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ABSTRACT:

A 3D model can be useful for inventory management and monitoring of forests. For this task, we present our prototype mobile
mapping backpack system for collecting 3D point clouds of forest vegetation. However, data collection in forests is challenging
due to unreliable GNSS positioning, moving objects caused by winds, unclear object edges, and uneven ground to walk on. We
include LiDAR and IMU with Simultaneous Localisation and Mapping (SLAM). We describe in detail our backpack system, its
development for the forest environment, and evaluate it. Furthermore, we compare two open code SLAM algorithms for ROS, as
well as data collection and laser scan quality between TLS and MLS for forest environments. Finally, we installed and tested the
MicaSense multi-spectral camera on our backpack and discuss the advantages and drawbacks of it. We conclude, that the backpack
is convenient to use in forest environments and produces a good point cloud. It can be carried easily off trail and on rough terrain.
The system needs less storage space, computation and less collection time than TLS.

1. INTRODUCTION

Forest are essential environments as they regulate air and water
quality, provide lumber, and preserve biodiversity of flora and
fauna. Trees have to deal with water shortages and temperat-
ure extremes. Therefore, it is essential to be aware of the state
of the forest, which necessitates collecting data repeatedly and
keeping it up to date. Forest status are reported annually, for ex-
ample in Germany, collecting data through visual interpretation
and measuring trees (Talkner et al., 2022). Future decisions,
such as planting the right tree species or enforcing regulations,
depend on information such as vegetation quantity, which can
be collected via laser scanning, and forest health, for example
derived from multi-spectral images. Digital approaches have
shown to improve the quality and quantity of forest informa-
tion (Bettinger et al., 2023), addressing the slow manual data
collection process. Many approaches are being tested includ-
ing satellite and airborne images as well as LiDAR collected
from above or beneath the canopy. In this study, we develop a
prototype mobile system for spotlight mapping of forests. We
aim at not only capturing the geometry of the scene, but also at
mapping the vegetation health.

1.1 Related Work

There are numerous platforms that have been used to attach a
laser. Four main groups can be named, with the first being Air-
borne Laser Scanning (ALS). Terrestrial Laser Scanning (TLS)
is the next group, where the scanner is mounted in a fixed posi-
tion on a tripod and only used in between single scans. The last
two are UAV (Unmanned Aerial Aircraft, mostly drones) Laser
Scanning (ULS) and Mobile Laser Scanning (MLS). The latter
includes all platforms that move on the ground during scanning,
such as cars, bicycles, Segways, carts as well as human carried
systems like handhelds or backpacks.

Laser Scanning in Forests. Capturing forests was realised to
improve forest inventories, long-term monitoring or the forest
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Figure 1. Self-built prototype mobile mapping backpack system.

as biomass and carbon sink (Liang et al., 2016, 2018; Cam-
pos et al., 2020; Calders et al., 2022). TLS has also been used
to analyse the burn severity in forests (Gallagher et al., 2021).
The detection of single trees in a forest is a major goal in com-
mon research. Typically, these methods involve data collected
from above the canopy with ALS data (Jeronimo et al., 2018;
Heinzel and Ginzler, 2019; Stereńczak et al., 2020). Looking
through the canopy can be difficult with ALS in different forest
tree densities (Zong et al., 2021). Additionally, the TLS regis-
tration is more challenging in forest than in urban areas (Po-
hjavirta et al., 2022). Furthermore, researchers have not only
concentrated on trees, but also on the lower forest vegetation
(Wallace et al., 2020; Huo et al., 2022; Iwaszczuk et al., 2023).
For a laser scanning procedure, one single wavelength is com-
mon practice. However, Elsherif et al. (2019) showed that us-
ing a dual-wavelength on trees has advantages. When combin-
ing near-infrared (808 nnm) and shortwave-infrared (1550 nm),
they could calculate the Normalised Difference Index (NDI), as
well as estimating the leaf Equivalent Water Thickness (EWT)
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and the Fuel Moisture Content (FMC). Kukko et al. (2017)
developed a scanning system on an all-terrain vehicles using
GNSS antenna, LiDAR, and IMU. They developed a new al-
gorithm for SLAM using graph representation. Shao et al. (2020)
combined TLS and MLS for forest mapping, using SLAM to re-
gister single MLS scans and improve them based on TLS data.
For further reading, we refer the reader to Guo et al. (2021),
which highlights the usage of LiDAR in ecological observation,
as well as Liang et al. (2022) which addresses remote sensing
of forests.

