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ABSTRACT: 
 
The limited field of view (FoV) of single LiDAR poses challenges for robots to achieve comprehensive environmental perception. 
Incorporating multiple LiDAR sensors can effectively broaden the FoV of robots, providing abundant measurements to facilitate 
simultaneous localization and mapping (SLAM). In this paper, we propose a panoramic tightly-coupled multi-LiDAR-inertial 
odometry and mapping framework, which fully leverages the properties of solid-state LiDAR and spinning LiDAR. The key of the 
proposed framework lies in the effective completion of multi-LiDAR spatial-temporal fusion. Additionally, we employ the iterated 
extended Kalman filter to achieve tightly-coupled inertial odometry and mapping with IMU data. PMLIO showcases competitive 
performance on multiple scenarios data, compared with state-of-the-art single LiDAR-inertial SLAM algorithms, and reaches a 
noteworthy improvement of 27.1% and 12.9% in max and median of absolute pose error (APE) respectively. 
 
 
 

1. INTRODUCTION 

        Robots utilize SLAM to construct environmental maps and 
achieving self-localization (Durrant-Whyte & Bailey, 2006) by 
own equipped sensors in complex environments such as GNSS-
denied environments, while providing a foundation for robot 
exploration and planning (Cadena et al., 2016). With the 
advancement of robot technology, SLAM has been widely 
applied in underground space exploration (Chang et al., 2022) 
and autonomous driving ( Li et al., 2020). The mainstream 
SLAM technology commonly relies on sensors such as cameras, 
LiDARs, and inertial measurement units (IMU). Visual SLAM 
based on cameras (Campos et al., 2021; Forster et al., 2017) is 
prone to failure in conditions of low light, rain, and snow. 
Conversely, LiDAR SLAM (Cong et al., 2022, 2023; Zhang & 
Singh, 2014) relies on long-distance observation and stronger 
robustness in conditions such as poor lighting and harsh 
environments. It can not only provide high-precision 6 DOF state 
estimation, but also obtain high-resolution environmental 
perception maps. 
        The evolution of LiDAR SLAM is closely intertwined with 
the hardware support provided by various types of LiDARs. As 
LiDAR technology has advanced, the solid-state LiDAR that 
employs a non-repeating scan mode to generate dense 3D point 
clouds abstracts more attention , in addition to traditional 
mechanically spinning LiDAR. (Li et al., 2021; Lin & Zhang, 
2020) specifically propose new feature extraction methods for the 
irregular scanning patterns of solid-state LiDARs. In particular, 
the omnidirectional non-repetitive Livox Mid-360 LiDAR has a 
360-degree horizontal FOV, which is a significant improvement 
over traditional solid-state LiDAR with narrow horizontal FOVs.  
 Moreover, it is more affordable, making it more suitable for 
mapping large scenes. 
        Despite the extensive research on LiDAR-inertial odometry 
and mapping(Shan et al., 2020; Xu et al., 2022), traditional single 
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LiDAR SLAM system is susceptible to limitations in terms of 
perspective, resulting in blind spots and sparse data. In contrast, 
multi-LiDAR systems have garnered increasing interest due to 
their ability to overcome the limitations of single LiDAR sensor, 
providing a more comprehensive and dense mapping solution. 
(Chen et al., 2021) proposes a backpack-style LiDAR system 
with two spinning LiDARs. It extracts features from three 
categories: edges, corners, and planes, which are used for 
subsequent ground segmentation. (Jiao et al., 2021) proposes a 
system that achieves online extrinsic calibration, odometry, and 
mapping for multiple LiDARs simultaneously. (Nguyen et al., 
2021) applies angle-complementary solid-state LiDAR and 
spinning LiDAR in a feature-based tightly coupled LiDAR-
inertial odometry and mapping system.  However, prior methods 
for multi-LiDAR odometry and mapping may not effectively 
leverage the distinctive capabilities of solid-state and spinning 
LiDARs, or may be constrained by limitations such as the narrow 
field-of-view. 
        To address the problem of limited observation information 
caused by the solitary perspective, we propose a panoramic 
tightly-coupled multi-LiDAR-inertial odometry and mapping 
framework. As depicted in the Figure 1, our method 
synergistically leverages the perspectives of the Mid-360 LiDAR 
and Ouster LiDAR while also incorporating the distinctive 
characteristics of solid-state and spinning LiDAR technologies. 
This integration empowers the robot to generate a more 
comprehensive and denser point cloud map. The proposed 
system first performs the multi-LiDAR spatial-temporal fusion, 
and it's worth noting that we have performed hardware time 
synchronization for the two LiDARs beforehand. To compensate 
for distortion caused by motion, we utilize the high-frequency 
observation of acceleration and angular velocity from IMU. 
Subsequently, the LiDAR and IMU measurements are fused 
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using a tightly-coupled iterated extended Kalman filter to achieve 
high-precision state estimation. 
        To fully validate our algorithm, we construct a UGV 
platform (DCSI-LuoJia Explorer) equipped with multiple 
LiDAR sensors, as shown in Figure 1, and collect diverse 
experimental data for verification, our algorithm demonstrate 
competitive performance over state-of-the-art single LiDAR 
SLAM algorithms. 
        The main contributions of our work can be summarized as 
follows: 
1. To overcome the limited perspective of single LiDAR 

