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ABSTRACT: 
 
With the expansion of optical and SAR image fusion application scenarios, it is necessary to integrate their information in land 
classification, feature recognition, and target tracking. Current methods focus excessively on integrating multimodal feature 
information to enhance the information richness of the fused images, while neglecting the highly corrupted visual perception of the 
fused results by modal differences and SAR speckle noise. To address this problem, in this paper we propose a novel optical and 
SAR image fusion framework named Visual Saliency Features Fusion (VSFF). We improved the decomposition algorithm of 
complementary feature to reduce most of the speckle noise in the initial features, and divide the image into main structure features 
and detail texture features. For the fusion of main structure features, we reconstruct a visual saliency features map that contains 
significant information from optical and SAR images, and input it together with the optical image into a total variation constraint 
model to compute the fusion result and achieve the optimal information transfer. Meanwhile, we construct a new feature descriptor 
based on Gabor wavelet, which separates meaningful detail texture features from residual noise and selectively preserves features 
that can improve the interpretability of fusion result. Further a fast IHS transform fusion is used to supplement the fused image with 
realistic color information. In a comparative analysis with five state-of-the-art fusion algorithms, VSFF achieved better results in 
qualitative and quantitative evaluations, and our fused images have a clear and appropriate visual perception. 
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1. INTRODUCTION 

With the remote sensing image application requirement 
increasing and a single image offering limited information, it is 
necessary to integrate multimodal image data into one image to 
form a more abundant and meaningful fused image. Due to the 
fact that the multimodal image data contains redundant 
information, we need to extract salient and complementary 
feature from pairs of images to enhance the interpretability of 
fusion result. Image features of different types are usually 
interlaced in the spatial domain, and a single fusion model can 
result in misrepresented information and confusing visual 
perception. The ideal fusion process is to separate 
complementary feature in different scale spaces, and then 
establish a corresponding fusion model based on the 
characteristics of the features. 
 
Recently, many researchers have focused on optical and 
Synthetic Aperture Radar (SAR) image fusion, which has 
already been used to offer distinctive information for all-
weather land classification, target recognition and object 
detection. Optical sensors passively receive information about 
the reflection of solar illumination from earth objects, so it can 
provide rich spectral information and sharp detailed features 
that are consistent with the observation of the human visual 
system, but can be easily influenced by adverse weather and 
poor illumination. In contrast, SAR is an active microwave 
sensor that receives backscattered energy and can acquire 
information under almost all weather and environmental 
conditions, which can capture prominent reflective targets and 
salient structure features (Moreira et al., 2013). However, the 
coherent imaging mechanism of the SAR sensor generates 
speckle noise that severely corrupts the image, thus all fusion 
algorithms should try to reduce the noise as much as possible. 
On the other hand, due to the imaging mode of the optical 

sensor, two different structural objects may appear identical 
spectral response information which cannot be effectively 
distinguished in optical imagery, but can be clearly 
differentiated in SAR imagery. The respective superior 
information of optical and SAR images can complement each 
other to generate rich structural and spectral information of a 
region (Kulkarni and Rege, 2020). Therefore, in most fusion 
application scenarios, the complementary information of optical 
and SAR images is combined to achieve high-quality image 
interpretability and simultaneously reduce useless information 
and speckle noise to make the fusion result suitable for human 
visual perception. 
 