SLAM. Simultaneous Localisation and Mapping (SLAM) has
been developed for many years, especially in the robotic field.
The task is to create a map while also trying to locate oneself.
For instance, a robot is placed into an apartment and it is sup-
posed to generate a floor plan and connecting the individual
rooms, while sending its location to the home base. This is what
a robotic vacuum cleaner does. In the field of remote sensing,
apart from buildings, the SLAM method is used for mapping
urban areas such as streets and campuses, as well as parks and
forests. One well-known algorithm is LOAM Zhang and Singh
(2014), which stands for LiDAR Odometry and Mapping. Suc-
cessors are for example LeGo-LOAM (Shan et al., 2020) and
F-LOAM (Wang et al., 2021). The newest publication is Fast-
LIO2 by Xu et al. (2021a). SLAM based on DeepLearning
models was also tested, such as DeepLIO (Javanmard-Gh. et
al., 2021). A full overview of the different SLAM approaches
and development is presented in Xu et al. (2022).

Backpack Systems. Compared to other mobile mapping sys-
tems, backpack systems are more flexible. The user is not re-
stricted by stairs, terrain quality, or car-accessible roads. The
data collection is quick, and you need only one operator. Laut-
erbach et al. (2015) developed a backpack system with a heavy
Riegl LiDAR for 3D and SICK LiDAR for 2D scanning, a low-
cost IMU, and a GNSS antenna. The system compensates car-
rier movements and aligns single laser scans, with a maximum
translation pose error of 25 cm and 7° in rotation. The soft-
ware is based on ROS and uses the HectorSLAM algorithm
(Kohlbrecher et al., 2011). Velas et al. (2019) constructed a
backpack system for indoors with two lightweight 3D Velo-
dyne LiDAR devices and a computer and a modified version
for outdoors with two GNSS antennas. The backpack system
improved viewing range and achieved an average relative error
in translation of less than 5 cm indoors but increases to 11.8 cm
outside. Iwaszczuk et al. (2019)’s backpack included a third Ve-
lodyne LiDAR, Sony cameras, Casio and GoPro cameras, and a
MLS system for smooth transition between indoor and outdoor
scenes. Blaser et al. (2021) focused on data collection in forest
and urban areas.

1.2 Contributions

We present a mobile mapping backpack system for collecting
3D point clouds of forest vegetation and discuss the advantages
and drawbacks of the system’s architecture, devices and data
collection. Our contributions include:

• defining the requirements for a terrestrial mobile mapping
system in forest environment

• testing and comparing two published SLAM algorithms
for the use in forests on our backpack

• testing our system in an environment with a forest like ve-
getation, and comparing our data collection and laser scan
quality to terrestrial and airborne laser scanning.

• testing a multi-spectral 10 band camera on a mobile map-
ping backpack system and discussing the integration and
difficulties we encountered while generating a point cloud
from the multi-spectral camera. To our knowledge we are
the first to include such a camera.

With the extra bands in the multi-spectral camera, we can cal-
culate a vegetation health index using the red and near-infrared
bands. Our solution is easy to use and could be used by forest-
ers when they walk through their forest district. Their hands are
free and their pace normal when collecting data. The resulting
point cloud is directly available to be examined. Our approach
allows rapid data collection for databases and inventory as well
as being a foundation for further analysis by scientists and for-
esters. We publish all ROS related software used for this pro-
ject: https://git-ce.rwth-aachen.de/fg-fub/Deep
Forest/dp_ROS

2. SYSTEMS HARDWARE

This section will first highlight the requirements for the mo-
bile mapping system, followed by a detailed list of implemented
sensors and devices in the system.