sensor, we propose a panoramic tightly-coupled multi-
LiDAR-inertial odometry and mapping framework, which 
is the framework that combines the Livox mid-360 LiDAR 
and spinning LiDAR. Through the fusion of 
complementary characteristics of different LiDARs and 
IMU, our framework achieves highly accurate and robust 
odometry estimation. 

2. We have validated our algorithm by collecting data on 
DCSI-LuoJia Explorer equipped with multiple LiDARs, 
which has demonstrated its superiority over single LiDAR 
algorithms in terms of enabling more comprehensive and 
detailed mapping. Moreover, in comparison to the Fast-
LIO-Mid, our method has shown a remarkable 
improvement of 27.1% and 12.9% in max and median of 
APE respectively.  
 

 

Figure 1.  The exhibition for our DCSI-LuoJia Explorer system. Left: 
the system is collecting data. Right: schematic diagram of hardware 

composition  

 
2. METHODOLOGY 

        This section presents a comprehensive explanation of our 
algorithm, as illustrated in Figure 2. 
 
2.1 Overview 

        To address the limitation of the solitary perspective of single 
LiDAR, we propose a panoramic tightly coupled multi-LiDAR-
inertial odometry and mapping framework that leverages the 
characteristics of the Mid-360 solid-state LiDAR with a 360-
degree horizontal FOV and the spinning LiDAR. Meanwhile, 
basic hardware time synchronization has been achieved among 
all hardware components.  
        Our method starts with the input of multimodal data, and 
unifies the spatial and temporal reference of multi-LiDAR 
information. The pre-integrated IMU measurements are then 
utilized to compensate for the motion during the acquisition. 

                                                             
1 https://github.com/Livox-SDK/livox_ros_driver 
 

Moreover, the IMU and fused LiDAR information are 
incorporated into the iterated extended Kalman filter for state 
estimation. The following sections will provide detailed 
descriptions of these modules. 
Notations and Definitions： 
        The following are definitions of the formula symbols 
involved in this paper. We use ⊟ to parameterize the state error 
on manifold ℳ. For specific explanations, please refer to Fast-
LIO2(Xu et al., 2022). Additionally, Table 1 defines the 
coordinate system expressions and other symbols involved in this 
paper. 
 