Generally, although there is spatial interlacing of image features, 
the detail and texture information can be extracted in the small-
scale space while the main structure objects are distinguished in 
the large-scale space when the images are observed in different 
scale spaces. Thus, optical and SAR imagery can be 
decomposed into a set of complementary features such as main 
structure features (MSF) and detail texture features (DTF) by 
multi-scale filters. In last decades, much attention has been paid 
to the decomposition of structure and texture features of images. 
(Buades et al., 2010) proposed fast cartoon and texture image 
filtering algorithm that use nonlinear filter to achieve a 
simplified fast approximation of the total variation minimization 
problem. In particular, it uses only one parameter to achieve the 
control of the decomposition effect. However, when processing 
SAR images, it is difficult to separate a large amount of random 
speckle noise from other features, resulting in decomposed 
features that all contain noise information similar to their 
properties. The fusion results are highly corrupted by noise and 
suffer from spectral distortion and loss of local structure. In 
general algorithms, Gaussian filtering is used to implement 
multi-scale decomposition of images, which treats all pixel 
information of an image equally and cannot distinguish the 
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difference between features and noise. To separate the original 
features from the noise, the Wiener filtering is introduced into 
our feature decomposition process due to the adaptive ability to 
adjust the filter values.  
 
After obtaining the required complementary features, further 
constructing the corresponding fusion model is the key issue. In 
the past decades, many methods for optical and SAR image 
fusion have been proposed, which are divided into four main 
categories: component substitution methods, multiscale 
decomposition methods, hybrid methods and model-based 
methods (Kulkarni and Rege, 2020). Due to the better feature 
extraction and data representation capabilities of deep learning. 
(Kong et al., 2021) proposes a Dense-UGAN method to extract 
spectral and texture information from source images. (Zhang et 
al., 2020) proposes a generalized CNN-based fusion network to 
achieve multimodal image fusion of optical and infrared and 
medical images. Although these methods have established 
better fusion models, the modal differences between optical and 
SAR can still lead to extremely poor visual perception of the 
fusion results, and current deep learning methods lack research 
on this problem. As an example, a large area of land appears as 
bright areas with rich texture in the optical image and as flat and 
smooth dark areas (lacking the backscattered signal) in the SAR 
image. However, the conventional "averaging" fusion rule 
simply superimposes different feature information from the two 
images, and the fusion result appears as dark gray blurred areas 
with a loss of real spectral and structural information. To solve 
this problem, we propose a fusion model based on visual 
saliency features (VSF). VSF is a relatively prominent area of 
an image that attracts human visual attention in a bottom-up 
way (Toet, 2011). It reflects the human visual behavior when 
freely observing images, where the observer is first attracted to 
areas of rich color or prominent brightness, followed by the 
large contours and fine edge structures, and finally by the 
regularly arranged textural information. During the fusion 
process, the VSF of optical and SAR imagery must be preserved 
and integrated to eliminate non-significant information (e.g., 
noise and redundant information) and enhance the visual 
perception effect and information interpretation of fused images. 
 
In the fusion model of MSF, VSF are spectral information and 
fine edge structures from optical images and large contour 
structures and distinctive target regions from SAR images. 
Therefore, our requirements for the fusion results are to strike 
an appropriate balance in preserving the VSF from the optical 
and SAR images while having the similar pixel intensity 
distribution with the optical image, which keeps the best overall 
visual perception. The variational model can satisfy the above 
requirements. Among them, the gradient transfer fusion (GTF) 
(Ma et al., 2016) is a recent representative algorithm to 
formulate the constraint functions of pixel intensity distribution 
and pixel gradient variation, and then use total variational 
minimization to achieve information transfer fusion. However, 
the GTF algorithm assumes that the gradient variation 
information of the fusion result only come from a single image, 
which is inconsistent with the actual situation of optical and 
SAR fusion. Because the gradient variation information is an 
important representation of VSF, if the gradient variation 
constraint is considered only for SAR images, it will result in 
severe local structure loss and spectral distortion. To generate 
the required constrained images, we reconstructed a visual 
saliency feature map (VSFM) based on the priority of the 
contribution of the VSF of the optical and SAR images to the 
fusion results. For DTF fusion, VSF are meaningful fine targets 
and abundant texture information. However, a part of the 
speckle noise with high backscattered signal is easily retained in  

 
(a) Optical (b) SAR (c) LP 

 
(d) Hybrid-MSD (e) WLS (f) Our VSFF 

Figure 1. Our fusion method (VSFF) is compared with some 
other state-of-the-art fusion methods. 
 
