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ABSTRACT:

With the growing interest in autonomous driving, accurate vehicle positioning remains an open problem, especially in urban en-
vironments. According to regulatory organisations, the vehicle positioning accuracy is required to be centimetre-level. As the
most used positioning technique which provides globally referenced positioning solutions, GNSS is the fundamental component
for realising real-time vehicle positioning, usually through the RTK approach. However, RTK requires a nearby reference station to
enable integer ambiguity resolution for the ultra-precise carrier phase observations. In comparison, PPP makes use of State-Space
Representation (SSR) corrections produced by global networks for satellite orbits and clocks to facilitate phase-based positioning.
Moreover, IGS now offers Real-Time Service (RTS) to transmit such corrections. Notably, the major drawback of PPP is that it
takes a long time to converge to precise solutions due to the carrier phase ambiguities being real-valued, which can be severely
elongated when real-time corrections and low-cost GNSS receivers are used. In this paper, a tightly coupled positioning method is
proposed, which shortens RT-PPP convergence to seconds by using lidar measurements referenced from an HD map through deep
learning. The lidar measurements are generated by point cloud registration and weighted by their intensity values and geometric
distributions, and are then combined with RT-PPP in an Extended Kalman-Filter (EKF), thus achieving fast convergence. Experi-
mental results show that the proposed method achieves and maintains centimetre-level accuracy within 2 seconds using a low-cost
UBLOX F9P receiver, which is a significant improvement as compared to the decimetre-level accuracy obtained from standalone
RT-PPP.

1. INTRODUCTION

The realisation of autonomous driving systems relies on con-
tinuously accurate vehicle positioning, especially in urban en-
vironments (Zhang, 2022). Specifically, the positioning accur-
acy required by vehicles desiring to be maintained within their
respective lanes is in the range of centimetres, while such per-
formance should be consistent throughout the vehicle opera-
tions (Reid et al., 2019). By utilising Global Navigation Satel-
lite Systems (GNSS), real-time kinematic (RTK) is the mostly
commonly used precise positioning technique. RTK makes
use of the ultra-precise carrier phase observations through in-
teger ambiguity resolution by double-differencing the measure-
ments with a nearby reference station (Teunissen and Monten-
bruck, 2017). However, such reference stations are not always
available. In comparison, precise point positioning (PPP) em-
ploys State-Space Representation (SSR) corrections produced
by global networks for satellite orbits and clocks to facilitate
phase-based positioning, in which the positioning user needs
only a single receiver (Zumberge et al., 1997). PPP has tra-
ditionally been used in a post-processing manner as the most
accurate correction products can take roughly two weeks to be
produced (IGS, 2019, BKG, 2021). Fortunately, International
GNSS Service (IGS) now offers Real-Time Service (RTS) to
provide corrections to enable real-time PPP (RT-PPP) (Caissy
et al., 2013), which can be used for vehicle positioning. Several
studies have analysed the performance of IGS RTS and con-
cluded that its products of satellite orbit and clock corrections
have accuracy and latency comparable as commercial and post-
processed IGS counterparts (Elsobeiey and Al-Harbi, 2016, Al-
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kan et al., 2020).

Nevertheless, like post-processed PPP, RT-PPP is notoriously
disadvantaged by a long convergence time, which could exceed
30 minutes to reach decimetre-level accuracy, especially when
it is used in the kinematic mode (Teunissen and Montenbruck,
2017, Choy et al., 2017). Here, we follow the classical defini-
tion that PPP convergence is declared when all of East-North-
Up (ENU) errors are below 10 cm. This is caused by the fact
that integer ambiguity resolution cannot be enabled for PPP due
to un-modelled ionospheric delays and hardware biases (Teun-
issen, 1997). The positioning performance is even worse for
low-cost GNSS receivers and/or antennas, as they offer nois-
ier observations than those of survey-grade equipment (Nasr-
Azadani et al., 2023). For autonomous systems, which often
employ such devices and operate in multipath-heavy environ-
ments, the positioning accuracy and convergence time can be
degraded to decimetres and over one hour, respectively (Gill et
al., 2017).

