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ABSTRACT: 

Object detection in remote sensing imagery plays an important role in many applications, such as tracking and change detection. With 

the development of deep learning algorithms and advancement in hardware systems, improved accuracies have been achieved in the 

detection of various objects from remote sensing images. However, object detection across heterogeneous remote sensing imagery 

remains an important issue, particularly for satellite and aerial imagery. The colour variation for the same ground objects, variable 

resolutions, different platform heights, the parallax effect, and image distortion brought on by diverse shooting angles are the biggest 

hurdles in satellite-aerial detection applications. The research aims to obtain successful model for detecting aircrafts from satellite and 

aerial images and reduce cost and the gap of revisit time between sensors. The networks were tested using aerial, GF-2, Jilin-1 (JL-1) 

and Pleiades satellites test sets after being trained individually using the RGB high-resolution aerial set and panchromatic low-

resolution GF-2 satellite set to validate the efficiency of the trained models. Also, the aerial-trained model and GF-2 satellite-trained 

model as dedicated models were compared with each other, and model trained by all dataset for Object Detection in Aerial Images 

(DOTA). It is observed that the anchor sizes and augmentation methods can enhance the performance of detection models. k-means 

algorithm and data augmentation were applied to produce better anchor box selection and avoid overfitting, atmospheric conditions 

problems, respectively. The accuracy assessment results demonstrate that the aerial-trained model outperforms the GF-2 satellite-

trained model. In addition, the results of two dedicated detection models show improved accuracy compared to the DOTA-trained 

model. 

1. INTRODUCTION

1.1 General object detection review 

Since remote sensing images from satellite sensors are taken 

from high altitudes and include atmospheric interference, 

viewpoint fluctuation, background clutter, and lighting 

differences, they are more complex than computer vision images 

(Cheng and Han, 2016). The visual interpretation approach, 

which benefits from the expertise of specialists for the 

identification of various objects/targets, is still commonly 

utilized in object detection investigations of satellite imagery. 

This approach is time consuming because it involves a manual 

process, and the accuracy of the method depends on the level of 

competence of the specialist. In order to decrease human 

mistakes, save time, and improve efficiency, several studies have 

been conducted on the automatic recognition of various targets, 

such as buildings, aircraft, ships, etc. (Zhao et al., 2019; Zhou et 

al., 2016). 

Images from multiple remote sensing platforms or sensors are 

referred to as heterogeneous images(Zhan et al., 2018) (Ansari et 

al., 2020; Tian, 2020). Remote sensing image change detection 

include the analysis of multitemporal and multi resolution 

information at the same time, and the outcome is highly 

significant for a wide range of applications, including tracking 

urban growth(Classification et al., n.d.), monitoring land use, 

evaluating disasters, and assessing damage.  

Resolution (both spatial and temporal) is the main determinant of 

a constellation's value and cost, although other aspects also play 

a role such as object detection performance, segmentation 

accuracy, change detection fidelity, crop cover recall, etc. 

However, automatic detection is difficult for satellite images 

because of the complexity of the background, differences in data 

collecting geometry, terrain, and illumination conditions, and the 

diversity of objects. The classification of the objects and their 

location in the images are two essential tasks that make up the 

object detection task. The improvement of these two tasks, either 

alone or jointly, has been the focus of many studies to date 

(Gidaris and Komodakis, 2016). 

There are many methods for detecting aircraft that have been 

presented in the literature.  (Gao et al., 2013) applied a circular 

frequency filter to determine the location of the aircraft before 

using a multilayer feature to define local and spatial information 

aircraft layouts. But this method is restricted to patch-level 

identification. In (Wu et al., 2015), a method for identifying 

planes from satellite data that combines CNN and binarized norm 

gradients demonstrates the importance of being rotation 

invariant. The binarized norm gradients (BING) technique aids 

in the production of weaker candidates for prediction, however, 

the CNN extracts feature from the raw images. Deep belief 

networks (DBNs) were among the first deep neural networks to 

be utilized for airplane detection. Multiple global criteria along 

with DBNs are applied by Chen et al. (Chen et al., 2013), to 

pinpoint the aircraft precisely. The tests revealed that DBNs 

produced significantly higher results than Histogram of Oriented 

Gradients (HOG), Wavelet, and Gabor. Multilayer feature fusion 

and a faster R-CNN framework were used together to detect 

aircraft (Zhu et al., 2019). The network's capacity to recognize 

smaller aircraft was improved by the integration of multilayer 

features using L2 normalization, feature connection, scaling, and 

feature dimension reduction. This method improved the 

candidate regions suggested by the Region Proposal Network 

while reducing the execution time. 