DTF as texture information due to the relatively aggregated 
distribution. Therefore, the requirement of fusion processing is 
to separate the VSF from the noise-containing image and to 
obtain meaningful information in the DTF while eliminating the 
residual noise. On the one hand, it can be achieved by 
constructing a novel feature descriptor based on Gabor wavelet 
to further abstract the representation of the initial DTF. On the 
other hand, the VSF information from the two images is 
redundant and conflicting, and the VSF with more detail is 
selected to be preserved to the fusion result, thus bringing 
higher interpretability to the fused image. 
 
In this paper we propose a novel fusion framework for optical 
and SAR images, named visual saliency features fusion (VSFF). 
By integrating and emphasizing VSF in the image, it eliminates 
noise interference and enhances the visual perception quality of 
the fusion result. Figure 1 shows the fusion results obtained by 
our method and some other state-of-the-art fusion methods, 
including Laplacian pyramid (LP) (Burt and Adelson, 1987), 
hybrid multi-scale decomposition (Hybrid-MSD) (Zhou et al., 
2016) and weighted least square (WLS) (Ma et al., 2017). It can 
be seen that due to the modal differences between source optical 
and SAR images lead to severe spectral distortion in the 
classical multi-scale decomposition method LP. Even though 
the state-of-the-art method Hybrid-MSD overcomes the spectral 
distortion, it loses more detailed information. For the visual 
saliency map-based method WLS, it also suffers from the 
structural corruption of the image by SAR noise. In contrast, 
our method can obtain the best visual perception and clear detail 
presentation while reducing a large amount of speckle noise to 
make the fusion result look more refreshing. 
 
The main contributions of this paper are as follows: 
 
1. We propose a novel optical and SAR image fusion method 
that integrates information based on visual saliency features and 
eliminates the corruption of fusion results by SAR image 
speckle noise. 
 
2. A new VSFM to optimize the total variation model of the 
fused image, which enhances the visual perception effect of the 
fusion result and emphasizes the important structural feature 
information in the images. 
 
3.To construct a texture feature descriptor to further extract 
meaningful feature information and enhance the interpretability 
of the fusion results. 
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Figure 2. A fusion framework for optical and SAR images based on visual saliency features fusion. 
 

2. A FUSION FRAMEWORK BASED ON VISUAL 
SALIENCY FEATURES 

In this section, we describe the VSFF fusion framework in 
detail. Figure 2 shows the whole fusion framework in detail, 
which consists of four critical parts and contributions: 1) an 
improved complementary feature decomposition algorithm can 
effectively suppress speckle noise, 2) a total variation fusion 
algorithm that introduces visual saliency features can enhance 
the overall visual perception, 3) a novel texture feature 
descriptor can preserve richer detail information. 4) a fast IHS 
transform fusion can supplement the realistic color information. 
 
2.1 Image Complementary Feature Decomposition 

Any remote sensing image can be decomposed into a set of 
complementary features: MSF and DTF. The source image and 
the decomposed parts are defined as follows: 
 
 f u v   (1) 
 
where       f = optical or SAR remote sensing image 
 u = MSF 
 v = DTF 
 
In the first step, we need to build a local indicator to divide 
whether each pixel belongs to MSF or DTF. MSF is the part of 
the image that has relatively stable local variation at different 
scales, while DTF is the part that tends to have large local 
variation after filtering. The local total variation (LTV) of the 
image can effectively respond to the relative degree of variation 
under low-pass filtering to distinguish MSF from DTF, and we 
define the LTV of the image and its relative reduction rate as 
follows: 
 

( )( ) ( )LTV f x L f x         (2) 

( )( ) ( )( )
( )

( )( )

LTV f x LTV L f x
x

LTV f x
  



  
     (3) 

 
where      L  = nonlinear filter 

 λ = relative reduction rate 
f = gradient image 

x = pixel position 
 
As can be seen, LTV is obtained by low-pass filtering the image 
gradient map, and the relative reduction rate gives us the 
oscillatory behavior of the image in the local area. Further, it is 
necessary to consider that there are many fragmented feature 
edges and speckle noise in SAR images, which will show bright 
spots on the image and can be easily taken as MSF. To suppress 
speckle noise, the Wiener wavelet is selected for smoothing the 
image, and this filter can adaptively adjust the filter effect based 
on local gray information. 
 
