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ABSTRACT:

The Suez Canal, strategically located as the shortest international sea route, plays a crucial role in facilitating the transportation of
goods between Asia and Europe. However, the occurrence of traffic disruptions within the Canal poses a serious threat to global
trade, as evidenced by the recent incident of the container ship Ever Given, which ran aground in the Suez Canal on March 23,
2021. This event led to a complete blockade of the Canal that lasted for six days, resulting in a fleet of ships waiting to pass through
the Canal. This highlights the need to monitor the Canal to prevent similar disturbances in the future. In this paper, we propose a
CNN-based attention-guided self-learning framework for ship detection from 3m high-resolution COSMO-SkyMed SAR imagery
acquired in April 2021 via the Egyptian Suez Canal. We introduce a self-learning augmented segmentation (SLAS) technique
to augment the dataset with new ship samples by pseudo-labeling an unlabeled dataset. We also present the Attention-guided
Feature Refinement (AFR) module to extract more significant semantic features and contextual information, especially for ships of
varying sizes in SAR images. Finally, the AFR module is fed into a Region Proposal Network (RPN) to generate a set of proposal
anchors, which are later used in a Deep Detection Network (DDN) for ship classification and localization. Our experimental
results demonstrate that the proposed method outperforms current state-of-the-art detection models in terms of detection accuracy,
particularly in complex coastal scenes, with an overall accuracy of up to 87% mean average precision (mAP).

1. INTRODUCTION

The Suez Canal is a vital international sea route that has linked
the Mediterranean and the Red Sea since 1869. Annually,
nearly 20,000 vessels, including 2,500 tankers, cross the canal,
representing 15% of the world’s maritime freight traffic. How-
ever, this high volume of traffic also poses a risk of disrupting
global trade in the marine environment (Lee and Wong, 2021).
The recent grounding of the Ever Given, a large container ship
passing through the southern part of the canal on its way to Rot-
terdam on March 23, 2021, exemplified this risk (Forti et al.,
2021), as shown in Figure 1. As one of the busiest trade routes
globally, this blockage had a considerable negative impact on
global trade, highlighting the need for effective monitoring and
management of the channel to prevent similar disturbances in
the future or, at least, reduce marine anomalies. Therefore, it is
crucial to spot ships in the channel to ensure the safe and smooth
operation of the waterway and manage fisheries, wrecks, and
other potential risks. In recent years, synthetic aperture radar
(SAR) images have become a popular tool for ship detection, as
they offer imaging capabilities that are available 24/7, regard-
less of weather or lighting conditions (Maı̂tre, 2013); (Yoshida
et al., 2021). The SAR beam interacts with the physical sur-
face of the water, allowing it to detect physical objects such as
waves and ships that differ from the surface of the water. Of
the various search and rescue systems available, the Cosmo-
SkyMed SAR (CSK-SAR) constellation stands out because of
its high resolution and high repetition time (few hours). This
∗ Corresponding author

makes it particularly suitable for monitoring high traffic areas
and detecting ships within channels. However, identifying ves-
sels in SAR images is a challenging task due to the complex
marine background. Figure 2 clearly illustrates typical chal-
lenges in detecting ships using high-resolution SAR images, in-
cluding lighthouses (A), buildings (B), gantry cranes (C), side
lobes (D), ghosts caused by azimuth ambiguity (E), sea clutter
(F), and beach clutter (G). These appearances can be so similar
to that of the vessel in Figure 2(h) that distinguishing them can
be a counter intuitive challenge even for experts. Thus, they
have to be mitigated before the data can be applied to machine
learning algorithms so as not to lead to false alarms.