Notations Meaning 
( )𝐺𝐺 Global Coordinate 
( )𝐿𝐿 The coordinate of Ouster LiDAR 
( )D The coordinate of Mid360 LiDAR 
( )𝐼𝐼 The coordinate of IMU 

𝑻𝑻𝐿𝐿I ,𝑻𝑻𝐷𝐷𝐿𝐿 ∈ 𝑆𝑆𝑆𝑆(3) The extrinsic matrix of Ouster 
LiDAR frame w.r.t IMU frame, and 
Mid360 LiDAR frame w.r.t Ouster 
LiDAR frame 

𝐱𝐱, 𝐱𝐱�,𝐱𝐱� The ground truth, propagated and 
updated estimation of state 𝐱𝐱  

𝐱𝐱�, 𝐱𝐱�𝑓𝑓 The error between the ground truth 𝐱𝐱 
and estimation 𝐱𝐱� , the estimate of 
state 𝐱𝐱  in the 𝑓𝑓-th iteration of iKF. 

𝐱𝐱𝑖𝑖 , 𝐱𝐱𝑘𝑘 State 𝐱𝐱 at the 𝑖𝑖-th IMU sample time 
and at the 𝑘𝑘-th LiDAR scan end time 

Table 1.  Notations and Definitions 
 
2.2 Spatial-Temporal Fusion 

        Since multiple LiDARs are utilized and the LiDAR Points 
are collected via the point-by-point scanning method, spatial-
temporal fusion of multiple LiDARs is required, which consists 
of four modules: Offline LiDAR Calibration, Temporal 
Unification, Spatial Unification, and Points Accumulation. 
Offline LiDAR Calibration: 
        In order to unify the spatial reference between LiDARs, 
external parameter 𝑻𝑻𝐷𝐷𝐿𝐿  need to be available, which can be 
calculated based on the overlapping view of LiDARs in our 
method. LiDARs acquire maps of the same scene independently 
and simultaneously. Afterward, fast-gicp algorithm(Koide et al., 
2021) is employed to obtain the external parameter 𝑻𝑻𝐷𝐷𝐿𝐿  with the 
overlapped region. To enhance the reliability of the external 
parameter, the scene should contain abundant features. 
Temporal and Spatial Unification:  
        Due to the inherent hardware variations and differences in 
data acquisition methods among multiple LiDARs, the collected 
data may contain temporal offsets. Temporal unification is 
necessary to achieve accurate data synchronization. 
        We assume that 𝑷𝑷𝑡𝑡𝑘𝑘

𝐿𝐿 = {𝒑𝒑𝑘𝑘1𝐿𝐿 ,𝒑𝒑𝑘𝑘2𝐿𝐿 , …𝒑𝒑𝑘𝑘𝑘𝑘𝐿𝐿 } is the point cloud 
obtained by the Ouster LiDAR at time 𝒕𝒕𝑘𝑘𝐿𝐿 , and 𝑷𝑷𝑡𝑡𝑗𝑗

𝐷𝐷 =
�𝒑𝒑𝑗𝑗1𝐷𝐷 ,𝒑𝒑𝑗𝑗2𝐷𝐷 , …𝒑𝒑𝑗𝑗𝑗𝑗𝐷𝐷 � is the point cloud obtained by the Mid LiDAR 
at time 𝒕𝒕𝑗𝑗𝐷𝐷 .The independent timestamp of each point can be 
obtained from the sensors driver 1 2 .The "split-and-merge" 
strategy method is employed to fuse 𝑷𝑷𝑡𝑡𝑘𝑘

𝐿𝐿  and 𝑷𝑷𝑡𝑡𝑗𝑗
𝐷𝐷  into 𝑷𝑷𝑡𝑡𝑘𝑘

𝑚𝑚𝐿𝐿. As 
illustrated in the Figure 3, firstly, 𝑷𝑷𝑡𝑡𝑗𝑗

𝐷𝐷  split by the closest 𝑷𝑷𝑡𝑡𝑘𝑘
𝐿𝐿  with 

starting timestamp 𝒕𝒕𝑘𝑘𝐿𝐿  in the point sequence . 