In the second step, the decomposition of image complementary 
features is achieved by a set of fast low-pass and high-pass filter 
pairs, which are calculated by weighting the relative reduction 
rate of the LTV of the image over the original and filtered 
images. The specific calculations for this step of the operation 
are as follows: 
 
  ( ) ( ( )) (1 ( ( )))u x w x L f w x f                    (4) 

( ) ( ) ( )v x f x u x         (5) 

1

1 2 1 1 2

2

0

( ) ( ) / ( )

1

x a

w x x a a a a x a

x a


    
 

    (6) 

 
where      w = pixel weight 
 1a  = 0.25 

 2a  = 0.5 
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2.2 Fusion Strategy of MSF  

In the fusion of MSF, structural information is presented by a 
combination of pixel grayscale distribution and gradient 
variation. Among them, the pixel grayscale distribution is the 
essential information to distinguish the area and type of 
terrestrial scene, which directly determines the overall visual 
effect of the fusion result. We expect the grayscale distribution 
of the fusion result to be similar to the optical image in order to 
have a more natural visual perception. Meanwhile, gradient 
variation is an important feature information in the image that 
can easily attract human attention, and it is also the expression 
of VSF in the image. The VSF information from optical and 
SAR images should be integrated to offer more informative 
interpretability for the fusion results. Therefore, the fusion 
strategy follows the principles: the pixel grayscale distribution 
of the fused image is similar to that of the optical image, and the 
gradient variation information of the fused image is similar to 
that of the optical and SAR images. According to the above 
principles and conditions, the mathematical constraint model 
can be constructed as follows: 

 

1

1
( )

p

o p
E x x u

p
       (7) 

2

1
( )

q

os q
E x x u

q
        (8) 

 
where       x = fusion result of MSF 
 ou  = MSF of optical image 

 osu  = VSFM 

 p, q = norm 
 
Then, we introduce the visual saliency feature-based method to 
generate a new VSFM as the input information in the constraint 
Eq. (8). On the one hand, we compare the feature values of the 
equalized SAR image and the optical image, and treat the 
images with prominent features as significant VSF and retain 
them to the new VSGM. On the other hand, we perform gain 
processing on the VSF from SAR images to better present the 
contribution of large contour structure information to the fusion 
results. The osu  calculation process is as follows: 

 
 1 1 2 _( , ) (1 )os o s o s Equ T u u k u k k u        (9) 
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1 ( , ) ( , )
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u m n u m n
k

u m n u m n

  
                (11) 

 
Where      _s Equ  = equalized SAR image 

σ = variance 
 μ = mean 
 1k  = feature weight 

 2k  = feature gain 

m, n= pixel coordinates 
 
Next, the objective function of the fused image is generated by 
combining the above two constraint terms Eq. (7) (8). The   
are positive parameters that control the trade-off between the 
two terms. 
 