Apart from PPP-RTK, which attempts to solve this problem by
integer ambiguity resolution using additional corrections (Teun-
issen and Khodabandeh, 2015), multi-sensor integration has
been investigated to improve the performance of PPP. As a com-
mon sensor used for environmental perception seen on-board
of modern vehicles, light detection and ranging (lidar) scan-
ners have been employed to compliment GNSS in various ways.
First, lidar is most frequently applied for multipath mitigation,
often in conjunction with high-definition (HD) maps contain-
ing geospatial information of the road surroundings (Wen et al.,
2019, Groves et al., 2013). Second, it has been utilised to en-
able integer ambiguity resolution in RTK. For instance, a lidar-
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aided instantaneous ambiguity resolution method was presen-
ted in (Zhang et al., 2022) which achieved the ambiguity suc-
cess rate of 100% using single-system single-frequency obser-
vations. Finally, numerous studies have shown the effectiveness
of lidar measurements for speeding up the convergence of PPP
by successive scan matching (Li et al., 2021a, Li et al., 2021b,
Li et al., 2022). However, existing methods rely on extracting
and matching handcrafted geometric features from lidar points
clouds, which are not robust in dynamic environments and can
result in accumulated errors and low positioning accuracy.

In this work, we present a case study of combining RT-PPP with
learning-based, map-aided lidar to realise an observation-level
integration that continuously achieves high positioning accur-
acy within minimal convergence time, with an emphasis on the
utilisation of a low-cost GNSS receiver. The lidar measure-
ments are obtained from point cloud registrations between the
online scans and a pre-built HD map by way of deep learning,
which are then integrated with their dual-frequency PPP (DF-
PPP) counterparts collected using a UBLOX F9P receiver in
an Extended Kalman-Filter (EKF). The GNSS observations are
corrected by IGS RTS products and the lidar measurements are
innovatively weighted according to their intensity values and
geometric distributions. The EKF also employs a constant-
velocity model in its time-update to capture the vehicle’s dy-
namics.

The remainder of this paper proceeds as follows. Section 2
discusses the mathematical details of the proposed PPP-Lidar
integration. Section 3 presents the data collection configura-
tions and the kinematic trajectory simulation used for the ex-
periment, followed by the experimental results and discussion
in Section 4. Finally, concluding remarks are drawn in Sec-
tion 5.

2. METHODOLOGY

2.1 System overview

Figure 1 exhibits the overview of the proposed PPP-Lidar integ-
rated positioning method, which tightly couples lidar and DF-
PPP, i.e., their measurements are integrated directly, in an EKF
using the constant-velocity model as the time-update. The lidar
measurements are generated by registering rover scans (i.e.,
those collected by the lidar sensor on-board of the vehicle) with
the reference scans from a pre-built, globally referenced HD
map. The point cloud registration is performed by matching
keypoints with similar features computed using a deep neural
network. Such lidar measurements are fused with ionosphere-
unknown DF-PPP observations in the measurement-update of
the EKF, which assumes that the vehicle’s velocity remains con-
stant on average within a short period of time with a level of
uncertainty in the time-update.

In this paper, we assume that the GNSS and lidar sensors in-
stalled on the vehicle have been pre-calibrated. In other words,
their measurements are referenced to the same point that rep-
resents the vehicle position.

2.2 Lidar measurement generation

The lidar measurements are generated with respect to a pre-
built HD map of the road environment. In this study, the map
takes the form of 3D point clouds whose coordinates are geor-
eferenced to the Earth-centred, Earth-fixed (ECEF) ITRF2014
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SSR corrections
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GNSS receiver
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update

Integrated
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Figure 1. System overview of the proposed PPP-Lidar integrated
positioning method.

frame and downsampled by the voxel size of 0.2 m. When a
rover scan is collected by the lidar sensor in its own local frame
whose origin is the vehicle position, a nearby reference scan
is selected from the HD map for registration. A deep learning
framework named MS-SVConv (Horache et al., 2021) is pre-
trained and then used to compute multi-dimensional features for
the points in both rover and reference scans. Matching keypo-
ints between the two are found as nearest neighbours in terms
of the Euclidean norms of such features, after which outliers
are identified and removed by using random sample consensus
(RANSAC) to estimate a transformation from the local coordin-
ates of the keypoints to their global counterparts (Fischler and
Bolles, 1981). This estimated transformation consists of a 3×3
rotation matrix R and a Cartesian translation vector xr that cor-
responds with the vehicle position. Therefore, the observation
equation for n matching keypoints at the same epoch reads as
follows

[In ⊗R][yL − eL] + 1n×1 ⊗ xr = c (1)

where ⊗ denotes the Kronecker product (Henderson et al.,
1983) and 1 represents a matrix of ones. yL and eL contain
the local coordinates of the keypoints and their measurement
residuals, respectively, concatenated into column vectors, while
their corresponding global coordinates obtained from the refer-
ence scan are denoted as the column vector c.