2.1 Requirements

The mobile mapping system is designed to collect data in a
forest environment, hence it must be self-contained. As a result,
all devices require enough power to operate for several hours.
It must also be possible to evaluate the acquired data on-site in
order to determine whether the area needs to be scanned again
or if the data quality is enough. Further, it must work without
access to GNSS information. Even though the data collection is
outside, we find that under the canopy good GNSS positioning
is difficult and unreliable. For this reason, the system relies on
SLAM to register all individual point clouds during scanning
and build a robust point cloud in a relative coordinate system.
The system does not need to be water proof, as scanning in
the rain or snow is not recommended because the rain drops or
snowflakes will cause numerous false points in the point cloud.

We designed the system to be carried as a backpack by a person.
We could not use a wheeled system because the terrain is too
rough and sometimes muddy. Furthermore, we are interested in
crisscrossing standard forest paths. In this environment, a hand-
held system can also be used. However, we want to connect
many different sensors and therefore did not wish to constraint
ourselves on a single LiDAR and IMU device. All decisions
were based on robustness, rigidity, and weight. A robust car-
rying system is necessary since the sensors must remain static
to each other despite the walking person’s movement. Driving
close to the point of interest is frequently unrealistic. This re-
quires carrying the backpack to the location of interest. As a
result, the backpack must be light and easy to wear for several
hours.

2.2 Architecture

The basic design of the backpack is inspired by Blaser et
al. (2018)’s backpack. The backpack is carried by Tatonka’s
Lastenkraxe load carrier, which consists of an aluminium frame
welded together with 20 mm and 24 mm wide tubes. An alu-
minium profile is attached to it, which serves as a support for
individual devices. The aluminium strut profiles have a size of
3x3 cm with a 8 mm slot. The backpack weights with devices
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Device Type Company Dimensions [mm] Weight [g] Power Consumption [W @ V] Powered by
LiDAR Velodyne 72.7 x 103.3 (H x Diameter) 830 8.0 @ 9.0-18.0 Battery
IMU Xsens 57 x 42 x 24 55 0.5 @ 4.5-34.0 Computer
IMU Microstrain 76 x 68.6 x 13.3 48 2.0 @ 5.0-16.0 Computer
Multi-spectral Camera MicaSense 87 x 123 x 76 508.8 8.0-16.0 @ 4.2-15.8 Power Bank
Computer Lenovo 329 x 227 x 18 1460 3.8 -
Battery i-tecc+ 180 x 75 x 170 2600 19Ah @ 12,9 V -
Power Bank Trust. 28 x 75 x 150 462 20Ah @ 3.7 V -

Table 1. Specifications of devices installed in the backpack system. Note that there are two IMU listed, but there was always only one
built in. W @ V is the power watts at a voltage range of volts.
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Figure 2. Coordinate systems of the LiDARs (l), IMU (i) and
camera (c) before the transformations, and the dimensions of the
backpack system (cm). The backpack coordinate system origins
at the centre of the IMU, and its x axis is equal to the walking

direction.

15 kg. Included sensors are laser scanners, a camera, an IMU
and GNSS antennas. An overview of the implemented devices
with their dimensions, weight, power consumption and power
source is listed in Table 1. All hardware components are ar-
ranged as shown in Figure 1 and Figure 2 and are connected via
cable as illustrated in Figure 3.

LiDAR. The two laser scanners Velodyne VLP-16 Puck Lite
have 16 scan lines that rotate. At a distance of 1 m the
laser spots have a size of 15.4 mm in horizontal direction and
11.0 mm in vertical direction. At this distance, the gap between
the scan lines are approx. 86.2 mm, with a given 0.0859° ver-
tical beam divergence.