1 2

1 1
( ) ( ) ( )

p q

o osp q
E x E x E x x u x u

p q
             (12) 

 
where     λ = positive parameter 
 
Now we need to consider the specific p and q norm. In the 
constraint term (7), the best expected result is 0, so p=1. As the 
gradient of the image is sparsely distributed, an approximate 
solution to handle the problem that q=0 is NP-hard is to replace 

0l  norm by 1l  norm. Thus, the gradient difference 
minimization problem is converted to a total variational 

problem. Let osy x u  , the optimization problem (12) can be 

rewritten as: 
 

 *

1

arg min ( ) ( )
mn

i oi osi
y

i

y y u u J y


 
    

 
   (13) 

 2 2

1 1

( ) ( ) ( )
mn mn

h v
i i i

i i

J y y y y
 

         (14) 

 
where     argmin = minimization solution 

J = first derivative of the image 
 
The Eq. (13) is a standard 1l  total variation minimization 
problem. (Rodr´ıguez and Wohlberg, 2008) offer an algorithm 
for solving generalized total variation minimization models 
using the iterative weighted norm (IRN) algorithm. The 
algorithm can efficiently compute y  and then generate the final 
MSF fused image. 
 
2.3 Fusion Strategy of DTF  

Generally, the DTF of optical images contain rich and fine edge 
information, while the DTF of SAR images contain some 
valuable information of tiny terrain radiation. In addition, it is 
inevitable that a part of SAR image noise is blended into the 
DTF components in the complementary feature decomposition, 
which needs to be separated out before fusion. Therefore, the 
main purpose of DTF fusion is to selectively retain richer and 
more meaningful features information and further remove 
interference noise information. For the specific fusion strategy, 
it is necessary to first describe the input DTF more effectively, 
then select the feature information with high interpretability, 
and finally preserve the more informative features through 
feature similarity measure processing. 
 
DTF are locally oscillating distribution in the image with strong 
repetition and orientation. Even though DTF may vary at 
different scales, the highly interpretable texture features in them 
always have a stable information representation. For that reason, 
a new feature descriptor is designed that can capture multi-
directional and multi-scale texture information within a local 
region of the image. It is known that Gabor wavelet is a kernel 
function similar to the response to simple stimuli in the human 
visual system. Meanwhile, Gabor wavelet is also sensitive to the 
image edge information, which is an excellent texture feature 
filter. The following is the mathematical form of Gabor wavelet 
filter: 
 

 

2 22

22
, , , , ( , ) cos(2 )

( cos sin )

( cos sin )

x y
x

g x y e

x x y

y x y



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

 
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  (15) 
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where       = wavelength parameter of the cosine function 
   = strip direction 
   = phase parameter of the cosine function 
   = standard deviation of the Gaussian 
   = spatial aspect ratio 
 x, y = coordinates inside the filter 
 
After obtaining new DTF at different scales and orientations 
using the Gabor wavelet function, Gaussian filtering is used to 
obtain the most stable DTF representation of the main scale and 
orientation. Subsequently, the noise that has not been eliminated 
needs to continue to be processed. Due to the fact that speckle 
noise appears as cluttered bright spots in the DTF, a direct 
feature selection operation would result in retaining a large 
amount of noise in the fusion result. In this case, considering 
that the speckle noise presents an irregular distribution, while 
the DTF are essentially regularly gathered in a local area. 
Therefore, local histogram statistics can be used to improve the 
reliability of the DTF and eliminate the random speckle noise. 
After a series of operational steps, the obtained feature 
information has high interpretability and relative stability. The 
specific processing steps are shown in Figure 3. 
 

 
Figure 3. The fusion process of DTF includes Gabor wavelet-
based feature description and Gaussian filtering to select stable 
feature information, and histogram statistics to retain high 
interpretability features. 
 
Finally, the high interpretability features from optical and SAR 
images are integrated and the richer features are selected to be 
preserved in the fusion results. We first perform a similarity 
measure on the obtained features, and when the features from 
optical and SAR images are similar, the average of the feature 
values from the two images is directly taken as the fusion result. 
In the case where the features are not similar, the features with 
larger local gradient values are considered as enriched 
information to be retained in the fusion result. Next, we 
consider determining the similarity measure algorithm that 
normalizes the feature description vector to form a statistical 
vector of feature probability distributions. KL divergence is the 
best choice for the similarity measure, which provides an 
asymmetric measure of the difference of two probability 
distributions, and it is defined as follows: 
 

 
( )

[ ] [ ( )log ]
( )x X

P x
KL P Q P x

Q x

    (16) 

 
where     P, Q = probability distribution vector 
 x = coordinates inside the vector 
 
Specifically, KL divergence is not satisfying symmetry, i.e., 

[ ] [ ]KL P Q KL Q P  . We construct a new similarity measure 

by computing the average value of [ ]KL P Q  and [ ]KL Q P . 

