reference signal (CRS) is uniformly
distributed throughout the LTE downlink channel and transmits
periodically at a high rate, which has been used by researchers
in navigation and positioning applications (Liu et al., 2023b).
The demodulation reference signal (DMRS) in 5G networks is

also an ideal choice in the field of navigation and positioning,
and some research has demonstrated that the TOA estimation
results at the meter level can be obtained in indoor environ-
ments by DMRS in recent years (Chen et al., 2022, Liu et al.,
2023a). In the presently available cellular networks, both refer-
ence signals of appeal can be used in the field of navigation and
positioning.

2.2 Signal Model

In the LTE signals, each orthogonal frequency division multi-
plexing (OFDM) symbol consists of N subcarriers. Let {tn|n =
0, ..., N − 1} denote the subcarrier symbol, where n represents
the subcarrier number. After the inverse fast Fourier transform
(iFFT) operation for every OFDM symbol, the samples of the
transmitted baseband signal can be expressed as

S (k) =
1√
N

N−1∑
n=0

tne
j2πkn/N ,−Ncp ≤ k ≤ (N − 1), (1)

where j =
√
−1, Ncp is the number of guard samples.

During the transmission of LTE signals, S (k) will change in
amplitude, delay and phase because of the increasing transmis-
sion distance. The LTE signal received at the receiver is also
affected by some noise. Here, we consider that the signal is
transmitted over a frequency-selective fading channel of length
L, where l = 0, 1, ..., L− 1. Hence, the received baseband sig-
nal can be written as

r (k) =

L−1∑
l=0

αl(k) · S(k − τl)e
jϕl(k) + n(k), (2)

where αl(k), τl and ϕl(k) stand for the amplitude, delay, and
phase of the lth path received baseband signal. n(k) is the
sample of zero-mean complex Gaussian noise process with vari-
ance σ2. The phase ϕl(k) can be written as

ϕl(k) = 2πkfl(k) + ϕ0, (3)

where fl(k) is the Doppler frequency normalized by the sub-
carrier spacing of lth path signal, and ϕ0 is the initial phase of
the carrier.

3. ML METHOD FOR TOA ESTIMATION
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Figure 2. The flow of TOA estimation based on machine
learning methods.

This section describes the system flow for implementing con-
tinuous tracking of cellular network signals using ML methods,
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and provides a detailed description of the main steps in the sys-
tem. In this paper, we use LTE signals as the basis for testing
and analysis. Therefore, in this section we all introduce LTE as
an example. As shown in Fig. 2, the system mainly includes
synchronization and demodulation, discriminator calculation,
feature database definition, model training and online tracking.

3.1 Synchronization and Demodulation

In LTE networks, coarse synchronization of the signal can be
completed by cell search. In this process, the cell ID of the
received signal and the frame timing ϵ̂max can be obtained at
the same time. Among them, the cell ID can be used in con-
junction with the LTE protocol to extract the pilot signal in the
subsequent demodulation process, while the coarse synchron-
ization of the signal can be completed according to the frame
timing ϵ̂max .

According to the result of the coarse synchronization of the re-
ceived signal, the time offset can be corrected directly for the
received time-domain signal. After removing the cyclic prefix
of length Ncp, the time-domain signal can be converted to the
frequency-domain signal by the fast Fourier transform (FFT)
and the extraction of the pilot signal is completed. For this pur-
pose, it is necessary to perform a FFT on the OFDM symbol
sample of the LTE signal, which can be expressed as

R′(k) = FFT {r(k + ϵ̂max)} , (4)

where FFT{· } is the discrete-time transform operator.

3.2 Discriminator Calculation

According to the LTE protocol, the CRS is mapped to an all
zero sequence of length N according to the position, which
yields the received pilot signal R(d). Meanwhile, the local ref-
erence pilot signal S(d) on each OFDM symbol can be gen-
erated correspondingly. d is the position of the CRS on each
OFDM symbol. Since the time delay in the time-domain is
equivalent to a phase rotation in the frequency-domain, the early
and late code signals of S(d) can be obtained respectively as:

Se(d) = e−j2πdξ/NS(d),

Sl(d) = e+j2πdξ/NS(d),
(5)

where ξ(0 < ξ < 1/2) is the advanced (and retarded) inter-
val, which is normalized to the OFDM sample interval. When
tracking the received signal continuously, we need to perform a
phase rotation of the received pilot signal using the normalized
symbol delay τ̂ . Therefore, the received pilot signal after phase
rotation can be expressed as

R′(τ̂) = e−j2πdτ̂/NR′(d). (6)

The early and late correlations branch output in the frequency-
domain can be written respectively as:

ℜe(∆τ) =
1

G

G−1∑
g=0

R′(τ̂)S∗
e (d),

ℜl(∆τ) =
1

G

G−1∑
g=0

R′(τ̂)S∗
l (d),

(7)

where ∆τ is the normalized symbol delay variation of the re-
ceived signal pilot with respect to τ̂ . G is the number of pilot
signals in an OFDM symbol. In the channel without multipath
and noise, the Early-Minus-Late Power (EMLP) discriminator
function is defined as

EMLP(∆τ) = |ℜe(∆τ)|2−|ℜl(∆τ)|2 = G2AS(∆τ, ξ), (8)

where A is the signal gain, and S(∆τ, ξ) is the normalized S-
curve of the received signal pilot, which can be expressed as:

S(∆τ, ξ) =

(
sin(π(∆τ + ξ))

G sin(π(∆τ + ξ)/G)

)
−

(
sin(π(∆τ − ξ))

G sin(π(∆τ − ξ)/G)

)
.

(9)

When τ̂ = 0 and τ = ∆τ , the standard normalized S-curve
S(τ, ξ) with different fractional time delay τ can be obtained.
The S(τ, ξ) is a one-dimensional data and related to the re-
ceived signal time delay τ , which we use as feature data for
training ML model. Fig. 3 shows the S-curves of the discrim-
inator function with different fractional delays, where the red
crosses represent the time delays possessed by the S-curves.
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Figure 3. The S-curves of discriminator function with different
fractional delays.

3.3 Feature Database Definition

In an additive Gaussian white noise (AWGN) channel, the white
noise introduces a new error VEMLP in the EMLP discrim-
inator function (Yang et al., 2000). The EMLP discriminator
function is defined as:

EMLP(∆τ) = G2AS(∆τ, ξ) + VEMLP , (10)

where

VEMLP = Var
[
|ℜe(∆τ)|2

]
+ Var

[
|ℜl(∆τ)|2

]
− 2Cov

[
|ℜe(∆τ)|2, |ℜl(∆τ)|2

]
≤ Var

[
|ℜe(∆τ)|2

]
+ Var

[
|ℜl(∆τ)|2

]
= 2G2σ4

{
1 +

A

Gσ2

[
sin(π(∆τ − ξ))

sin(π(∆τ − ξ)/G)

]2

+
A

Gσ2

[
sin(π(∆τ + ξ))

sin(π(∆τ + ξ)/G)

]2
}
.

(11)
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where covariance 2Cov[|ℜe(∆τ)|2, |ℜl(∆τ)|2] should be non-
negative to guarantee that the inequality in (11) holds, so that
∆τ is 0 and 0 < ξ ≤ 1/2. ξ should be set to 0.5 to ensure that
|ℜe(∆τ)|2 and |ℜl(∆τ)|2 are uncorrelated (Yang et al., 2000).
Thus (11) can be written as follows:

VEMLP = 2G2σ4

{
1 +

2A

Gσ2

[
sin(πξ)

sin(πξ/G)

]2
}
. (12)

In an AWGN channel, the error of the EMLP discriminator
function is closely related to the number of pilots G and the
SNR (sn = A/σ2). In order to make the training model more
applicable in the low SNR environment, we define the simu-
lated signals with different SNRs at the same time delay to build
the feature database. The specific process is as follows:

First, we define the simulation signal without noise according to
the protocol of LTE signal and add different normalized symbol
delay τ = [0 ± nb · Υ ] to S(k), respectively. The signal S(τ)
with different time delays is obtained. Here, we set the min-
imum normalized symbol delay variation resolution Υ = 0.025
and nb = 0, 1, 2, ..., 20. This means that the ML model which
we trained can identify the fractional delay within 1 sample
point with a resolution of 0.025 sample points.

Next, different SNRs are added to S(τ) to increase the stability
and anti-interference capability of the ML model, which gives
the signal Ssn(τ) with different SNRs. Considering the SNR
demand for the available LTE signals in the communication net-
work, thus setting sn = 0, 5, 10, ..., 50 in dB.

Finally, the pilot signal of Ssn(τ) is extracted according to the
steps of synchronization and demodulation. Combined with the
method of discriminator calculation, the S-curve is calculated
as the feature data to build the feature database.

3.4 Model Training

Considering the high transmission rate of CRS in LTE signals
and the requirement of real-time signal tracking results for SDRs
developed based on ML methods. In this paper, we train the fea-
ture database using a simple SVM method. The main purpose
is to verify the feasibility of the signal tracking method based
on ML proposed in this paper and to ensure the lightweight of
the developed SDR.

In the process of ML model training, τ is used as the label
and EMLP (τ) is used as the training data, which are input
to the SVM algorithm for training, respectively. In the SVM
algorithm, a multiclass error-correcting output codes (ECOC)
model is used to perform the fitting of labels and training data.
The training is terminated when the fitting accuracy of the ML
model is not improving and the testing accuracy is stable, res-
ulting in the corresponding ML model.