2 https://github.com/ouster-lidar/ouster-ros 
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Figure 2. The pipeline of proposed framework. The overall system consists of data input module, spatial-temporal fusion module and 

state estimation module.
        Prior to merging, the point cloud 𝑷𝑷𝑡𝑡𝑗𝑗

𝐷𝐷  should be projected 
onto ( )𝐿𝐿 by the external parameter 𝑻𝑻𝐷𝐷𝐿𝐿 , resulting in the point 
cloud 𝑷𝑷𝑡𝑡𝑗𝑗

𝐿𝐿 . Next, the two segments of point cloud 𝑷𝑷𝑡𝑡𝑗𝑗
𝐿𝐿  

(distinguished by different colors in the Figure 3 ) are merged 
into point cloud 𝑷𝑷𝑡𝑡𝑘𝑘

𝐿𝐿 , which shares a common time domain. 
        After spatial-temporal fusion, we obtain the merged point 
cloud 𝑷𝑷𝑡𝑡𝑘𝑘

𝑚𝑚𝐿𝐿 = �𝒑𝒑𝑘𝑘1𝑚𝑚
𝐿𝐿,𝒑𝒑𝑘𝑘2𝑚𝑚

𝐿𝐿, …𝒑𝒑𝑘𝑘𝑘𝑘𝑚𝑚
𝐿𝐿�. 

 
Figure 3. Spatial-Temporal Fusion: split-and-merge. 

 
2.3 Multi-modal LiDAR Pose Estimation 

        After completing Section 2.2, we obtain the merged point 
clouds from the LiDAR sensors. Subsequently, we need to 
integrate the fused LiDAR observations and IMU measurements 
to achieve tightly-coupled state estimation. This process involves 
four distinct modules, as shown in Figure 2: Forward propagation, 
Backward propagation, Residual calculation, and Iterated Update. 
        We assume that the hardware time synchronization between 
the LiDAR and IMU has been completed in advance, and that the 
external parameters between the LiDAR and IMU are known. 
Based on the definition in Table 1, we denote the first IMU frame 
as the global frame ( )𝐺𝐺. 
Forward propagation: 
        When each IMU constraint 𝐮𝐮𝑖𝑖  is received, as shown in 
Figure 3, we perform forward propagation to update the state 
𝐱𝐱�𝑖𝑖+1 and covariance 𝐏𝐏�𝑖𝑖+1. 𝐱𝐱�𝑘𝑘 , 𝐏𝐏�𝑘𝑘represent the propagated state 
and covariance until 𝒕𝒕𝑘𝑘𝐿𝐿 . 
Backward propagation and motion distortion: 
        Since the LiDAR sensor collects points one by one at high 
frequency, rather than all points at the same time, backward 
propagation and motion distortion need to be performed on the 
collected point cloud, as depicted in Figure 3. This can be 
achieved using the method proposed in (Xu & Zhang, 2021) , 
which projects all points of the scan to the end time of the scan. 
Residual calculation: 
        After achieving the forward and backward propagations, 
state 𝐱𝐱�𝑘𝑘 ,covariance  𝐏𝐏�𝑘𝑘  and undistorted point cloud 𝑷𝑷𝑡𝑡𝑘𝑘

𝑚𝑚𝐿𝐿 =
�𝒑𝒑𝑘𝑘1𝑚𝑚

𝐿𝐿,𝒑𝒑𝑘𝑘2𝑚𝑚
𝐿𝐿, …𝒑𝒑𝑘𝑘𝑘𝑘𝑚𝑚

𝐿𝐿� are obtained. 
        We use Equation 1 to transform the point 𝒑𝒑𝑗𝑗𝑚𝑚

𝐿𝐿 to the global 
frame  as 𝐩𝐩�𝑗𝑗𝑚𝑚

𝐺𝐺 : 

𝒑𝒑�𝑗𝑗𝑚𝑚
𝐺𝐺 = 𝐓𝐓�𝐼𝐼𝑘𝑘

𝑓𝑓 𝐺𝐺𝐓𝐓�𝐿𝐿𝑘𝑘
𝑓𝑓 𝐼𝐼
𝒑𝒑𝑗𝑗𝑚𝑚

𝐿𝐿                          (1) 

        Moreover, we utilize the ikd-tree algorithm(Xu et al., 2022) 
to search five nearest points of 𝒑𝒑�𝑗𝑗𝑚𝑚