If the value is smaller, it means that the features at that pixel are 
more similar. The new similarity metric value (SMV) is 
calculated as follows: 
 

 
[ ] [ ]

2

KL P Q KL Q P
SMV




 
   (17) 

 
Next, a suitable threshold is chosen to determine whether the 
feature information is similar, which is defined by calculating 
the mean of the SMV of all pixels in the image. In summary, we 
give the computing steps for the fusion of DTF as follows: 

( , )

( , )

( , ) ( , )

( , ) 2
( , )

O S
m n mean

f

m n mean

v m n v m n
SMV SMV

v m n
H m n SMV SMV

  
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   (18) 

( , ) ( , ) ( , )
( , )

( , ) ( , ) ( , )
O O S

S O S

v m n G m n G m n
H m n

v m n G m n G m n


  

            (19) 

 
where     meanSMV  = the mean of the SMV of all pixels 

 Ov , Sv  = feature values 

 OG , SG  = gradient values 

 ,m n  = image coordinates 

 fv  = fusion result of DTF 

 
2.4 Fast IHS Transform Method 

The complementary feature decomposition inevitably results in 
the loss of some spectral information in the image. Therefore, in 
order to recover the realistic image color information, we need 
to process the fused results again. The intensity–hue–saturation 
(IHS) fusion is a classical image fusion method, which can 
realize the transfer of spectral information through simple 
calculation. In brief, the IHS transform divides the optical 
image into I, H and S components, where H and S contain the 
spectral color information of the optical image. It is possible to 
supplement optical color information to the final fusion result 
by replacing the original I component image with the fusion 
result of the optical image intensity information and SAR image 
in the fusion process. (Tu et al., 2004) introduces a fast IHS 
transform method with the following main steps： 
 

   
f f

f f

f f

R R I I

G G I I

B B I I

   
   
   

    (20) 

 
where      fR , fG , fB  = fusion result of RGB bands 

R , G , B  = RGB bands of optical image 

fI  = fusion results of the intensity components 

I  = intensity component of optical image 
 

3. EXPERIMENTAL RESULTS 

In this section, we proposed method is compared with five state-
of-the-art fusion methods: LP (Burt and Adelson, 1987), 
DTCWT (Selesnick et al., 2005), NSCT (Da Cunha et al., 2006), 
Hybrid-MSD (Zhou et al., 2016), WLS (Ma et al., 2017). 
Among them, the first three are classical multiscale 
decomposition methods, the fourth is the latest hybrid 
multiscale decomposition method, and the fifth is a fusion 
method based on visual saliency map.  
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In our experiments, the quality of image fusion is evaluated in 
qualitative and quantitative terms. Qualitative evaluation is a 
visual perception analysis of the overall image and local details 
of the fusion result. Of course, there are some differences in the 
visual perceptual focus of different source images. A large 
number of index theories have emerged in image fusion for 
quantitative evaluation, including the measurement of image 
characteristics such as image information, gradient and 
structural similarity. Each of the image evaluation indexes has 
its advantages and disadvantages, so it is necessary to 
synthesize multiple indexes. Six evaluation indexes EN, MI, SF, 
SD, Qabf and Qo are adopted in this paper (Zhang et al., 2020). 
According to different types of information description, these 
indexes can be divided into information theory based, image 
feature based, structural similarity based, original image and 
fused image correlation. 
 