2.3 PPP observation equations

The proposed positioning method adopts the DF-PPP model
with ionospheric delays as unknown parameters to estimate.
Assuming that a priori PPP corrections and precise products
for satellite orbits and clocks have been applied (Kouba and
Héroux, 2001), except the receiver phase centre offset and vari-
ation corrections as they are not provided for low-cost equip-
ment, for receiver r tracking m satellites on frequency j (j =
1, 2), the linearised GNSS code and carrier phase observation
equations can be written as
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{
∆pr,j = Gr∆xr + 1m×1dtr + µjιr + ep,j

∆ϕr,j = Gr∆xr + 1m×1dtr − µjιr + λjar,j + eϕ,j

(2)

in which ∆pr,j and ∆ϕr,j are the observed-minus-computed
code and carrier phase observations, respectively. Gr contains
the satellite-to-receiver direction unit vectors. dtr , ιr and ar,j

denote the estimable receiver clock, ionospheric delays for the
first frequency and real-valued ambiguities including the phase
biases. λj is the wavelength of frequency j, while µj = λ2

j/λ
2
1.

Finally, ep,j and eϕ,j represent the code and phase measure-
ment residuals. All parameters have units of length, except ar,j

which is expressed in cycles. Since (1) and (2) share the un-
known vehicle position xr , they can be directly integrated in an
EKF to estimate this parameter.

2.4 EKF formulation

The full implementation details of this EKF formulation can
be found in our previous work (Zhang et al., 2023). First,
the time-update of the EKF integration provides a prediction
of the ambiguities ar,j and the vehicle position xr . While the
former is kept constant over time unless cycle slips are detec-
ted, the vehicle position is predicted by assuming the velocity
is unchanged from the previous epoch, with its acceleration
vector modelled by a zero-mean white-noise vector with spe-
cified spectral densities. The mathematical derivation of such
constant-velocity model can be found in (Teunissen, 2001).

Next, the measurement-update of the EKF combines the lidar
and PPP observations, if they are present, with the time-updated
solution in a Weighted Least Squares (WLS) manner to yield
the estimated position. The weights of the GNSS code, carrier
phase and lidar measurements, respectively, are determined as
the inverse of their variances as follows


σ2
psr

= σ2
p/sin

2θs
σ2
ϕs
r
= σ2

ϕ/sin
2θs

σ2
xi

= σ2
yi = σ2

zi = [a× γb
i ]

2

(3)

where σ2
psr

and σ2
ϕs
r

are the variances of GNSS code and carrier
phase observations between receiver r and satellite s, respect-
ively. σp and σϕ are empirically determined standard deviations
of these two measurements types at zenith, while θs is the el-
evation angle of satellite s. Therefore, the higher the elevation
of a satellite, the smaller its variances of measurements. On the
other hand, σ2

xi
= σ2

yi = σ2
zi indicate that the three coordinates

of lidar keypoint i have uniform variances computed using its
intensity value γi, with a and b being empirical constants vary-
ing by the lidar sensor model (Wujanz et al., 2017). In other
words, the higher the intensity of a lidar keypoint, the smaller
its variances.