Recently, researchers have increasingly employed machine
learning techniques to develop methods for detecting ships in
SAR images. (Wu et al., 2011) presented a multi-scale pro-
cessing algorithm that optimizes target pixels and suppresses
speckle and background clutter. The algorithm’s efficacy was
tested on a Cosmo-Skymed image with a 3-meter pixel spa-
cing, demonstrating its ability to detect ships effectively. (Liu
et al., 2017) introduced a Sea-Land Segmentation based CNN
(SLC-CNN) that combines corner features and saliency. The
model underwent testing on high-resolution images from the
TerraSar-X and ALOS PALSAR datasets. (Huang et al., 2022)
introduced WA-CNN, a novel CNN-based method for ship de-
tection in SAR images, which employs wavelets and an atten-
tion mechanism. The U-Net architecture was utilized to develop
the network, reducing depth and enhancing complexity. The
approach was evaluated on two public SAR image datasets and
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Figure 1. A striking view captured from a Sentinel-1 satellite on
March 25, 2021, displays a fleet of ships at a standstill, patiently
waiting to pass through the southern entrance of the Suez Canal.
Upon magnifying the image, both COSMO-SkyMed SAR and

optical high-resolution imageries reveal the colossal Ever Given
container ship, still stranded in the canal’s narrow passage. The

credits for this awe-inspiring composition go to Copernicus
Sentinel 1 data©ESA, CC BY-SA 3.0 IGO; COSMO-SkyMed

image©ASI, processed and distributed by e-GEOS; and Satellite
image©2021 Maxar Technologies.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2. Samples typical challenges in ship detection from
high-resolution COSMO-SkyMed SAR (CSK-SAR) images

containing land, ships, and marine clutter.
COSMO-SkyMed®Products©ASI-Italian Space Agency-2021.

All rights reserved.

yielded promising results. Despite these promising outcomes,
detecting ships in SAR images remains a challenging task, par-
ticularly in complex coastal scenes. These approaches also en-
counter other challenges, such as the need for large annotated
datasets and the selection of appropriate hyper-parameters. Re-
cent advancements in deep learning methods have significantly
improved ship detection in SAR images. (Wang et al., 2018)
introduced an enhanced Single-Shot Detector (SSD) model that
can simultaneously detect ships and estimate their orientation
angles. Attentional modules were incorporated to enhance the
model’s performance. Similarly, (Miao et al., 2022) enhanced

the RetinaNet model for vessel detection by introducing at-
tention modules and adjusting aspect ratios using the k-means
clustering algorithm. These modifications improved the accur-
acy and effectiveness of the model. (Li et al., 2017) proposed
an improved Faster R-CNN-based technique for ship detection,
utilizing transfer learning and feature fusion. Their approach
demonstrated robustness and effectiveness when evaluated on
high-resolution images from various datasets. (Li et al., 2022)
further improved the Cascade-R-CNN method by incorporat-
ing the Swin transformer, leading to enhanced performance and
accuracy. Despite these advancements, challenges persist in de-
tecting ships in complex coastal scenes, and a significant resol-
ution gap between beach and marine scenes presents an addi-
tional obstacle in ship detection.

This paper proposes a novel framework for ship detection from
high-resolution COSMO-Skymed SAR (CSK-SAR) datasets
acquired in April 2021 via the Egyptian Suez Canal. Our ap-
proach employs the open-source Faster R-CNN model as the
primary attention-guided self-learning design framework. Spe-
cifically, we propose a Self-Learning Augmented Segmenta-
tion (SLAS) technique to augment the dataset with new ship
samples by pseudo-labeling an unlabeled dataset. Furthermore,
we propose an Attention-guided Feature Refinement (AFR)
module to enable the convolutional layers to extract more mean-
ingful semantic features, especially about coastal ships of dif-
ferent sizes in SAR images, by leveraging global contextual in-
formation. The output of the AFR module is then fed into a
Region Proposal Network (RPN) to generate a set of proposal
anchors that are later utilized in a Deeply Detection Network
(DDN) for classification and localization. Our experimental
results demonstrate that the proposed method outperforms the
latest ship detection models in terms of detection accuracy and
efficiency, particularly in complex coastal scenes. This indic-
ates the potential of our approach for real-world applications.
The remaining parts of this paper are organized as follows. In
Section 2, the proposed method is listed. The CSK-SAR data-
set, training details, evaluation criteria, and results obtained are
described in Section 3. Finally, some conclusions are drawn in
Section 4.