A deep patch orientation network (DON)(Maher et al., 2018) 

took advantage of target patches in the identification process and 

raised the likelihood that undiscovered targets will be found. By 

considering the targets' orientations, DON defined more details 
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about the targets. The DON network enhances the performance 

of the frameworks, such as Faster RCNN, in terms of detection.  

 

1.2 Paper Contributions 

The main objective of this paper is the detailed evaluations of the 

object detection techniques for aircraft detection from multiple 

datasets. This main objective us achieved through the following 

contributions: 

 

• Assessing the accuracy of the results using the dedicated object 

detection models which outperform object detection trained 

model by all datasets of sensors. 

 

• The proposed convenient anchor sizes could be solution to 

enhance results when detecting objects from heterogenous 

sensors. Furthermore, the distribution of objects in datasets affect 

the performance of training. 

 

• Investigating the best scenario that can detect objects from 

different sensors to overcome revisit time and cost problems. 

 

•Improving the learning with augmentation aerial and satellite 

datasets, especially radiometric augmentation for colour images 

and hyperparameters tuning to improve the performance of object 

detection model on the satellite and aerial image domain.  

 

• Demonstrating a comparative analysis of aerial and satellite 

trained object detection models across various object sizes and 

IOUs, as well as performing an independent investigation with 

aerial and satellite test sets with a different resolution 

specification than the training dataset to assess the transferability. 

 

2.  DEEP LEARNING ARCHITECTURE 

In this section, the general architecture of the Faster R-CNN 

framework is presented. The loss function and Resnet 50 as 

backbone network are explained in detail. 

 

2.1 Deep learning-based object detectors 

Faster R-CNN is one of the most well-known object detection 

networks that makes use of CNN architecture to get accurate and 

timely results. These characteristics led to its first use in 

applications requiring processing almost instantly, including 

video indexing tasks. R-CNN has increasingly gotten faster over 

time The R-CNN, its initial implementation, uses a hierarchical 

grouping strategy and a selective search method to produce item 

recommendations. The 2000 window are given to a pre-trained 

CNN model in the form of rectangular boxes. As the rectangular 

boxes, and they are sent to a CNN model that has already been 

trained. Following that, the CNN model's feature maps for them 

are extracted in order to send them to an SVM for classification 

(Girshick et al., 2014).   

 

The Fast R-CNN was developed in 2015 by Girshick R. et al. and 

advances the R-CNN solution. Fast R-CNN differs from R-CNN 

in that it produces object suggestions from the CNN feature map 

rather than obtaining them from the entire input image. 

 

In this manner, feature maps can be extracted without having to 

use the CNN technique 2000 times. The region of interest (ROI) 

pooling is then used to ensure that an output size that is uniform 

and predetermined is obtained. Finally, a SoftMax classifier is 

used to categorize the future maps, and linear regression is used 

to construct bounding box localizations. Finally, a SoftMax 

classifier is used to categorize the future maps, and linear 

regression is used to construct bounding box localizations. 

 

A region proposal network takes the place of the selective search 

strategy in the Faster R-CNN (RPN). The objective of this 

network is to learn an object's proposition using feature maps as 

in Fig.2. This object detecting technique starts with the RPN. The 

RPN is given the feature maps that were taken from a CNN in 

order to suggest the regions. The region proposals are produced 

using k anchor boxes for each place on the feature maps. Given 

the three distinct scales and three different aspect ratios used in 

the original research, the anchor box number k is defined as 9 

(Ren et al., 2015) as shown in Figure 1. There are k anchor boxes 

overall with a size of WX H feature map, which contain the 

negative (not object) and positive (an object) anchor boxes. The 

RPN learns to produce region suggestions during the training 

phase using these anchor boxes. The RPN's bounding box 

classification layer generates two scores for each k, indicating 

whether an object or not there is an object. 

Predicting the four k coordinates (box center, width, and height), 

a regression layer is applied as shown in Figure 2. At the second 

stage of the network, the ROI pooling operation is carried out as 

in the Fast R-CNN after production of the region suggestions. An 

ROI feature vector is created from fully connected layers, just 

like in Fast R-CNN, and this vector is categorized by SoftMax. 