IMU. We included the Xsens MTi-700 IMU to support the laser
point cloud registration. The orientation accuracy is 0.5° RMS
in roll/pitch static and dynamic, and a 1.5° RMS in dynamic
yaw. When using the GNSS antenna connected to the IMU, the
positional error is 1 m horizontal and 2 m vertical. Later on,
we replaced this IMU with the Microstrain Model 3DM-GQ7.
This device has an accuracy of 0.05° in roll and pitch. The po-
sition accuracy when adding the GNSS information is 1.25 m
horizontally, 2 m vertically, and heading is at 0.25°. The cor-
responding dual antenna includes 184 channels, the global sys-
tems GPS, GLONASS, Galileo and BeiDou, and the frequen-

computer

LiDAR 1 interface 
box 1

LiDAR 2

sensors support

battery

Interface
box 2

switch

Ethernet USB power only and other

multi-spectral
camera

power bank

IMU

GNSS 2GNSS 1 DSL2

Figure 3. Hardware connectivity between sensors and supportive
devices. The arrow ”power only and other” represents cable
connections that are either only for power supply or do not

belong to Ethernet and USB.

cies L1C/A, L2C, L1OF, L2OF, E1B/C, E5b, B1, B2. Note that
both devices are inertial navigation systems (INS) as they com-
bine IMU and GNSS, however for simplicity they will be called
IMU in this paper.

Camera. The multi-spectral camera MicaSense RedEdge-MX
Dual Camera System is composed of two individual cameras
with 5 bands each, and a Downwelling Light Sensor (DSL2).
DSL2 is for improving reflectance calibration in cases where
ambient light conditions are changing in the middle of a data
collection, which happens regularly in forests under the can-
opy. The camera bands include the following electromagnetic
wavelengths (band span). Red camera: blue 475 (32), green 560
(27), red 668 (14), red edge 717 (12) and NIR 842 (57). Blue
camera: coastal blue 444 (28), green 531 (14), red 650 (16), red
edge 705 (10) and red edge 740 (18). The cameras are triggered
simultaneously once per second and save one image per band
as a 16-bit TIFF file with a size of 1280 × 960 pixel. WiFi or
Ethernet can be used for communication. The individual lenses
have a field of view of 47.2° HFOV and a global shutter which is
synchronised with all 10 sensors. For simplicity we call the set
”camera”, even though there are two cameras. Our solution in-
cludes a customised cable for communicating with the camera.
We use a DJI gimble to integrate the DSL2 and provide power.
There may be a less complicated setup, but it will require good
technical knowledge and tools.

Computer. Our computer, a Lenovo ThinkPad 14s Gen 2, in-
cludes AMD Ryzen 7 Pro 6850U / 2.7 GHz CPU, 32 GB of
RAM, and an AMD Radeon 680M GPU. For connectivity it
supplies Gigabit Ethernet port, two USB 3.2 Gen 1 and two
USB-C 3.2 Gen 2. The laptop battery, which is a 4-cell lithium
polymer with a 52.5Wh capacity, is also important for powering
some devices and limiting the backpack’s usage time.
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Power sources. Another power source, besides the computer,
is the LiFeEnergy 12V.19, which is a LiFePO4 rechargeable
battery. The connectors consists of positive and negative poles.
Based on our request, the company Visimind has built power
cables especially for the connection between Velodyne LiDARs
and the poles on the battery. The camera is powered by a power
bank. When connecting the camera directly to the computer
as power source results in problems. Because the camera con-
sumes so much power, the computer denied the connection after
only a few seconds. This causes the camera to turn off and on
every few seconds, resulting in an unreliable method of image
collection. Thus, we added an extra power bank for the cam-
era. The power bank was originally planned as a backup for the
computer, when a long campaign day was planned.

Switch. Communication from the two LiDARs and the cam-
era to the computer is accomplished via Ethernet. For this, we
installed the Switch Flex Mini, including 5 ports. It extends
107.16 × 70.15 × 21.17 mm and weights 150 g. In addition,
it has a forwarding rate of 7.44 Mpps, switching capacity of
10 Gbps and is powered by the computer via a USB-C port.