2. PROPOSED METHODOLOGY

2.1 Overall Scheme of Network Structure

The current state-of-the-art object detection models can be clas-
sified into two categories: single-stage models and two-stage
models. Single-stage detectors are known for their fast infer-
ence speeds, which are particularly important in applications
that require low latency, such as video detection. On the other
hand, two-stage detectors are characterized by their high ac-
curacy in locating and recognizing objects within an image.
Considering the challenges involved in detecting ships in SAR
images and the significant number of false alarms generated,
we opted for the Faster R-CNN two-stage model as the basic
design framework for accurate in-image ship recognition (Ren
et al., 2015). The Faster R-CNN model’s ability to learn fea-
tures at different scales is particularly important in detecting
ships of varying sizes and orientations. For comparison pur-
poses, we chose three other representative methods - Cascade
R-CNN (Cai and Vasconcelos, 2018), RetinaNet (Lin et al.,
2017b), and SSD (Liu et al., 2016) in our work. The proposed
method’s network structure is detailed in Figure 3 and can be
divided into five parts: the self-learning augmentation segment-
ation (SLAS) part, the feature extraction network (FEN) part,
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Figure 3. Overview of our proposed network for ship detection from SAR images.

the attention-guided feature refinement (AFR) part, the region
proposal network (RPN) part, and the deeply detection network
(DDN) part. We present a detailed explanation of each of these
five parts in the following sections.

2.2 Self-Learning Augmentation Segmentation

In this section, we present self-learning augmentation segment-
ation (SLAS), which is inspired by (Ghiasi et al., 2021) and
involves augmenting the dataset with new ship samples through
self-learning and iterative pseudo-segmentation. We generated
masks for each ship in the image using the Otsu method (Yu
et al., 2010) on the COSMO-SkyMed SAR (CSK-SAR) data-
set. This enabled us to identify all the pixels that belonged to
each ship in the image. From our dataset, we selected 1,512 an-
notated images, some of which contained only background and
others contained ships. We identified a total of 136 segmenta-
tion instances of ships in these images. To augment the data,
we applied random rotations, brightness adjustments, contrast
enhancements, lighting modifications, and saturation changes
to the 1,512 image dataset. Furthermore, the iterative pseudo-
segmentation process resulted in two or three additional cop-
ies of each ship instance segmentation. We added these addi-
tional copies to a new dataset containing labeled ships and not
only pure background. After this initial processing, we used the
new augmented dataset during iterative pseudo-segmentation to
train our proposed network.

2.3 Feature Extraction Network

During the feature extraction network (FEN) phase, we slice
the new augmented dataset into smaller patches of size 500 ×
500 pixels, filtering out patches that do not contain ships, ran-
domly splitting the remaining patches into training, validation,
and testing sets. These patches are then fed into a deep convolu-
tional neural network (CNN) to obtain feature maps at various

scales. To construct the FEN, we utilized the ResNet-50 (He
et al., 2016) architecture with Faster R-CNN as the backbone
network. This design plays a crucial role in reducing the size
of the network while increasing its depth. Instead of stacking
convolutional layers directly, ResNet-50 connects these layers
to fit the residual mapping. Specifically, the input SAR im-
age x is processed with two weight convolutional layers and an
activation function to yield F (x). This is then added to x to
obtain H(x), which is further processed to yield the final out-
put z, as depicted in Figure 4. As shown in Figure 3(b), the
FEN consists of five hierarchical convolutional layersC1−C5,
which generate deep feature maps from the input SAR images.
The lower layers (C1 and C2) have higher spatial resolution but
contain less semantic information, while higher layers (C4 and
C5) have more abstract, semantic information but lower spatial
resolution. As a result, the location of the ships in the upper lay-
ers is coarser. To address this, we adopt the idea of fine-tuning
attention-guided feature refinement (AFR), which integrates the
feature information of all convolutional layers to make full use
of semantic and spatial information.

Figure 4. The shortcut connection of ResNet.