 

 

 

 

 

 

 

 

 

 

Figure 1. General Architecture of Faster R-CNN(Ren et al., 

2015). 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Region Proposal Network (RPN)(Ren et al., 2015) 

 

2.2 Loss function  

The following objective function is minimized in Fast R-CNN 

for an image (Girshick, 2015): 

 

               𝑳(𝒑𝒊,   𝒕𝒊
) =

𝟏

𝑵𝒄𝒍𝒔
∑ 𝑳𝒄𝒍𝒔 (𝒑𝒊,𝒑𝒊,

∗ )+𝝀𝒊
𝟏

𝑵𝒓𝒆𝒈
∑ 𝒑𝒊  

∗ 𝑳𝒄𝒍𝒔 (𝒕𝒊,𝒕𝒊,
∗ ).   𝒊 (1) 

where      i = index of an anchor 

               pi = the prediction probability of anchor i 

               pi* = the ground truth label 

               Lcls = the classification loss 

               Lreg = the regression loss 

             ti = vector representation of predicted bounding box 

             ti* = ground truth bounding box 
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              𝜆 = balancing the loss function terms 

               Ncls , Nreg = the normalization parameters of the      

classification and regression losses   

 

 

2.3  Backbone networks     

Degradation problems may arise when CNN networks are created 

with a deeper structure. The higher-level layers might simply 

serve as an identity function as the architecture gets deeper. The 

feature maps produced, which constitute their output, resemble 

the raw data. This results in accuracy saturation, which is quickly 

followed by degradation. This issue can be resolved by utilizing 

the residual blocks as shown in Figure 3. The residual blocks can 

be utilized to alter the function as equation 2 (He et al., 2016): 

  

                 H(x) = F(x) + x                       (2) 

  

where    F(x) = stacked non-linear layers 

              x = identity function 

             H(x) = mapping to a function  

 

 

 

 

 

 

 

 

 

 

 

                Figure 3. Residual block diagram 

 

The deep residual networks (Resnet), a novel type of 

convolutional neural network design that is far deeper (up 

to 152 layers) than those previously implemented, were 

proposed by The et al. Resnet uses residual or skip 

connections to simplify network training. In 2015, Resnet 

took first place in several computer vision challenges, 

including COCO detection and ImageNet detection. 

Resnet50 replaces each 2-layer block in the 34-layer net 

with this 3-layer bottleneck block, resulting in a 50-layer 

ResNet (He et al., 2016) as shown in Figure 4. 

                   

 

 

 

 

 

 

 

 

 
 

 

Figure 4. Difference between Residual block of  

Resent 34 and 50. 

3.  PROPOSED METHODOLOGY  

In this section, two main experiments are implemented using 

Faster RCNN with Resnet-50 as the foundation CNN. Faster 

RCNN has shown to be better framework for detecting aircraft 

and is ideal for real-world with little training data situations 

(Alganci et al., 2020; Azam et al., 2022). In the first experiment, 

Faster RCNN model is trained by aerial set as shown in Figure 5. 

Second experiment, Faster RCCN is trained by GF-2 Satellite set 

as shown in Figure 6. Each experiment has two scenarios: the 

default anchor sizes are used in the first scenario and k-mean 

algorithm is used to define the anchor sizes in the second 

scenario. Each model is then tested by aerial, GF-2, JL-1, 

Pleiades satellites test sets. Information about the used satellite 

and aerial images of DOTA, Airbus Aircraft Detection dataset 

and image split process are given initially. A detailed description 

of the steps and parameterization of the training process are also 

given. 

 

 

 

 

 

 

 

 

 

Figure 5. Faster RCNN trained by aerial set, testing by aerial, 

GF-2, JL-1 and Pleiades satellite test set. 

 

 

 

 

 

 Figure 6. Faster RCNN trained by GF-2 satellite set, testing by 

aerial and GF2- satellite test sets. 

 

3.1  EXPERIMENTDATASETS 

The aircraft detection algorithms must be applied to images of 

various sizes, resolutions, and sources. As a result, the 

experiments implemented two aircraft datasets: a DOTA and an 

Airbus Aircraft Detection dataset. Two datasets are used to 

validate the efficacy of the trained models. 