𝐺𝐺 in the map to fit a plane, then 
calculate the normal vector 𝐮𝐮𝑗𝑗𝐺𝐺  and centroid 𝒒𝒒𝑗𝑗𝑚𝑚

𝐺𝐺 .Furthermore, 
the LiDAR measurement from the 𝑗𝑗 -th point 𝒑𝒑𝑗𝑗𝑚𝑚

𝐿𝐿  can be 
represented as follow:  

𝟎𝟎 = 𝐡𝐡𝑗𝑗�𝐱𝐱𝑘𝑘 ,𝐧𝐧𝑗𝑗𝐿𝐿� ≃ 𝐡𝐡𝑗𝑗�𝐱𝐱�𝑘𝑘
𝑓𝑓 ,𝟎𝟎�+ 𝐇𝐇𝑗𝑗

𝑓𝑓𝐱𝐱�𝑘𝑘
𝑓𝑓 + 𝐫𝐫𝑗𝑗

= 𝐳𝐳𝑗𝑗
𝑓𝑓 + 𝐇𝐇𝑗𝑗

𝑓𝑓𝐱𝐱�𝑘𝑘
𝑓𝑓 + 𝐫𝐫𝑗𝑗

         (2) 

Where 𝐱𝐱�𝑘𝑘
𝑓𝑓 = 𝐱𝐱𝑘𝑘 ⊟ 𝐱𝐱�𝑘𝑘

𝑓𝑓, 𝐇𝐇𝑗𝑗
𝑓𝑓 is the Jacobian matrix of 𝐡𝐡𝑗𝑗�𝐱𝐱𝑘𝑘 ,𝐧𝐧𝑗𝑗𝐿𝐿� 

with respect to  𝐱𝐱�𝑘𝑘
𝑓𝑓 = 0 . Residual 𝐳𝐳𝑗𝑗

𝑓𝑓  can be summarized as 
follow: 

𝐳𝐳𝑗𝑗
𝑓𝑓 = 𝐡𝐡𝑗𝑗(𝐱𝐱�𝑘𝑘

𝑓𝑓 ,𝟎𝟎) = 𝐮𝐮𝑗𝑗𝑇𝑇(𝒑𝒑�𝑗𝑗𝑚𝑚
𝐺𝐺 − 𝒒𝒒𝑗𝑗𝑚𝑚

𝐺𝐺)           (3) 
        𝐧𝐧𝑗𝑗𝐿𝐿 is the raw LiDAR measurement noise, 𝐑𝐑𝑗𝑗 is a covariance, 
𝐫𝐫𝑗𝑗 is the total measurement noise with 𝐑𝐑𝑗𝑗. 
Iterated Update: 
        The propagated state and covariance 𝐱𝐱�𝑘𝑘 ,  𝐏𝐏�𝑘𝑘  obtained by 
forward propagation, which inflict the prior distribution on 𝐱𝐱𝑘𝑘 
are as follows: 

𝐱𝐱𝑘𝑘 ⊟ 𝐱𝐱�𝑘𝑘 ∼ 𝒩𝒩(𝟎𝟎,𝐏𝐏�𝑘𝑘)                            (4) 
        By combining Equations 2 and 4, we can obtain the 
maximum a posteriori estimate (MAP) for the state 𝐱𝐱𝑘𝑘 as shown 
in Equation 5, the solution to which can be found in reference 
(Xu et al., 2022). 

𝑚𝑚𝑚𝑚𝑚𝑚
𝐱𝐱�𝑘𝑘
𝑓𝑓

(∥ 𝐱𝐱𝑘𝑘 ⊟ 𝐱𝐱�𝑘𝑘 ∥𝐏𝐏�𝑘𝑘
2 +� ∥ 𝐳𝐳𝑗𝑗

𝑓𝑓 + 𝐇𝐇𝑗𝑗
𝑓𝑓𝐱𝐱�𝑘𝑘

𝑓𝑓 ∥𝐑𝐑𝑗𝑗
2

𝑚𝑚

𝑗𝑗=1
)         (5) 

 
3. EXPERIMENTS 

        This section presents the high-quality experimental results 
of our method in various datasets. 
 