2.4 Attention-guided Feature Refinement

In our proposed attention-guided feature refinement (AFR) fu-
sion network, we first adopt a feature pyramid network (FPN)
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(Lin et al., 2017a) to generate multi-scale feature maps that cap-
ture rich semantic information at different levels. The FPN ar-
chitecture involves both bottom-up and top-down processes, as
depicted in Figure 3(b-c). The resulting feature maps are then
used by both ResNet-50 and FPN to make detectors suitable for
detecting shore ships of different sizes in SAR images. Next,
we introduce the AFR module, which consists of four feature
fusions (F4, F3, F2, and F1), as shown in Figure 3(d). First,
we down-sample the last convolutional layer C5 and combine it
with the C4 layer using an element-wise sum operation, to ob-
tain the feature map L4. This process is repeated until we obtain
the most accurate feature map. However, since SAR images of-
ten contain complex background environment information, it is
essential to direct the network’s attention to the features that
are most distinguishable for the current detection task, namely
ships. To this end, we propose to use the Squeeze-Excitation
module (SEM) (Hu et al., 2018) to encode the feature maps and
provide a weight for each channel of the feature maps.

2.5 Region Proposal Network

In this section, we present the use of a Region Proposal Net-
work (RPN) in combination with each feature map fusion Fi
to achieve high performance in the detection of ships in SAR
images, as depicted in Figure 3(e). The RPN generates a set of
reference boxes, or anchors, called region proposals. To cover
ship targets with different sizes for each Fi layer, we used four
different scales of anchors, denoted as Scalei = {64×64, 128×
128, 256× 256, 512× 512} where i ∈ {1, 2, 3, 4}. In addition,
we used an aspect ratio of {1 : 1, 1 : 2, 2 : 1}, resulting in
a total of 12 (4 scales in 3 aspect ratios) anchors for each i an-
chor. To generate fixed-dimension 7×7 Region of Interest (RoI)
features from the anchor proposals, we adopted a RoI pooling
layer. Subsequently, the anchors were sent to both the ship clas-
sification layer (CL) and the box regression layer (BL) through
two convolutional layers. The CL has a 2K output of the object
probability estimation for each proposal, while the BL has a 4K
output of the bin coding coordinates (where K = 12).

2.6 Deeply Detection Network

In Figure 3(f), the deeply detection network (DDN) represents
the final stage of our proposed framework. This stage leverages
the fusion of enhanced features extracted from the AFR and
proposal anchors generated by RPN as inputs. To enhance the
semantic information pertaining to small-sized ships, we com-
bine the features generated by the RoI pooling layer with the
AFR-enhanced features. The output is then fed back to the fully
connected layers with the sigmoidal activation function to ob-
tain the final detection result. From the fully connected layers,
the detection result branches into two simultaneous branches:
the classification layer (CL) branch and the bounding box re-
gression branch (BL). The CL confidently predicts the corres-
ponding prior anchors for each pixel on feature maps at differ-
ent scales. This confidence determines the probability that the
anchor belongs to the class of ships. Meanwhile, the BL outputs
the offsets of the coordinates between the anchor belonging to
a ship and the ground-truth bounding box of that ship. In our
work, we adopt a double loss approach from CL and BL to de-
tect each layer, as described in Equation 1. Specifically, the
CL introduces the sigmoid activation function to obtain the de-
tected probability P and ground truth Y. We then calculate the
classification loss indicated by LCls. We use λ as the balan-
cing parameter, where Y ≥ 1 indicates that the background is
meaningless for training the BL, and LBbr indicates the loss of

the bounding box regression. In LBbr, we predict four offsets
for anchor box i, which are Ai = (ax

i , a
y
i , a

w
i , a

h
i ), where ax

i

and ay
i are the top-left coordinates of the predicted area, and

aw
i and ah

i refer to the width and height of the projected area.
If the predicted area of anchor box Â has the highest IoU with
the ground truth box A∗, we assign it a positive sign Yi ≥ 1.
Conversely, if the IoU ratio of the predicted area’s box is less
than 0.3 for all ground truth boxes, we assign a negative label
Yi = 0 to it, and then ignore the remaining regions. The IoU
ratio is defined as in Equation 2.