3.5 Online Tracking

There are two cases when tracking the received signal, i.e., first
tracking and continuous tracking. The estimation and updating
of the time delay is divided into two methods for both cases.
During the first tracking of the received signal, we set the time
delay τ̂ to 0 for calculating the S-curve of the received signal
because the coarse synchronization of the signal has been com-
pleted. The S-curve is input into the trained ML model to obtain

the time delay variation ∆τ of the received signal at this mo-
ment. Therefore, the first time delay estimation of the received
signal can be expressed as τ̂(1)) = ∆τ .

During continuous tracking of the signal at moment k, we per-
form phase rotation of the received signal with the time delay
estimation result τ̂(k − 1) at moment (k − 1). This can ensure
the delay variation that needs to be estimated during continu-
ous tracking always keeps within the identification range of the
trained ML model. Then, the S-curve of the received signal is
also input into the trained ML model to obtain the delay vari-
ation ∆τ of the received signal at this moment. The delay of
the received signal can be expressed as τ̂(k) = τ̂(k− 1)+∆τ .
And the phase of received signal can be expressed as ϕ̂(k) =
arg[R(τ̂(k))].

4. FIELD TEST

In order to evaluate the proposed method, a field experiment
was carried out with commercial LTE signals on urban roads
in Wuhan, Hubei Province, China. In this section, the experi-
mental hardware and software setup are first presented. Then,
the experimental results are presented.

4.1 Experimental Hardware and Software Setup

As shown in Fig. 4(c), the receiver antenna was fixed to the top
of the test vehicle. During the test, the experimenter collected
the LTE signal in the vehicle with the universal software radio
peripheral (USRP) X310, driven by a GPS constrained oscil-
lator (GPSDO), mixing and sampling at 20 MSps. A laptop
computer connected to the USRP X310 was used to record data
using GNU Radio. The collected data are processed by a SDR
developed on MATLAB.

The trajectory of the vehicle during the test is shown in Fig.
4(a). As shown in Fig.4(b), the vehicle was traveling under
the overpass more than half of the time. In this case, the GPS
cannot observe enough satellites for navigation positioning. We
acquired the reference trajectory with Xsens MTi-G-710, which
can provide positioning results with an accuracy of 1 m under
ideal conditions.

(a) Test scenario and reference trajectory

(b) Test environment (c) Test vehicle antenna

Figure 4. The process of field test.
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4.2 Test Result

According to the method proposed in this paper, we obtained
the result of field test as shown in Fig. 5. Fig. 5(a) shows
the TOA estimation based on the samples of time delay, and
Fig. 5(b) shows the TOA estimation error. In order to compare
the effectiveness of the proposed method in this paper, we also
show the TOA estimation results based on the DLL algorithm
in Fig. 5 as a reference. The errors of the two different methods
can be obtained by fitting the reference trajectory to the TOA
estimation results, respectively. The root mean square error
(RMSE) based on the results of the ML is 9.4 m. Fig.6 shows
the statistical results of the ranging errors for both algorithms.
It can be clearly seen that the errors of the proposed method in
this paper is reduced from 52.7 m to 31.6 m at 95% confidence
compared to the DLL algorithm. Meanwhile, compared with
DLL algorithm, the maximum error (ME) of test results based
on ML is reduced from 197.3 m to 51.2 m. Table 1 shows the
detailed statistics of the errors for both methods. In this test, the
overall performance of the proposed methods in this paper are
better than the DLL algorithm. Compared with traditional TOA
estimation methods, TOA estimation based on ML can obtain
more stable result in low SNR environment.

(a) Comparison of TOA estimation

(b) Comparison of TOA estimation error

Figure 5. The result of field test.

Table 1. The performance statistics of the field test.

Method RMSE (m) 95% CDF (m) ME (m)

ML-SVM 9.4 31.6 51.2
DLL 9.3 52.7 197.3

5. CONCLUSION

In this paper, an SDR based on ML is developed for TOA es-
timation of cellular network signals. We detailed the process
of TOA estimation by ML methods for cellular network sig-
nals that can be used in navigation and positioning. A vehicle
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67% CDF

95% CDF

Figure 6. Comparison of error in calculation result.

test was carried out in complex urban environments to demon-
strate the feasibility of the proposed method. The RMSE of
the proposed method in the vehicle test is 9.4 m. Meanwhile,
the test results of the paper show that the ranging error of the
proposed method is reduced from 52.7 m to 31.6 m at 95% con-
fidence compared with the DLL algorithm. We believe that the
TOA method based on ML proposed in this paper has better
performance than the traditional TOA method under low SNR
environment. In the future, we will develop machine learning
model with more applicability to cellular network signal feature
data, and construct a complete positioning system.
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