3. SYSTEMS SOFTWARE

The following sections describe the software architecture, im-
plemented packages, and configurations. An overview of the
communication between nodes and sensors is shown simpli-
fied in Figure 4. The software is built on ROS. We used pub-
lished packages by the sensor companies (Velodyne, Xsens,
Microstrain) for the conversion and processing into ROS com-
patible formats. Unfortunately, MicaSense did not support the
ROS implementation. Sensor communication is enabled by our
self-written scripts, specifically between the MicaSense multi-
spectral camera and the IMU. Thereafter, the target-less calib-
ration LI-Init (Zhu et al., 2022) was used to calibrate the laser
scanners and the IMU. Finally, we used the SLAM algorithms
FastLIO (Xu et al., 2021b) and StaticMapping (Liu and atinfin-
ity, 2021) with modified parameters.

Our launch file (backpack.launch) sits atop all scripts, con-
necting the processing and collecting tasks. Underneath is the
launch file (backpack sensors.launch), which starts the connec-
tions to the sensors, retrieves the camera information, and sends
the IMU’s position and timestamp to the camera. SLAM pro-
cessing could be included in the first launch file, to run live
during data collection. However, we noticed after a trial period
that this consumes a significant amount of power. As a result,
we launch the SLAM node separately and only when we need to
inspect the finished point cloud on-site. The topic named static
transformation converts the coordinate system of the sensors to
a base coordinate system (base link) and is set based on the
device arrangements on the backpack.

The customised script for communicating with the camera
within our system is based on the MicaSense general commu-
nication guide. Communication is via IP address to the main
camera (the red one) and retrieving information such as status,
and sending a trigger for continuous image capture. The in-
formation from the camera is converted into ROS messages
(sensor msgs/CameraInfo and std msgs/String) and published
in topics, either as general msc send status or separately for
every band, for instance info band1. In the opposite direc-
tion, information such as position, orientation and timestamp
are converted from the IMU (sensor msgs/Imu for raw data
and nav msgs/Odometry for filtered data) into JSON format
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scans
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Figure 4. ROS connectivity. The topic LiDAR 2 is identical to
LiDAR 1 and was discarded for simplicity.

and send to the camera. The same procedure is done with
the GNSS information (sensor msgs/NavSatFix) based on the
first antenna. If the camera receives this information within one
second after capturing, it will be saved in the image metadata.

3.1 Sensor Configurations

We set the Velodynes to save only the strongest signal return.
A dual return setting was tried, but it turned out to be ineffect-
ive. The data collected was twice as large, but the SLAM al-
gorithm could not process twice as many returns for the same
timestamp. Moreover, we chose the strongest return rather than
the last return because (1) the laser signal can be disrupted by
vegetation and (2) a far-away reflection can be based on noise.
Both of these assumptions result in higher point cloud quality
when the strongest return is chosen instead of the last return.
Further, we set the field of view to 360° and the internal spin
rate (RPM) to 600, which converts to 10 frames per second.

The Xsens IMU orientation output was set to quaternion and
100Hz rate to better conform to the ROS guidelines. The in-
ertial data is presented in the form of Rate of Turn and Accel-
eration. The Microstrain IMU and camera settings were left at
their default settings.

3.2 ROS Configurations

the Velodyne configurations or the Xsens package was not
changed, except for the IP addresses and frame IDs. We tested
the Velodyne package’s GNSS extension but decided to only
use the GNSS antenna connected to our IMU. In the Microstrain
ROS configuration file several parameters for the were set un-
equal to the default. In addition to changing the frame ID of the
published data, we set it to use the ENU frame rather than NED,
as well as the computer’s timestamp rather than the device’s or
ROS’s. Both the dual antenna GNSS and the GNSS kinematic
should be used for auto-heading alignment. We changed the
relative position to be published as LLH instead of ECEF.

For a target-less calibrate of the 6DoF rigid transformation and
the time offset between one of the 3D LiDAR and the IMU, we
used the tool LI-Init Zhu et al. (2022). This involves rotating

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-1/W1-2023 
ISPRS Geospatial Week 2023, 2–7 September 2023, Cairo, Egypt

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-1-W1-2023-695-2023 | © Author(s) 2023. CC BY 4.0 License.