Ltotal = LCls(P,Y) + λ[Y ≥ 1]LBbr

(
A∗, Â

)
LCls(P,Y) = − log (PY)

LBbr

(
A∗, Â

)
= SmoothL1

(
A∗ − Â

)
SmoothL1(z) =

{
0.5

(
z2
)
, if |z| < 1

|z| − 0.5, Otherwise

(1)

IoUbbox =
area

(
Â ∩A∗

)
area

(
Â ∪A∗

) (2)

Where area
(
Â ∪A∗

)
is the union of the predicted area’s

box and the ground truth’s box, and area
(
Â ∩A∗

)
is their in-

tersection.

3. EXPERIMENTAL RESULTS

3.1 Datasets

In this study, X-band SAR images from the COSMO-SkyMed
system were utilized. COSMO-SkyMed is a constellation of
four SAR satellites developed by Agenzia Spaziale Italiana
(ASI), which enables targeting of the same location on Earth
within a single day. Two scenes of COSMO-SkyMed StripMap
SAR (CSK-SAR) data with horizontal-horizontal (HH) and
vertical-vertical (VV) polarizations were used in this research.
The datasets used were level 1A (L1A) HIMAGE Single-look
Complex Slant (SCS) products, provided by ASI as part of the
COSMO-SkyMed project (Open Call Id 797). Table 1 presents
detailed parameters of the test image datasets, while Figure
5(e) shows the test images acquired from the COSMO-SkyMed
satellite. The original CSK-SAR datasets were calibrated, con-
verted to floating-point numbers in dB, and exported in a tagged
image file format TIFF, with each image containing 18000 ×
15000 pixels. The entire image was divided into 2160 sub-
images of size 500 × 500 pixels. Of these sub-images, 1512
were used as the training set, and 648 were used as the test-
ing set. The test images were further divided into 486 offshore
sub-images (test offshore) and 162 inshore sub-images (test in-
shore). The annotated dataset was created through a manual
annotation process using the LabelMe Toolbox.

3.2 Training Details

To implement our proposed method, we utilized Detectron2, a
flexible and powerful toolkit for re-implementing existing ob-
ject detection models (Wu et al., 2019). We used four open-
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Type SCS−B(L1A) SCS−B(L1A)
Satellite Mission CSKS2 CSKS4
Acquisition Mode StripMap StripMap

Polarization VV HH
Resolution 3m 3m

Product Format HDF5 HDF5
Acquisition Date 09 April, 2021 08 April, 2021

Time 15:22:59.71 15:23:05.27
Look Side Right Right

# pixels in X 15568 15568
# pixels in Y 17893 17893

Orbit 72145 56381
Swath Extent 50 x 40 km 50 x 40 km

Table 1. Detailed image parameters of the X-band SAR images
from COSMO-SkyMed SAR Datasets.

(a)

(b) (c) (d) (e)

Figure 5. An example of large-scale image and sub-images from
COSMO-SkyMed SAR imagery with 3000 × 3000 pixels,

sub-figure (a) shows the SAR imagery acquisition area of our
dataset and distributed ships in the Suez Canal. The sub-figures
(b) and (c) represents the inshore scenes. Offshore scenes with

multiple ships, as displayed in (d) and (e).
COSMO-SkyMed®Products©ASI-Italian Space Agency-2021.

All rights reserved.

source deep learning detectors, including Faster R-CNN, Cas-
cade R-CNN, SSD, and RetinaNet, and employed ResNet-
50+FPN pre-trained on the COCO dataset as the backbone for
these models. To improve the accuracy of location and seg-
mentation, we resized all samples of CSK-SAR imagery to
512 × 512 pixels for both network training and testing. We
trained all detectors using GPUs and completed the training in
52 epochs via stochastic gradient descent (SGD) as the optim-
izer. The momentum, weight decay, learning rate, and batch
size were set to 0.9, 0.0001, 0.02, and 4, respectively.We per-
formed all experiments on our dataset using a virtual machine
desktop with a 64-bit Windows 10 Pro operating system. The
software configuration included the Python programming lan-
guage, PyTorch 1.6.0, CUDA 10.1, and cuDNN 7.6.1. Addi-

tionally, the hardware capabilities comprised an NVIDIA GRID
RTX8000-8Q with 8GB memory, an Intel(R) Xeon(R) CPU E5-
2687W v4 @ 3.00GHz, and 32.0 GB RAM.