Moreover, due to RANSAC randomly selecting a subset of the
points for estimating the transformation between rover and ref-
erence scans, it is possible for it to yield an incorrect result
which is hard to detect. This often occurs when the keypo-
ints are clustered (Zhang et al., 2021). Using Figure 2 as an
example, the green points are well distributed around the lidar
sensor (blue cross), while the red points are clustered in one dir-
ection, possibly leading to an inaccurate extraction of keypoints
through RANSAC. To mitigate the effect of such inappropri-
ate distributions of keypoints, we apply the Position Dilution of

Precision (PDOP) indicator well known in GNSS to lidar key-
points as follows (Srinara and Chiu, 2022)

PDOPL =
√

tr([G⊤
LGL]−1) (4)

where tr(·) refers to the trace of a matrix. For n keypoints ex-
tracted per epoch via MS-SVConv and RANSAC, GL denotes
a n × 3 matrix formed by the unit direction vectors between
the keypoints and the lidar sensor. As a result, PDOPL is a
scalar that indicates to what degree the keypoints are clustered.
This value is used to scale the part of the weight matrix corres-
ponding to the lidar measurements. In other words, the more
clustered the keypoints, the smaller weights they are given in
the measurement-update.
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Figure 2. Examples of distributions of lidar keypoints. The
green dots represent a geometrically appropriate distribution of
extracted lidar keypoints and the red dots represent clustered

keypoints.

3. EXPERIMENTAL EVALUATION

3.1 GNSS data collection

A simulated kinematic experiment was conducted to evaluate
the positioning performance of the discussed integration of DF-
PPP and lidar. The GNSS data were collected at 1 Hz using
low-cost GNSS devices, namely UBLOX F9P receiver and UB-
LOX ANN–MB antenna on Parkville campus of The University
of Melbourne, Australia on 04 August 2022 (UBLOX, 2022b,
UBLOX, 2022a). The antenna was installed on a levelled tri-
pod occupying a stationary point in an open-sky environment,
as displayed in Figure 3. As a result, 12 one-hour samples were
collected along with real-time precise products for satellite orbit
and clock corrections from the IGS RTS SSRA01IGS1 stream
(formerly IGS01) recorded simultaneously at the sampling rate
of 10 s using BKG Ntrip Client (IGS, 2022). On average, 8
valid GPS satellites with L1 and L2 observations were tracked
throughout the operation.

3.2 Lidar data and trajectory simulation

The lidar data used in the simulated experiment were acquired
from sequence 00 of the KITTI dataset, whose lidar data were
generated using a Velodyne HDL-64E scanner installed on a
moving vehicle (Geiger et al., 2013). Figure 4 exhibits the
ground truth trajectory of this vehicle. The point clouds were
separated into equal numbers of rover and reference scans (HD
map). For every rover scan, at 1 Hz, an overlapped reference
scan is selected with the approximate distance of 10 m and
downsampled. In total, 3600 pairs of scans were formed over
the duration of 1 hour.
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(a) (b) (c)

Figure 3. GNSS data collection setup using UBLOX F9P receiver, UBLOX ANN–MB antenna and a laptop computer with U-Center
software. (a) Laptop running U-Center and UBLOX F9P receiver. (b) ANN–MB antenna. (c) Tripod on which the antenna is installed.
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Figure 4. 1-hour trajectory obtained from sequence 00 of KITTI
dataset.

Since the GNSS and lidar data had been obtained from different
sources, they needed to be simulated onto the same trajectory
as shown in Figure 4. The point coordinates of the reference
scans in the HD map were transformed so that the starting point
corresponded with the stationary point on which the GNSS an-
tenna was held. In addition, the GNSS observations at every
epoch were also transformed using the ground truth coordinates
of the vehicle in the way that the antenna’s position would be
moving along the trajectory, so that both GNSS and lidar meas-
urements were synced and referenced from the same kinematic
point representing the vehicle.

4. RESULTS AND DISCUSSION

4.1 Keypoint extraction results

Before examining the positioning performance of the proposed
method, we begin with results of the lidar keypoint extrac-
tion stage and a validation of the lidar measurement weighting
strategy. The deep neural network MS-SVConv was pre-trained
using ETH dataset (Pomerleau et al., 2012) before being util-
ised for feature computations on the KITTI lidar data used in
the experiment. The constants a and b in (3) are empirically
determined as 0.03 and -1, respectively. As a result, keypoints
are successfully matched and extracted from 3105/3600 pairs of
rover and reference scans, giving the keypoint matching success
rate of 86.3%. Figure 5 shows the number of lidar keypoints per

epoch, which indicates that 16 keypoints are generated on aver-
age.
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Figure 5. Number of successfully matched lidar keypoints per
epoch.