3.1 System design and dataset 

3.1.1 Sensor Configuration and Implementation 
        To validate our algorithm, reliable and comprehensive 
experimental data have been collected by our DCSI-LuoJia 
Explorer system in Figure 1 , which comprises three layers: the 
bottom layer includes power supplies and computers, while the 
middle and upper layers contain various sensors. The hardware 
equipment and their parameters are listed in the Table 2.  
        In our experiment, we employ two LiDAR sensors: the 
Ouster1 128 LiDAR, which is a 128-channel spinning LiDAR 
with a vertical FoV of 45°(± 22.5°), and the Livox mid-360 
LiDAR, which is a solid-state LiDAR with a wide horizontal FoV 
of 360°. Figure 1 shows the positions where the LiDARs are 
mounted, with both oriented towards the front. Due to the Livox 
mid-360 LiDAR's larger vertical FOV and solid-state non-
repetitive scanning capability, we mount it above the Ouster1 
LiDAR. Compared to traditional single LiDAR system, our 
approach integrates the characteristics of multimodal LiDAR to 
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achieve a complementary viewpoint and more uniform scanning 
coverage of the environment. Additionally, both the Ouster1 and 
Livox mid-360 LiDARs are equipped with a 6-axis IMU. When 
implementing our proposed algorithm, we use the IMU built into 
the Ouster LiDAR. The relative external parameters between the 
IMUs and LiDARs can be obtained through factory settings. The 
external parameter calibration method between the LiDARs is 
described in Section 2.2. 

        To facilitate real-time storage and processing of all data, a 
portable computer (Intel NUC) is installed on the UGV. 
Additionally, to assess the accuracy of our algorithm, we equip 
the UGV with a high-precision GNSS UB482 board and an 
HG4930 MEMS inertial navigation system. Ground truth is 
obtained through post-processing using a GNSS/INS fusion 
method. Moreover, we ensure the reliability of the experimental 
data by synchronizing all hardware time at the hardware level. 

 
Hardware Parameters 

 FOV Points Frequency Range Built-in IMU 

Ouster1 128 Vertical:45° 
Horizontal: 360° 5,242,880/s (128 channel) 10 Hz 0.5m-90m@10% 100Hz,6axis 

Mid360 Vertical:59° 
Horizontal: 360° 200,000/s 10 Hz 0.1m-40m@10% 200Hz, 6axis 

HG4930 MEMS Frequency：600 Hz 
UB482 RTK(RMS):horizontal:1cm+1ppm vertical:1.5cm+1ppm 

Table 2.  Sensor Configurations Of DCSI-LuoJia Explorer system 
 
3.1.2 Data Acquisition 
        We have collected data from two scenarios in the campus to 
verify our algorithm, and the trajectories are shown in Figure 4. 
The specific parameters of each scenario are listed in Table 3. 
Due to obstructions such as buildings and trees during data 
collection, we only obtain ground truth for Campus1. Therefore, 
in the experiment, we use Campus1 to evaluate the accuracy of 
the trajectories, while using data from all scenarios to 
qualitatively evaluate the mapping results. 
        We implement the proposed method in C++ with the robot 
operating system (ROS) on Ubuntu 18.04. In experiment, we 
don’t make use of the GPU hardware of the computer, which is 
equipped with an Intel(R) i7-11800H @ 2.30GHz CPU and 
16GB of memory. We evaluate the accuracy of the experimental 
trajectory using the evo tool3. To assess the trajectory accuracy, 
we cite the absolute pose error (APE) as quantifiable metric. 