3.3 Evaluation Indices

To evaluate the performance of the proposed model against
the state-of-the-art models, the following evaluation metrics
were considered for the testing set: Detection Probability (Pd),
False Alarm (Pf), Missed Detection (Pm), Recall, Precision,
Mean Average Precision (mAP), F1-score, True Positive (TP),
Ground Truth (GT), False Positive (FP), and False Negative
(FN).

Pd =
TP

GT
;Pf =

FP

TP + FP
;Pm =

FN

GT

R =
TP

TP + FN

P =

∫ 1

0

P (R) dR

F1 = 2
P ∗R
P +R

(3)

where P = precision
R = recall
P (R) = precision-recall curve

3.4 Results and Analysis

In Table 2, we have shown the ship detection statistics in in-
shore and offshore scenes resulting from the bounding box AP
on the testing set of CSK-SAR datasets. One can observe that
AP50 of state-of-the-art detectors was above 82% for detect-
ing the offshore scenes. While detecting the inshore scenes,
AP50 of state-of-the-art detectors was above 75%. Hence, the
detection accuracy has dropped significantly for inshore scenes
by 7%. Moreover, Faster R-CNN with SLAS adoption leads
better in bounding box AP than the state-of-the-art detectors.
From Table 3, one can observe that on the offshore+inshore
scenes, SLAS enhanced SSD, RetinaNet, Cascade R-CNN, and
Faster R-CNN by 5%, 3%, 4%, and 3% mAP, respectively. As
for validation and testing inference, the precision-recall curve
(PR curve) and IoU between predictions and ground truth ob-
tained from inference on inshore and offshore scenes using
Faster-RCNN algorithm with SLAS adoption are showing in
Figure 7(a-b). Learning curves for training, validation loss, and
validation mAP appears in Figure 7(c-d). Figure 8 displays the
outcomes of a small subset of the CSK-SAR dataset utilized to
evaluate the detection capability of our model. Incorporating
the proposed SLAS with ResNet50+FPN and Faster R-CNN,
we observe that the detection results exhibit commendable ship
detection performance. To study the ship detection ability of
detectors to complex CSK-SAR scenes intuitively, we have se-
lected 4 representative scenes as an example in the test set and
use the Faster-RCNN algorithm with SLAS adoption to detect
ships. At the same time, we took some auxiliary means such
as optical remote sensing images that have the same imaging
date for CSK-SAR images from Google Earth to determine the
potential interference between similar features of targets in the
Canal. The visual results between predictions and ground truth
on test set without/with the back-scattering appears in Figure 6.
The number in the predicted bounding box represents the con-
fidence of the detection box and was filtered under the 0.7 con-
fidence coefficient. As a result, most of small and large ships
were detected with correct rectangles on the offshore scenes.
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Detector’s type Method Backbone Scenes AP AP50 AP75 APS APM APL

One-stage

SSD

ResNet-50+FPN
Inshore 0.53 0.78 0.66 0 0.61 0.47

Offshore 0.54 0.79 0.59 0.17 0.60 0.49

ResNet-50+FPN+SLAS
Inshore 0.53 0.79 0.65 0 0.60 0.45

Offshore 0.55 0.81 0.59 0.22 0.61 0.51

RetinaNet

ResNet-50+FPN
Inshore 0.54 0.80 0.68 0 0.66 0.50

Offshore 0.53 0.87 0.60 0.19 0.62 0.56

ResNet-50+FPN+SLAS
Inshore 0.54 0.82 0.56 0 0.63 0.40

Offshore 0.54 0.88 0.60 0.23 0.60 0.58

Two-stage

Cascade R-CNN

ResNet-50+FPN
Inshore 0.54 0.75 0.75 0 0.62 0.45

Offshore 0.56 0.82 0.64 0.18 0.62 0.54

ResNet-50+FPN+SLAS
Inshore 0.53 0.77 0.77 0 0.61 0.45

Offshore 0.56 0.85 0.68 0.24 0.62 0.54

Faster R-CNN

ResNet-50+FPN
Inshore 0.57 0.76 0.67 0 0.67 0.40

Offshore 0.54 0.88 0.64 0.15 0.62 0.56

ResNet-50+FPN+SLAS
Inshore 0.58 0.83 0.70 0 0.69 0.45

Offshore 0.58 0.90 0.63 0.26 0.63 0.64

Table 2. Ship detection statistics generated by bounding box AP on test set of CSK-SAR dataset.