 
698



A

C D

B

m

Figure 5. Data collection in monastery garden. (A) The four
MLS sets each coloured differently. (B) An orthophoto, based
on UAV data. (C) The merged MLS point cloud, coloured in

intensity, with blue being the lowest. (D) Cloud to cloud
distance error between MLS and ALS point cloud, in meters.

For a better visualisation, the reader is advised to view the
digital version and zoom in.

the backpack around all axes and moving it in each direction
sequentially. As recommended by the authors, we set the filter
size surf and map to 0.5 for outdoor environments. The number
of iterations was increased from 5 to 100. The rigid transforma-
tion from the calibration result is LiDAR1 [-0.02 0.0 0.83 ∥ 3.14
0.785 0.0] and LiDAR2 [-0.37 0.0 -0.15 ∥ -1.57 1.57 -1.57], in
the format x y z ∥ yaw pitch roll and given in meters and ra-
dians, respectively. The backpack x axis must be directed in
the walking direction to be ROS compliant, thus both IMUs are
rotated with yaw=3.14 rad. The time lag between LiDAR and
IMU, was -0.002 sec for LiDAR1 and -0.009 sec for LiDAR2.

The two SLAM algorithms that have been implemented are
FastLIO and StaticMapping. FastLIO does not use GNSS data
in either its SLAM optimisation or its final result. Many settings
in StaticMapping can be altered; for example, we experimented
with various maximal range values. The Velodyne scanner can
scan up to 100 m away, but the noise and footprint increase
with increasing distance from the light impulse. We started with
70 m, which already gave a good results, but it had a lot of de-
tached points or mismatches in the SLAM result. With 40 m, all
of the tree pikes could still be detected and the noise reduced.
For example, in the Munich data set, the highest tree is 38 m
tall. For the SLAM node, it can be chosen whether to use the
raw IMU or the filtered IMU data, if the latter is chosen, the raw
data is ignored.

4. EXPERIMENTS AND RESULTS

The survey area is located in Munich, Germany, in a
monastery garden (WGS84 LAT 48.14566389652382, LON
11.457112873733656), and covers approximately 21 394 m²
(Figure 5B). On the 25th of October 2022, a sunny day with light
winds, the tree leaves began to change colour and fall. This area
was scanned with TLS and MLS on the same day, and ULS a
week earlier. The TLS data was scanned with Leica RTC360.
Control points were distributed throughout the area, which were

partly a variety of black circle segments and partly two black
squares set in a diagonal order and printed on a 210 × 297 mm
piece of paper. ALS data was scanned in February 2022 and
published by the State Office for Digitisation, Broadband and
Surveying, Bavaria, Germany.

The MLS scan was divided into four parts because the area
was large and the rosbag files should not be too big to ensure
proper post-processing (Figure 5A). In addition, it ensures that
should a problem occur, less area must be re-scanned. In Fig-
ure 5A, B, and D the white circle represents a water surface.
It was scanned first on the island (yellow scan), then on the
outer ring (green scan). They were all run through the Fast-
LIO algorithm with full range scan distance and then aligned
to the ALS data in post-processing. Thereafter the clouds were
merged to form one large point cloud, which is portrayed as an
intensity scale, with blue being the lowest intensity (Figure 5C).
The blue points represent mostly tree crown tops with low in-
tensity.

Point errors can occur in two ways: (1) erroneous point cloud
registration can cause objects to be misplaced or visible twice,
and (2) point location precision decreases as the laser impulse is
reflected further away. To investigate these errors, we compare
the registered MLS data to the ALS data, as the TLS data has a
strong registration error. Using cloud to cloud absolute distance
measurements, from the software CloudCompare, the errors are
averaged over all axes. The lower the error from the MLS to
the ALS point cloud, the more blue the point is coloured (Fig-
ure 5). The small histogram on the right side of the colour scale
shows that the error mostly lies near zero. Only the objects that
where far away from the sensor, such as high buildings across
the street, have a higher error. This emphasises the importance
of lowering the maximum range, as the example here was done
collected without range reduction. An error is also visible in the
vegetation and the water (white ring).