 
Data Duration Length GroundTrouth 
Campus1 836s 475.6m Y 
Campus2 793s 417.6m N 

Table 3. Dataset Details 
 
3.2 Evaluation Results 

        The purpose of this section is to compare the advantages of 
our algorithm over traditional single LiDAR SLAM in terms of 
mapping and trajectory accuracy. We modify the state-of-the-art 
tightly coupled LiDAR inertial odometry algorithm, Fast-lio(Xu 
et al., 2022), as the single LiDAR SLAM algorithm, which is 
highly compatible and can be applied to both types of LiDAR. 
We utilize the IMU built into the LiDARs. In the following 
analysis, we refer to the use of Fast-lio for mapping with Ouster 
LiDAR and Mid360 LiDAR as Fast-lio-OS and Fast-lio-Mid, 
respectively. 
 
3.2.1 Mapping Quality Comparison 
        The superiority of our method is substantiated by 
conducting experiments in diverse scenarios, wherein all frames 
have been meticulously saved without employing any map 

                                                             
3 https://github.com/MichaelGrupp/evo 

sampling techniques to ensure the utmost fairness of the 
experiments. Figure 5 presents the map results, highlighting the 
differences between each method in detail for each scenario. 
        In Campus 1, the limited field-of-view of the Ouster LiDAR 
results in one side of the building facade being unobserved. The 
map generated by Fast-lio-Mid displays sparse building facades 
and ground points, with unremarkable step lines. Our proposed 
method addresses the missing building facade in Fast-lio-OS and 
adds significant ground details to the map. In Campus 2, Fast-lio-
OS exhibits incomplete reconstruction of the building façade. 
Fast-lio-Mid presents fewer details of the building facade in its 
map. In contrast, our method significantly enhances the 
reconstruction of the building facade information. 
        Through the comparison of map results, it is evident in 
practical scenarios that the Ouster LiDAR often misses or cannot 
observe complete building facade information due to its small 
vertical FOV. Meanwhile, although the Mid360 LiDAR obtains 
more facade information, its ground points are sparse and cannot 
represent details near the ground effectively. Our method 
successfully combines the characteristics of solid-state LiDAR 
and spinning LiDAR to address the limitations caused by single 
perspective. 
 

 
Figure 4.  Experiment sites shown in Google Image 
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Figure 5.  The comparison of maps generated by different methods in different scenarios 

 
3.2.2  Quantitative  Experiment   
        In this section, we conduct a quantitative assessment to 
compare the performance of our method with single LiDAR-
Inertial SLAM. We have selected Campus 1 to evaluate the 
trajectory accuracy and use APE as the evaluation metric. 
        Table 4 presents the root mean square error (RMSE), 
max ,median, and mean of APE for the three methods. Figure 6 
illustrates the comparison between estimated trajectories and 
ground truth in terms of XYZ coordinates , as well as APE. 
        Our method improves the max and median value of APE by 
27.1% and 12.9% respectively, compared to the Fast-LIO-Mid.  
 

Dataset Campus 1 
 RMSE Max Median Mean 
Fast-LIO-Mid 0.743 1.837 0.595 0.662 
Fast-LIO-OS 0.742 1.416 0.511 0.696 
Ours 0.737 1.339 0.518 0.688 

Table 4. The results of APE  (RMSE/Max/Median/Mean, 
Meters) 

        Based on the trajectory accuracy, we conclude that our 
method offers improvements over the single LiDAR approach. 
Furthermore, map comparisons confirm that our method not only 
effectively integrates information from multiple LiDARs but also 
ensures trajectory accuracy.

 

  
Figure 6.  The comparison of the XYZ and APE  in campus1 .
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4. CONCLUSION 

        In this paper, we propose a novel tightly-coupled panoramic 
multi-LiDAR-inertial odometry and mapping framework, which 
is the framework that combines the Livox mid-360 LiDAR and 
spinning LiDAR. Our approach effectively utilizes the 
characteristics of multi-modal LiDARs, significantly expanding 
the robot's perception FoV. Through a diverse range of 
experiments, we have demonstrated that our method is capable of 
generating more comprehensive and densely populated maps 
with a wider FoV when compared to the single LiDAR approach. 
In the future, we will focus on feature extraction from multi-
LiDAR data to reduce data redundancy and online calibration to 
ensure precise alignment among multiple sensors. 
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