Inshore + Offshore

Model SLAS Pf Pm Recall Precision mAP F1-score

SSD
No 0.49 0.09 0.90 0.51 0.82 0.64
Yes 0.46 0.07 0.94 0.57 0.87 0.71

RetinaNet
No 0.47 0.05 0.94 0.52 0.85 0.67
Yes 0.45 0.05 0.95 0.54 0.88 0.69

Cascade R-CNN
No 0.15 0.17 0.82 0.84 0.79 0.83
Yes 0.21 0.13 0.87 0.78 0.83 0.82

Faster R-CNN
No 0.23 0.09 0.90 0.76 0.84 0.82
Yes 0.22 0.08 0.92 0.77 0.87 0.84

Inshore

SSD
No 0.60 0.20 0.88 0.46 0.71 0.55
Yes 0.52 0.22 0.89 0.54 0.79 0.68

RetinaNet
No 0.55 0.14 0.85 0.44 0.74 0.58
Yes 0.48 0.14 0.86 0.52 0.77 0.65

Cascade R-CNN
No 0.21 0.21 0.78 0.78 0.69 0.78
Yes 0.31 0.21 0.79 0.69 0.70 0.73

Faster R-CNN
No 0.26 0.21 0.78 0.73 0.69 0.75
Yes 0.25 0.14 0.86 0.75 0.76 0.80

Offshore

SSD
No 0.47 0.07 0.94 0.52 0.84 0.70
Yes 0.48 0.08 0.96 0.56 0.87 0.73

RetinaNet
No 0.45 0.03 0.97 0.54 0.86 0.69
Yes 0.45 0.03 0.97 0.55 0.89 0.70

Cascade R-CNN
No 0.13 0.16 0.83 0.86 0.80 0.85
Yes 0.19 0.11 0.89 0.80 0.84 0.84

Faster R-CNN
No 0.23 0.07 0.93 0.77 0.86 0.84
Yes 0.21 0.06 0.93 0.78 0.87 0.85

Table 3. Comparison between different baselines with or/without SLAS results on test inference.
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Figure 6. Comparison between predictions and ground truth on test set without/with back-scattering.

(a) (b)

(c) (d)

Figure 7. Learning curves for training and inference for testing,
the detection PR curve displayed in sub-figure (a). The IOU
between predictions and ground truth, as showed in (b). The

Validation loss curve, as displayed in (c). The Validation mAP,
as showed in (d).

(a) (b)

Figure 8. The outcomes of a small subset of the CSK-SAR
dataset by Faster R-CNN+ResNet50+FPN+SLAS.

4. CONCLUSIONS

In this paper, we propose an improved attention-guided self-
learning Faster R-CNN-based framework for detecting ships in-
shore and offshore from COSMO-SkyMed SAR datasets across
the Egyptian Suez Canal. Our experiments demonstrate that
the proposed Self-Learning Augmented Segmentation (SLAS)
technique effectively augments data by placing pseudo-labeled
ships on an unlabeled dataset, thereby significantly improv-
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ing model performance. Additionally, the proposed Attention-
guided Feature Refinement (AFR) module enables convolu-
tional layers to extract more meaningful semantic features, par-
ticularly around coastal ships of varying sizes in SAR images,
by leveraging global contextual information. This feature re-
finement enhances the model’s detection ability. Our model
outperforms other competing detectors in AP bounding box and
demonstrates superior ship detection ability from SAR images,
as evidenced by our experiments. However, the current model
has limitations in mistakenly identifying non-ship targets at sea
and using a horizontal rectangular bounding box to mark ship
targets, resulting in poor performance when ship targets are in
close proximity inshore. To improve the accuracy of ship de-
tection and reduce the performance gap between inland and off-
shore scenes, future research should consider land and sea seg-
mentation before detection, along with the use of more diverse
SAR datasets.
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