 

3.1.1  DOTA dataset:  Although object detection in natural 

scenes has made significant progresses in the past decade, aerial 

and satellite imagery have exposed to the enormous variation in 

scale, orientation, and shape of object instances on the earth's 

surface as well as the lack of well-annotated datasets of objects 

in aerial scenes. A large-scale dataset for object detection in 

aerial images promotes object detection research in Earth Vision, 

also known as Earth Observation and Remote Sensing 

(DOTA)(Xia et al., 2018). 

 

For testing and training, the DOTA dataset is used. It is an open-

source dataset for using remote sensing photos to identify objects. 

The DOTA images are collected from the Google Earth, GF-2 

and JL-1 satellite provided by the China Centre for Resources 

Satellite Data and Application, and aerial images provided by 

CycloMedia B.V. DOTA consists of RGB images and grayscale 

images. The RGB images are from Google Earth and 

CycloMedia, while the grayscale satellite images. There are 15 

different categories, including a roundabout, storage tank, 
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baseball diamond, tennis court, basketball court, ground track 

field, harbor, and aero plane, a field and a pool. The images are 

collected from different sensors and platforms as in Table 1. Each 

image is of the size in the range from 800 × 800 to 20,000 × 

20,000 pixels and contains objects exhibiting a wide variety of 

scales, orientations, and shapes. 

 

 

 

              Table 1. Specification of DOTA Dataset 

 

3.1.2 Airbus Aircraft Detection dataset 

 

The dataset contains 103 Pleiades images with a resolution of 

about 50 cm. Each image is saved as a JPEG file with a resolution 

of 2560 x 2560 pixels (i.e. , 1280 metres on ground). It has 

various types of aircrafts. Furthermore, for variety, some airports 

captured multiple times at different acquisition dates with 

different atmospheric shooting conditions such as fog or cloud 

(https://www.kaggle.com). 

 

3.1.3 Image split: In this research, custom tool for DOTA 

V1.5 is applied to divide dataset into three categories according 

source aerial or GF-2, JL-1 satellites images, which contain 

aircrafts. DOTA and Airbus Aircraft Detection images resized to 

600 x 600. Labelled DOTA and Airbus Aircraft Detection dataset 

are converted into COCO format for training and testing. The 

number of images in aerial, GF-2 training sets and aerial, GF-2, 

JL-1, Pleiades satellites test sets are in listed Table 2. 

 
Item Aerial GF-2 JL-1 Pleiades 

Training images 719 800 - - 

Testing images 121 293 181 200 

Table 2. number of training and testing sets 

 

3.2 Training 

In this work, two experiments are performed with the PyTorch 

open-source deep learning framework. Transfer learning 

technique is applied by using the pre-trained Faster RCNN 

network with the COCO dataset(Alganci et al., 2020). Fine-

tuning of the parameters and extending the training set with the 

DOTA datasets are also applied. 

 

3.2.1  Hyperparameters good selection of parameters, such 

as optimizer function, number of epochs, and learning rate is very 

important to train architecture. The Stochastic Gradient Descent 

Method (SGDM) typically delivers good results for transfer 

learning and Adam performs better when starting from scratch 

(Azam et al., 2022). 

 

The Nesterov momentum is applied during the training process. 

The traditional momentum strategy makes a huge jump in the 

direction of the updated accumulated gradient before first 

calculating the gradient at the current position. In contrast, 

Nesterov momentum jumps significantly in the direction of the 

previously collected gradient, measures the gradient upon arrival, 

and then makes adjustments. The Nesterov momentum approach 

reduces number of iterations to converge for the global minimum 

(Huang et al., 2019). 

 

The Anchor boxes are crucial settings for Faster RCNN object 

optimization. value of the box size varies depending on the 

dataset. The shape, scale, and the number of anchor boxes impact 

the efficiency and precision of the detectors(Ren et al., 2015). For 

In the first scenario anchor sizes 1282, 2562, and 5122 pixels, and 

3 aspect ratios of 1:1, 1:2, and 2:1 are used. While, in the second 

scenario, K means algorithm is applied to cluster the dimensions 

(length and width) of objects of training and testing datasets into 

three clusters. Figures 5, 6, 7 show samples of clustering objects 

the training and test sets. Areas of objects in each cluster of the 

training and testing datasets are calculated in Table 3, where the 

smallest and the largest areas were 342, 3762 pixels, respectively. 