To verify the advantage of scaling the weights of lidar meas-
urements by PDOPL in the measurement-update of the EKF,
positioning is performed using the proposed method utilising
only the time-update and the extracted lidar keypoints as meas-
urements (i.e., no GNSS observation is involved), with (4) ap-
plied and not. In the constant-velocity model, the ENU spec-
tral densities dictating the process noise in the time-update are
computed as 0.05, 0.05 and 0.03 m2/s3, respectively, based on
the ground truth acceleration of the vehicle. Figure 6 displays
the improvement of 3D positioning accuracy by applying the
weight scaling. It can be seen that despite occasional worsen-
ing of the accuracy, most epochs experience smaller positioning
errors, with some improvements exceeding 2 m. This shows
that (4) can effectively mitigate the effect of clustered lidar key-
points to achieve more appropriate measurement weighting in
the EKF.

4.2 Positioning performance comparison

In this section, we evaluate the positioning performance of the
proposed integration using low-cost GNSS equipment. The
satellite cutoff angle is chosen as 15° and the standard devi-
ations of code and carrier phase observations are specified as
σp = 0.3 m and σϕ = 0.003 m, respectively, considering the
measurement quality of the receiver and antenna used in the
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Figure 6. 3D error reduction after applying PDOPL by
estimating positions using lidar data only.

experiment. In addition, we recognise that the aforementioned
keypoint matching success rate is idealistic and it can be much
lower in reality due to outdated or sparse HD map. Therefore,
to also test the proposed method’s reliance on lidar input, 3 po-
sitioning setups are compared:

1. PPP-only: the measurement-update uses only PPP obser-
vations;

2. PPP-Lidar (1s): the measurement-update uses PPP obser-
vations and all available lidar measurements;

3. PPP-Lidar (10s): the measurement-update uses PPP ob-
servations and lidar measurements are only available once
every 10 s at most.

Table 1 exhibits the root mean squared errors (RMSE) and mean
convergence time summarised from the 12 one-hour samples
using these 3 positioning schemes. It is expected that PPP-only
shows the worst performance overall, with the horizontal and
3D RMSE of 1.85 and 4.60 m, respectively, as well as the con-
vergence time of over 1 hour, which are apparently inappropri-
ate for vehicle positioning. In comparison, by combining with
lidar, PPP-Lidar (1s) improves the horizontal RMSE to 10 cm,
while its 3D counterpart is slightly beyond centimetre-level at
0.12 cm. More impressively, the convergence time is reduced
to 1.8 s, which can be virtually considered eliminated, thanks to
the high accuracy of lidar measurements. By limiting lidar input
to once every 10 s, PPP-Lidar (10s) still achieves centimetre-
level accuracy in the North and Up directions. However, the
East RMSE is increased by 50% from that of PPP-Lidar (1s),
while the 3D RMSE reaches 17 cm. The mean convergence
time is also increased to 13.2 s, yet it is still significantly im-
proved comparing with PPP-only. In addition, Figure 7 shows
the cumulative distribution functions (CDF) of the positioning
errors. It is evident that the proposed integration can dramat-
ically improve positioning accuracy and remove large position-
ing errors as compared to classical PPP, while decreasing the
frequency of lidar measurements only slightly degrades the po-
sitioning performance.

Taking a closer look at the PPP-only results, Figure 8 depicts
the 25th quartile, median values and 75th quartile of the abso-
lute ENU errors per epoch using this positioning method. It
is shown that the positioning accuracy is not only very low, as
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Figure 7. CDF of the horizontal and 3D positioning errors using
PPP-only, PPP-Lidar (1s) and PPP-Lidar (10s).

centimetre-level accuracy is rarely reached, but also highly un-
stable. Specifically, despite the absolute errors reducing for the
first 10 min, which is the expected behaviour as the precision
of carrier phase ambiguities increases over time, they tend to
diverge at later epochs. Moreover, the results from different
samples are inconsistent as the dispersion between them (yel-
low region) can span over decimetres. Such poor positioning
performance can be attributed to the low measurement qual-
ity of low-cost GNSS devices and the low accuracy of real-time
PPP precise products, making standalone RT-PPP unsuitable for
vehicle positioning.
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Figure 8. Median values (blue) and interquartile ranges (yellow)
of absolute ENU positioning errors using PPP-only.