The MLS and ALS data was not captured in the same time
period (8 months apart), which is why the vegetation can have
grown or slightly moved between the scans. The objects do
not seem to occur twice. If we remove the buildings at the
far end and the extreme outliers, we get an average error of
27.9 (SD 13.6) cm. Broken down into the three directions:
mean error in x direction of 0.4 (SD 3.6) cm, y direction -
0.8 (SD 3.4) cm, and z direction 0.6 (SD 6.5) cm. Lastly, when
we only focus on the fruit tree meadow (northern part) we re-
ceive a mean error in x direction of -0.3 (SD 2.6) cm, y direc-
tion -1.7 (SD 3.0) cm, z direction 0.2 (SD 3.6) cm and overall
23.2 (SD 9.2) cm.

TLS data has a registration error, as objects appear twice in
the point cloud (Figure 6C). Therefore a comparison should be
taken with caution. TLS shows finer details than MLS, visible
on the bridge and tree stems (Figure 6D), and therefore a more
details representation of the vegetation (Figure 6F).

The registration of the multi-spectral images and the generat-
ing of a 3D point cloud was performed with Structure from
Motion (SfM) and the software Metashape (version 1.7.6) (Fig-
ure 7A). When the camera was set up on the backpack the result
was not satisfying (Figure 7A). Nonetheless, the image inform-
ation is still useful, for example the healthy vegetation shown in
red while other objects as well as dead plants are not red (Fig-
ure 7B). This red colour represents the NIR information not
visible with the human eye. To test the general performance of
the camera data, we held the camera parallel to the ground in
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Figure 6. Comparison of MLS and TLS data with registration
quality (A,C) and level of detail (B,D-F). MLS full point cloud
only from LiDAR1, TLS in (D, F) one scanning point only. The

area in the black rectangles (B,D) is enlarged in (E,F).

a height of one meter and moved only on horizontal direction.
The result is a 3D reconstruction of the objects and the foliage
(Figure 7C).

5. DISCUSSION

5.1 Data collection

It is well known, that MLS needs less time for data collec-
tion than TLS. MLS started at each subset of the area and fin-
ished after approximately 12 min with the longest run. Most
of the time, the team waited roughly an hour for the TLS data
collection to be finished. It was also tedious, even though it
had a build in relocation estimate, but the tripod had to be re-
positioned every few meters and the user needed to hide during
scans. Nonetheless, the point density is much higher than from
the Velodyne VLP16 (Figure 6E and F). The MLS data collec-
tion can be done by one user alone and is less dependent on
ground roughness or possible stairs. The user can walk at a
steady pace. We also compared it to a NavVIS VLX, and it was
faster to scan with ours and more comfortable to carry, but the
NavVIS VLX had a more detailed and higher quality result.

There are two LiDAR devices installed on the backpack. We
observed that the upper one (LiDAR1) returns better or equal
results than the lower one during experiments, and particularly
during post-processing. We also came to the conclusion that the

DC

BA

walking direction

Figure 7. Data from the multi-spectral camera. 3D point cloud
with camera attached to the backpack, image locations as blue

squares and perpendicular directions as black lines (A), and
camera moved 1 m above and parallel to the ground coloured in

height, blue is low (C). Image coloured in infrared (NIR, red,
green) (B) and image coloured only in NIR (D). Images display

the same area as their 3D point cloud, respectively.

upper laser scanner alone can be used to get a good point cloud
from the canopy, the ground and the tree stems. Therefore, we
recommend including only the upper LiDAR. Besides reducing
one LiDAR, we recommend lowering the backpack height. In
our experience, this tall construction makes it more difficult to
move through a dense forest with low hanging branches. It is
unlikely that the person wearing the backpack will block the
laser signals, since the laser is mounted at an angle that directs
the laser signals steeply upwards. Lastly, the higher point dens-
ity of a TLS is not necessary to generate a 3D model for forest-
ers to use as a base for their inventory collection, and only takes
in more storage capacity and processing.