3.1 Datasets and Parameter Settings 

To verify the fusion effect on optical and SAR salient features 
and noise removal capability of the experimental algorithm. All 
algorithms are tested on a high-resolution (sub-meter level) 
SAR and optical dataset and a publicly available WHU-OPT-
SAR dataset. Here is a detailed description of datasets. 
 
High-resolution SAR and optical dataset: The dataset is a high-
resolution SAR image (0.5m) acquired from the surrounding 
areas of Baicheng City in Jilin Province and Weinan City in 

Shaanxi Province, including three typical ground object scenes 
of houses, farmland and mountains. After downloading the 
Google-Earth optical images of the corresponding areas and 
performing high-precision matching (Ye et al., 2019), they were 
further cropped into 1000*1000-pixel image pairs, and then 60 
pairs of images with abundant information of scenes were 
selected as the test dataset.  
 
WHU-OPT-SAR dataset: (Li et al., 2022) open sources a set of 
optical and SAR image dataset collected in Hubei province. 
Optical images are from GF-1 satellite (2m resolution), and 
SAR images are from GF-3 satellite (5m resolution). WHU-
OPT-SAR dataset covers a wide range of area, including diverse 
terrains such as mountains, woodlands, hills, plains and 
vegetation. In order to better show the fusion details, the image 
of the dataset was cropped to the size of 1000*1000 pixels in 
the experiment. 
 
Parameter settings: In order to suppress the effect of SAR image 
speckle noise, the size of the Wiener filter is set to 3 in the 
complementary feature decomposition module. To enhance the 
fused visual effect of VSF from SAR images, the feature gain 

2k  was set to 1.2 and the positive parameter λ is set to 20. For 

more detailed texture description, the scale of the Gabor wavelet 
is set to [4, 8], the direction is set to [0°, 45°, 90°, 135°], and 
other parameters are defaulted. 

 

 
Figure 4. Qualitative evaluation of fusion results from six different scenarios (from the high-resolution SAR and optical dataset). 
From left to right are optical and SAR images, LP, DTCWT, NSCT, Hybrid-MSD, WLS and our VSFF fusion results. 
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3.2 Result Analysis of High-Resolution SAR And Optical 
Dataset 

The fusion results are shown in Figure 4, all the methods have a 
good fusion of the house, road, and field contour boundaries in 
SAR images, as well as SAR unique information such as tree 
shadows and field crop textures. However, in the three classical 
multi-scale decomposition methods, LP, DTCWT, and NSCT, 
the spectral information of optical images is seriously damaged. 
It can be obviously seen that the low gray level information of 
the SAR image leads to the overall darkening of the fusion 
result, and some important ground object scenes are covered by 
shadows. In farmland and mountain images, color information 
is an important condition to judge the species of covered plants, 
which must be guaranteed to be completely consistent with 
optical images. In contrast, while Hybrid-MSD retains better 
optical color information, it lacks some key salient information. 
For example, in the close-up scene in the fifth row, it can be 
seen that Hybrid-MSD is missing the field edge information 
provided by SAR in the lower left. Similarly, in the close-up 
scene in the sixth row, the SAR tree shadow interference causes 
it to lose the important field path information provided by the 
optical image. The overall vision of the WSL fusion results is 
still disturbed by the hue and noise of the SAR images, and 
there is some spectral distortion. As a result, in some WSL 
scenes, the visually salient information of optical and SAR 
images cannot be better balanced. For instance, the excessive 
focus on SAR in the first two images makes the noise 
information on houses and roads serious and prevents the 
correct observation of contour and demarcation. On the contrary, 
the excessive focus on optical in the latter four images results in 
inconspicuous trees and their shadows and unclear field outlines. 
From the all-close-up views, the VSFF method achieves the 
best optical color fusion and highlights the visual perception of 
SAR main contour information while eliminating SAR image 

noise interference. Benefiting from the advantage of the 
selection of salient features, the unique details of each of optical 
and SAR are perfectly preserved without interfering with each 
other. Table 1 shows the quantitative analysis of the fusion 
results from different methods on the high-resolution SAR and 
optical dataset. We can see that VSFF outperforms other 
methods on most indexes, which indicates that VSFF has a great 
advantage in integrating structure and detail information.  
 