In contrast, the integration of lidar measurements significantly
improves the positioning accuracy and convergence speed. Fig-
ure 9 shows the 25th quartile, median values and 75th quartile
of the absolute ENU errors per epoch using PPP-Lidar (1s),
with the green background indicating epochs with lidar in-
put. It is reported that the ENU errors are at the centimetre-
level immediately, essentially eliminating the PPP convergence
time. Although the errors increase over 10 cm occasionally
when lidar input is missing, the proposed method can success-
fully maintain centimetre-level accuracy for most of the epochs,
showing promise for reliable lane-level vehicle positioning us-
ing low-cost GNSS equipment.

Lastly, Figure 10 shows the 25th quartile, median values and
75th quartile of the absolute ENU errors per epoch using PPP-
Lidar (10s). Understandably, with less frequent lidar input,
the convergence to centimetre-level positioning accuracy takes
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Table 1. RMSE of positioning errors and mean convergence time. E, N, U, H represent East, North, Up and Horizontal errors,
respectively.

Positioning method RMSE [m] Mean convergence time
E N U H 3D

PPP-only 1.61 0.92 4.22 1.85 4.60 >1 h
PPP-Lidar (1s) 0.08 0.06 0.06 0.10 0.12 1.8 s
PPP-Lidar (10s) 0.12 0.08 0.09 0.15 0.17 13.2 s
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Figure 9. Median values (blue) and interquartile ranges (yellow)
of absolute ENU positioning errors using PPP-Lidar (1s). Green

background highlights epochs with lidar input.

slightly longer. However, we believe that a convergence time of
less than 1 min is acceptable for vehicle positioning, consider-
ing that high accuracy can be maintained after this period, des-
pite lidar measurements being unavailable for more than 90%
of the epochs. It is shown that PPP-Lidar (10s) is sufficient for
consistently achieving cm- or near-centimetre-level of position-
ing accuracy, except for the last 15 min when the errors exceed
10 cm due to low quality of GNSS observations, as can be seen
in previous results as well.
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Figure 10. Median values (blue) and interquartile ranges
(yellow) of absolute ENU positioning errors using

PPP-Lidar (10s). Green background highlights epochs with lidar
input.

5. CONCLUSION AND OUTLOOK

By way of conclusion, an observation-level integration of PPP
and lidar as a vehicle positioning system is proposed and stud-
ied using low-cost GNSS equipment in this paper. The pro-
posed method utilises the ionosphere-unknown DF-PPP model,
whose observations are corrected by real-time precise products
for satellite orbits and clocks, as well as lidar measurements
generated by point cloud registration with a pre-built HD map
using a deep neural network in an EKF, in which the time-
update consists of a constant-velocity model that captures the
vehicle motion.

The proposed method was evaluated in a simulated kinematic
experiment in terms of positioning accuracy and convergence
time using UBLOX F9P receiver and UBLOX ANN–MB an-
tenna, as well as lidar data from KITTI dataset. Due to the low
measurement quality of the GNSS equipment, classical PPP
can only offer decimetre-level positioning accuracy, which is
too poor for vehicle positioning. By combining PPP and lidar
in the proposed method, centimetre-level accuracy can be im-
mediately achieved and reliably maintained throughout the op-
eration, effectively eliminating the need of convergence time.
Moreover, to obtain fast convergence and near-centimetre-level
positioning accuracy, the proposed integration only requires
lidar input to be available once every 10 s.

On the other hand, we recognise that the experiment is a sim-
ulation that does not fully consider the dynamic conditions in
urban environments that can negatively affect positioning per-
formance, e.g., signal blockage and multipath. Future work
can focus on a real-world kinematic experiment to assess the
performance of the proposed positioning system. In addition,
this method can be extended by utilising PPP-RTK corrections
to perform integer ambiguity resolution for improved accuracy
and convergence speed. Finally, other formats of HD maps such
as occupancy grid maps can also be explored to decrease the
difficulty and/or costs of producing HD maps.
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acy comparison of post-processed PPP and real-time absolute
positioning techniques. Geomatics, Natural Hazards and Risk,
11(1), 178–190.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-1/W1-2023 
ISPRS Geospatial Week 2023, 2–7 September 2023, Cairo, Egypt

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-1-W1-2023-687-2023 | © Author(s) 2023. CC BY 4.0 License.