Changing the IMU from the older Xsens Mti-G-700 to the
newer Microstrain has improved the positioning of the back-
pack. The newer device has a better correction process of the
raw data. Unfortunately, the transition from one device to the
other, did not go as smoothly as expected. The newer device
has more settings, which must be altered to fit into the rest of
the system and also satisfy the ROS guidelines.

The camera is initially intended to be mounted on UAVs, which
resulted in some difficulties mounting it on a backpack system.
The camera is only available with a DJI port or a few cables.
However, these cables do not support the included DSL2 and
can only communicate via WiFi. An Ethernet connection, on
the other hand, is more reliable and faster than a WiFi connec-
tion. The company provides instructions for making an Ether-
net cable at home for the camera, but the parts required are only
available in the United States, or in a set that includes unneces-
sary items. In addition, the narrow field of view is not suitable
for a close range setup. The camera can only cover a small area
of the laser scanner point cloud. We do not recommend using
this camera for a backpack system as it is difficult to install and
connect and the data coverage is small. Connecting the camera
with a DJI gimble to a power bank and carrying a laptop with
a communication via WiFi could be solution to collect images
of forests and other vegetation. This may answer close range
questions where multi-spectral data is needed.
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5.2 Data Processing

Even though FastLIO succeeds at some situations better than
StaticMapping, it lacks the ability to include GNSS informa-
tion in the SLAM process and the results. Additionally, Stat-
icMapping outputs a path, which FastLIO does not. Further-
more, FastLIO retains more points in the final output, but it
adds thick lines (point cluster) to places where the system was
unmoved. In open fields, FastLIO performed better in closing
the loops. Both SLAM algorithms performed well in the forest
settings even without GNSS data. Note, that FastLIO will al-
ways produce a point cloud, even if nothing can be correctly
matched. StaticMapping indicates throughout the process how
many matches it found and of what quality, and if there weren’t
enough, it won’t save a point cloud.

The bad image registration results may be from moving away
from objects rather than moving sideways. Thus objects will
have a variation in size in each image. In aerial images, the
drone or airplane moves in a line parallel to the ground and
maintains its flying altitude. Objects appear in the same size in
all of the images, making image alignment simpler. There are
examples, where such a reconstruction works, however they of-
ten use videos instead of images, and our camera can only save
one image per second. The experiment when moving parallel
to the ground (Figure 7C and D) with a close proximity of the
objects to the camera and the relatively wide baseline between
the bands in the lens centres, where not the cause of the bad
point cloud generation. The camera images alone show useful
information (Figure 7B). Not only vegetation shows a high re-
flectivity in NIR, but also plastic such as plastic boxes, bags or
jackets. This can be used to find plastic trash in forests quicker.

6. CONCLUSIONS

The backpack demonstrates its convenience in forest settings.
It is easily transportable next to forest paths and rough terrain.
Experiments show that two LiDARs are useful for outdoor ve-
getation tasks, but a single scanner installed at an angle suf-
fices to save money. The system collects less data than TLS,
but the level of detail in TLS data is often not necessary. Less
storage space is required, and irrelevant object details are not
gathered. The point quality was also satisfying. Despite the fact
that SLAM is challenged in forest environments, we achieved
good results in many field trips to the forest and in the mon-
astery garden with little effort. Both StaticMapping and Fast-
LIO returned good results, but had their difficulties in some en-
vironments. For outdoor SLAM, StaticMapping is preferable
because it includes GNSS information in its calculations. In
cases where GNSS positioning fails, ALS can be used to ob-
tain a good georeference in post-processing. The camera can
only cover a small area of the laser scanner point cloud and this
camera model is not easy to integrate and images were diffi-
cult to align. In the future we will test different positions on
the backpack to improve to image alignment and fusion to the
point cloud. We suggest to test other camera models. Finally,
we want to improve georeferencing in the StaticMapping al-
gorithm.
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