Hence, the convenient sizes of anchor boxes 322, 642 ,1282, 2562, 

and 5122 pixels are selected.    

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 5. K means clusters aerial training set 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 6. K means clusters GF-2 satellite training set 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 6.  K means clusters JL-1 satellite test set 

 

Area of 

clusters 
Aerial GF-2 JL-1 Pleiades 

Small        90 56 34 60 

Medium  208 96 64 108 

Large  376 116 101 161 

          Table 3. Area of clusters in training and test set 

 

Weight decay is a regularization technique in deep learning. It 

works by adding a penalty term to the cost function of a neural 

network which has the effect of shrinking the weights during 

Item GF-2 JL-1 Aerial 

Resolution 1 meter 70 cm 10:15 cm 

Bands grayscale grayscale RGB 
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backpropagation. This prevents the network from overfitting the 

training data as well as the exploding gradient problem. The 

stochastic gradient with a batch size of 4 is applied, beginning 

with momentum term of 0.9, learning rate 10-2, also the number 

of epochs 13, are used for training models. 

 

3.2.2 Augmentation: There are numerous approaches that use 

deep convolutional networks to tackle computer vision problems 

to outperform current benchmarks. One of the hardest problems 

is enhancing these models' capacity for generalization. A model's 

performance on data it has previously seen (training data) vs data 

it has never seen before is measured by its generalizability 

(testing data). Poorly generalizable models have overfitted the 

training set (Shorten and Khoshgoftaar, 2019). The effectiveness 

of data augmentations is applied during training from simple 

transformations such as horizontal and vertical flipping, color 

space augmentations, and random brightness to avoid overfitting 

problems. Moreover, in the first experimental, second scenario 

hue saturation value (HSV) and RGB shift methods are applied 

to imitate lightning and atmospheric conditions. 

 

4. ACCURACY ASSESSMENT 

In this section, we discuss evaluation metrics and analysis results 

of our work for aircraft detection in aerial and satellite images. 

COCO metrics is used to measure mean average precision (mAP) 

and mean average recall (mAR) with different intersection over 

union (IOU) and visual inspection of the data.   

 

4.1 Evaluation metrics: The average precision (AP) and the 

average recall (AR) score are two often used performance 

indicators in object detection. At each iteration of the training 

process, a detector compares the predicted bounding boxes with 

the ground truth bounding boxes using the intersection over 

union (IOU). Accordingly, the network considers a prediction to 

be accurate if the predicted object's bounding box overlaps the 

ground truth box by at least 50%. The recall is the ratio of the 

number of successfully identified items to the total number of 

ground truth samples, and the accuracy is the percentage of 

correct matches among all objects that are detected as matches. 

Because the recall rate and precision rate alone are insufficient to 

assess the effectiveness of the framework. By defining the true 

positive (TP) as truly detected objects, the false negative (FN) as 

non-detected objects, and the false positive (FP) as falsely 

detected objects, the precision, recall was calculated as The 

COCO metric API is also utilized to evaluate the characteristics 

and effectiveness of the object detection algorithms using 12 

different metrics shown in TABLE 4. 

The average recall (AR) and average precision (AP) are 

determined by averaging over 10 different IOU ranging from 0.5 

to 0.95 with 0.05 intervals, unless otherwise specified. 

Additionally, the values for AP where IOU is 0.5 and 0.75 are 

computed. According to all categories and IOU values, AP 

represents the calculation's average precision. There is only one 

object category which is airplane in this study. Averaging across 

categories and IoUs, AR represents the percentage of correct 

objects per image. The interpretation of the enclosing box areas 

is used to further verify these calculations. AR is the maximum 

number of detections per image, averaged over categories and 

IoUs. These calculations are also checked by interpreting the 

bounding box areas. According to COCO, objects with a size 

smaller than 322 pixels are defined as small, between 322 and 962 

as medium, and more than 962 pixels as large. The metric 

calculations are performed according to all scale levels and for 

separate scales and individual scales are taken into consideration 

while doing the metric computations (Alganci et al., 2020). 