 
692



BKG, 2021. BKG Ntrip Client (BNC), Version
2.12. Federal Agency for Cartography and Geodesy.
igs.bkg.bund.de/ntrip/bnc (04 August 2022).

Caissy, M., Agrotis, L., Weber, G., Fisher, S., 2013. The
IGS real-time service. EGU General Assembly Conference Ab-
stracts, Vienna, Austria, EGU2013–11168.

Choy, S., Bisnath, S., Rizos, C., 2017. Uncovering common
misconceptions in GNSS Precise Point Positioning and its fu-
ture prospect. GPS Solutions, 21(1), 13–22.

Elsobeiey, M., Al-Harbi, S., 2016. Performance of real-time
Precise Point Positioning using IGS real-time service. GPS
Solutions, 20(3), 565–571.

Fischler, M. A., Bolles, R. C., 1981. Random sample con-
sensus: a paradigm for model fitting with applications to im-
age analysis and automated cartography. Communications of
the ACM, 24(6), 381–395.

Geiger, A., Lenz, P., Stiller, C., Urtasun, R., 2013. Vision meets
robotics: The KITTI dataset. The International Journal of Ro-
botics Research, 32(11), 1231–1237.

Gill, M., Bisnath, S., Aggrey, J., Seepersad, G., 2017. Pre-
cise point positioning (PPP) using low-cost and ultra-low-cost
GNSS receivers. Proceedings of the 30th International Tech-
nical Meeting of the Satellite Division of The Institute of Nav-
igation (ION GNSS+ 2017), The Institute of Navigation, Port-
land, Oregon, 226–236.

Groves, P. D., Jiang, Z., Rudi, M., Strode, P., 2013. A portfo-
lio approach to NLOS and multipath mitigation in dense urban
areas. Proceedings of the 26th International Technical Meet-
ing of the Satellite Division of The Institute of Navigation (ION
GNSS+ 2013), The Institute of Navigation, Nashville, TN,
3231–3247.

Henderson, H. V., Pukelsheim, F., Searle, S. R., 1983. On the
History of the Kronecker Product. Linear and Multilinear Al-
gebra, 14(2), 113–120.

Horache, S., Deschaud, J.-E., Goulette, F., 2021. 3D point
cloud registration with multi-scale architecture and unsuper-
vised transfer learning. 2021 International Conference on 3D
Vision (3DV), 1351–1361.

IGS, 2019. IGS quality of service
fact sheet. International GNSS Service.
files.igs.org/pub/resource/pubs/IGS_Quality_of_Service-
131031.pdf (04 August 2022).

IGS, 2022. RTS combination products. International GNSS Ser-
vice. igs.org/rts/products (04 August 2022).

Kouba, J., Héroux, P., 2001. Precise Point Positioning Using
IGS Orbit and Clock Products. GPS Solutions, 5(2), 12–28.

Li, S., Wang, S., Zhou, Y., Shen, Z., Li, X., 2022. Tightly
coupled integration of GNSS, INS and LiDAR for vehicle nav-
igation in urban environments. IEEE Internet of Things Journal,
1–1.

Li, T., Pei, L., Xiang, Y., Wu, Q., Xia, S., Tao, L., Guan, X., Yu,
W., 2021a. P3-LOAM: PPP/LiDAR Loosely Coupled SLAM
With Accurate Covariance Estimation and Robust RAIM in
Urban Canyon Environment. IEEE Sensors Journal, 21(5),
6660–6671.

Li, X., Wang, H., Li, S., Feng, S., Wang, X., Liao, J., 2021b.
GIL: a tightly coupled GNSS PPP/INS/LiDAR method for pre-
cise vehicle navigation. Satellite Navigation, 2(1), 26.

Nasr-Azadani, S., Alizadeh, M. M., Schuh, H., 2023. Detect-
ing multipath effects on smartphone GNSS measurements using
CMCD and elevation-dependent SNR selection technique. IS-
PRS Annals of the Photogrammetry, Remote Sensing and Spa-
tial Information Sciences, X-4-W1-2022, 595–602.

Pomerleau, F., Liu, M., Colas, F., Siegwart, R., 2012. Challen-
ging data sets for point cloud registration algorithms. The Inter-
national Journal of Robotics Research, 31(14), 1705–1711.