Methods EN MI SF SD Qabf Qo 

LP 7.21 1.22 29.61 43.83 0.47 0.38 

DTCWT 7.12 1.12 29.89 40.52 0.41 0.36 

NSCT 7.15 1.19 29.94 41.51 0.46 0.39 

Hybrid-MSD 7.33 1.28 28.27 45.69 0.45 0.40 

WLS 7.21 1.46 30.33 45.39 0.45 0.42 

VSFF 7.51 2.87 39.12 56.55 0.62 0.41 

Table 1. Quantitative evaluation of fusion results (from the 
high-resolution SAR and optical dataset), with the best results 
highlighted in bold and the second-best results in underlined. 
 
3.3 Result Analysis of WHU-OPT-SAR Dataset 

When tested on a medium resolution dataset, as shown in Figure 
5, the VSFF fusion results have a more detailed representation 
of the salient feature information and excellent denoising effect 
for different images. On the one hand, the close-up areas of the 
fusion result map look cleaner and more comfortable, and the 
optical and SAR image features are clearly distinguished. 
Especially in the first, second, and fifth scenes, the VSFF 
method care about the real texture and color information of the 
land and houses than other methods and avoids having them 
obscured by the cluttered speckle noise. On the other hand, the  

 

 
Figure 5. Qualitative evaluation of fusion results from five different scenarios (from the WHU-OPT-SAR dataset). From left to right 
are optical and SAR images, LP, DTCWT, NSCT, Hybrid-MSD, WLS and our VSFF fusion results. 
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VSFF method can accurately retain salient and important target 
information. For example, in the third and fourth scenes, the red 
trains and bridges in the optical images are highly valuable 
features. However, it is obvious that the fusion results of other 
methods show blurred or even non-existent, only our method 
reconstructs the target completely. In conclusion, the VSFF 
fusion method achieves effective removal of SAR image noise 
without losing important feature information, and restores the 
real color of ground objects to the maximum extent. Table 2 
shows the quantitative analysis of the fusion results from 
different methods on the WHU-OPT-SAR dataset. Among them, 
the EN and MI indexes show the high information content of 
the VSFF fusion results, which intuitively indicates that the 
salient features extracted are the high interpretability features of 
the images. In particular, the higher SF index indicates that the 
fusion results have better clarity. Thus, the fusion results of 
VSFF are more suitable for visual interpretation. As only some 
of the structural features of SAR images are selected for the 
saliency features in this paper, the global calculation of the Qo 
metrics may appear to be low. 
 
Methods EN MI SF SD Qabf Qo 

LP 5.89 1.39 18.03 16.72 0.26 0.38 

DTCWT 5.73 1.16 17.28 15.49 0.21 0.37 

NSCT 5.76 1.32 17.48 16.00 0.24 0.40 

Hybrid-MSD 5.93 1.35 19.22 17.28 0.24 0.41 

WLS 5.86 1.38 19.29 16.59 0.25 0.42 

VSFF 6.34 1.89 29.62 24.76 0.29 0.35 

Table 2. Quantitative evaluation of fusion results (from the 
WHU-OPT-SAR dataset), with the best results highlighted in 
bold and the second-best results in underlined. 
 

4. CONCLUSION 

In this paper, we propose a novel optical and SAR image fusion 
framework named VSFF based on visual saliency features. It 
extracts the salient and complementary information of the 
image and then achieves the purpose in different fusion methods 
and rules. From the fusion results, it is obvious that our method 
eliminates more noise and retains the salient and important 
feature targets in both optical and SAR images. Surely, our 
method achieves good results in several quantitative evaluation 
indexes when compared with five state-of-the-art fusion 
methods. It proves that our fusion results have richer spectral 
information and clearer visual perception. 
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