 

 
Metric Calculated for  

 M1 AP for [ IoU = 0.50:0.95 | area = all | maxDets = 100 ] 

M2 AP for [ IoU = 0.50 | area = all | maxDets = 100 ] 

M3 AP for [ IoU = 0.75 | area = all | maxDets = 100 ] 

M4 AP for [ IoU = 0.50:0.95 | area = small | maxDets = 100 ] 

M5 AP for [ IoU = 0.50:0.95 | area = medium | maxDets = 100 ] 

M6 AP for [ IoU = 0.50:0.95 | area = large | maxDets = 100 ] 

M7 AR for [ IoU = 0.50:0.95 | area = all | maxDets = 1 ] 

M8 AR for [ IoU = 0.50:0.95 | area = all | maxDets = 10 ] 

M9 AR for [ IoU = 0.50:0.95 | area = all | maxDets = 100 ] 

M10 AR for [ IoU = 0.50:0.95 | area = small | maxDets = 100 ] 

M11 AR for [ IoU = 0.50:0.95 | area = medium | maxDets = 100 ] 

M12 AR for [ IoU = 0.50:0.95 | area = large | maxDets = 100 ] 

                  Table 4. COCO metrics Evaluation 

 

4.2 Evaluation with Accuracy Metrics: The performances of 

aerial and satellite trained model are examined with the COCO 

metric. According to the COCO metrics, the aerial trained model 

has the best results in two scenarios when considering the mean 

of the precision for different IoU values. GF-2 satellite trained 

model provided promising results in the two scenarios for mAP 

of 0.5 IoU with GF-2 satellite test set, while aerial trained model 

is better if the high mAP of 0.5 IOU for aerial and GF-2, JL-1 

and Pleiades satellite test set is desired. For metrics 4, 5, and 6 

aerial model in the second scenario provides the best mAP result 

for different IOUs in small, medium, and large objects for the 

aerial and satellite test sets compared with that in the first 

scenario. However, in aerial, Pleiades and JL-1 satellite test sets, 

the GF-2 satellite trained model performs poorly for small objects 

in the two scenarios. The seventh, eighth, and ninth metrics 

provide information about the recall rates for all different IOUs 

according to the detection number per image. Similarly, the aerial 

trained model provides better results according to these metrics. 

When the AR results are investigated according to metric 10, it 

shows that the recall rates of Gf-2 satellite model are worse than 

aerial models for small object aerial and satellite test set in two 

scenarios. Coco metrics of first experiment of two scenarios 

aerial trained model and second experiment of two scenarios are 

shown in Tables 5,6 and Tables 7,8 respectively.  

 

Metric  Aerial GF-2 JL-1 Pleiades 

M1 0.611 0.541 0.121 0.174 

M2 0.902 0.831 0.227 0.579 

M3 0.731 0.657 0.107 0.059 

M4 0.297 0.216 0.022 0 

M5 0.679 0.557 0.141 0.168 

M6 0.522 0.767 0.56 0.235 

M7 0.145 0.203 0.074 0.101 

M8 0.492 0.613 0.166 0.25 

M9 0.67 0.622 0.167 0.25 

M10 0.415 0.292 0.031 0.006 

M11 0.725 0.627 0.191 0.228 

M12 0.603 0.80 0.642 0.331 

Table 5.   COCO metrics of first experiment first scenario, 

trained model by aerial datasets according to aerial and Satellite 

test sets. 
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Metri

c 
Aerial GF-2 JL-1 

Pleiades 

 + HSV 

M1 0.493 0.656 0.253 0.094 0.243 

M2 0.898 0.977 0.506 0.378 0.656 

M3 0.468 0.793 0.213 0.028 0.118 

M4 0.199 0.231 0.039 0.005 0.001 

M5 0.532 0.661 0.324 0.092 0.204 

M6 0.134 0.815 0.646 0.131 0.346 

M7 0.423 0.226 0.109 0.072 0.136 

M8 0.57 0.691 0.297 0.182 0.329 

M9 0.321 0.698 0.306 0.187 0.339 

M10 0.312 0.3 0.064 0.019 0.028 

M11 0.599 0.708 0.388 0.164 0.295 

M12 0.57 0.828 0.711 0.251 0.462 
 

Table 6.  COCO metrics of first experiment second scenario, 

trained model by aerial datasets according to aerial and 

Satellite test sets. 
 