Reid, T. G. R., Houts, S. E., Cammarata, R., Mills, G., Agarwal,
S., Vora, A., Pandey, G., 2019. Localization requirements for
autonomous vehicles. SAE International Journal of Connected
and Automated Vehicles, 2(3), 173–190.

Srinara, S., Chiu, Y.-T., 2022. Adaptive covariance estima-
tion of LiDAR-based positioning error for multi-sensor fusion
scheme with autonomous vehicular navigation system. Pro-
ceedings of the 35th International Technical Meeting of the
Satellite Division of The Institute of Navigation (ION GNSS+
2022), The Institute of Navigation, Denver, Colorado, 1650–
1664.

Teunissen, P. J. G., 1997. A canonical theory for short GPS
baselines. Part II: the ambiguity precision and correlation.
Journal of Geodesy, 71(7), 389–401.

Teunissen, P. J. G., 2001. Dynamic Data Processing; Recursive
Least Squares. VSSD.

Teunissen, P. J. G., Khodabandeh, A., 2015. Review and prin-
ciples of PPP-RTK methods. Journal of Geodesy, 89(3), 217–
240.

Teunissen, P. J. G., Montenbruck, O. (eds), 2017. Springer
handbook of global navigation satellite systems. Springer.

UBLOX, 2022a. ANN–MB series module product summary.
UBLOX. https://content.u-blox.com/sites/default/files/ANN-
MB_ProductSummary_UBX-18047741.pdf (04 August 2022).

UBLOX, 2022b. ZED-F9P module product summary. UB-
LOX. https://content.u-blox.com/sites/default/files/ZED-
F9P_ProductSummary_UBX-17005151.pdf (04 August 2022).

Wen, W., Zhang, G., Hsu, L.-T., 2019. Correcting NLOS by
3D LiDAR and building height to improve GNSS single point
positioning. Navigation, 66(4), 705–718.

Wujanz, D., Burger, M., Mettenleiter, M., Neitzel, F., 2017. An
intensity-based stochastic model for terrestrial laser scanners.
ISPRS Journal of Photogrammetry and Remote Sensing, 125,
146–155.

Zhang, J., 2022. Lidar-aided instantaneous GNSS ambiguity
resolution in challenging environments: Theoretical assessment
and numerical results. Proceedings of the 35th International
Technical Meeting of the Satellite Division of The Institute of
Navigation (ION GNSS+ 2022), The Institute of Navigation,
Denver, Colorado, 2054–2063.

Zhang, J., Khodabandeh, A., Khoshelham, K., 2022.
Centimeter-level positioning by instantaneous lidar-aided
GNSS ambiguity resolution. Measurement Science and Tech-
nology, 33(11), 115020.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-1/W1-2023 
ISPRS Geospatial Week 2023, 2–7 September 2023, Cairo, Egypt

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-1-W1-2023-687-2023 | © Author(s) 2023. CC BY 4.0 License.

 
693



Zhang, J., Khodabandeh, A., Khoshelham, K., 2023. On the
role of lidar measurements in speeding up precise point posi-
tioning convergence. GPS Solutions, 27(3), 149.

Zhang, J., Khoshelham, K., Khodabandeh, A., 2021. Seamless
Vehicle Positioning by Lidar-GNSS Integration: Standalone
and Multi-Epoch Scenarios. Remote Sensing, 13(22), 4525.

Zumberge, J. F., Heflin, M. B., Jefferson, D. C., Watkins,
M. M., Webb, F. H., 1997. Precise point positioning for the
efficient and robust analysis of GPS data from large networks.
Journal of Geophysical Research: Solid Earth, 102(B3), 5005–
5017.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-1/W1-2023 
ISPRS Geospatial Week 2023, 2–7 September 2023, Cairo, Egypt

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-1-W1-2023-687-2023 | © Author(s) 2023. CC BY 4.0 License.

 
694


	Introduction
	Methodology
	System overview
	Lidar measurement generation
	PPP observation equations
	EKF formulation

	Experimental evaluation
	GNSS data collection
	Lidar data and trajectory simulation

	Results and discussion
	Keypoint extraction results
	Positioning performance comparison

	Conclusion and outlook