Metric  Aerial GF-2 JL-1 Pleiades 

M1 0.353 0.708 0.224 0.153 

M2 0.681 0.96 0.394 0.484 

M3 0.324 0.855 0.22 0.033 

M4 0.106 0.212 0.01 0 

M5 0.45 0.721 0.282 0.132 

M6 0.18 0.81 0.576 0.222 

M7 0.07 0.221 0.102 0.109 

M8 0.304 0.745 0.256 0.216 

M9 0.428 0.753 0.261 0.216 

M10 0.144 0.227 0.013 0 

M11 0.543 0.769 0.329 0.18 

M12 0.217 0.843 0.65 0.308 
 

Table 7. COCO metrics of second experiment, first scenario, 

trained model by GF-2 according to aerial and Satellite test 

sets. 
 

Metric  Aerial GF-2 JL-1 Pleiades 

M1 0.244 0.685 0.268 0.094 

M2 0.547 0.969 0.516 0.371 

M3 0.203 0.854 0.254 0.017 

M4 0.046 0.171 0.015 0.001 

M5 0.351 0.698 0.355 0.098 

M6 0.047 0.885 0.682 0.138 

M7 0.05 0.225 0.124 0.069 

M8 0.245 0.724 0.32 0.194 

M9 0.348 0.733 0.327 0.198 

M10 0.085 0.232 0.025 0.022 

M11 0.473 0.746 0.433 0.189 

M12 0.106 0.887 0.733 0.249 

Table 8. COCO metrics of second experiment, second 

scenario, trained model by GF-2 datasets according to aerial 

and Satellite test sets. 

 

4.3 Analysis of the results 

When the results of two experiments, first scenario for aerial and 

GF-2 satellite trained models are compared for metrics 4, 10 of 

small objects, the results in test set for the GF-2 satellite trained 

model provided low results. There is a performance gap for 

detecting small aircraft compared to medium and large aircraft. 

The mAP results of aerial trained model according to aerial, GF-

2, JL-1 and Pleiades satellite test set are 0.902, 0.831, 0.227, 

0.579 respectively, however, the mAP results of GF-2 trained 

model according to aerial, GF-2, JL-1 and Pleiades satellite test 

sets are 0.68, 0.96, 0.394 and 0.484 respectively. Also, the fourth 

and tenth metrics of small object for aerial trained model is higher 

than the fourth and tenth metrics of small objects for GF-2 

satellite trained model. 

 

The bounding box area distributions of aircraft samples for the 

aerial and GF-2 training, aerial, GF-2, JL-1 and Pleiades satellite 

test datasets are examined. It is found that the aerial train set 

contains nearly the same distribution as the aerial, GF-2, JL-1 and 

Pleiades satellite test datasets, with small, medium and large 

areas, while GF-2 satellite train set does not include the same 

number of small aircraft areas less than 322 pixels in the aerial, 

GF-2, JL-1 and Pleiades satellite set. The main reason behind the 

performance gap is that the dimensions of small aircrafts inside 

the GF-2 satellite training set. They are distributed differently 

than the aerial, GF-2, JL-1 and Pleiades satellite sets contain 

different types of aircraft, as shown in Fig.10.   

 
 

a) area of objects in 

aerial training set 

b) area of objects in 

aerial test set 

c) area of objects in 

GF-2 training set 

d) area of objects in 

GF-2 test set 

 

 

e) area of objects in 

Pleiades test set 

 

f) area of objects in 

JL-1 test set 

 

Figure 7. The distribution areas of objects in datasets 

 

When the results of the two scenarios in the first experiment 

aerial satellite trained model are compared with the mAP, results 

in aerial, GF-2, JL-1, Pleiades satellite test sets for the first 

scenario has poorer performance. A key to object detection 

quality is the selection of anchor boxes that cover every possible 

combination of object sizes found in a dataset. The proposed 

anchors should naturally include the data's varying aspect ratios 

and scales. K-means is used to estimate the ideal bounding boxes. 

The choices of anchors size in the second scenarios improves the 

accuracy of detection. Moreover, the proposed anchor sizes with 

(HSV) and RGB shift augmentation methods, especially for 

colour images enhances the results as Pleiades test set. This case 

study also confirms the importance of HSV and RGB shift 
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augmentation for testing and training colour images, where the 

mAP of Pleiades test set increases from 0.378 to 0.656. The mAP 

results of the first experiment aerial trained model second 

scenario according to aerial, GF-2, JL-1 and Pleiades satellite test 

sets are 0.898, 0.977, 0.506, 0.656 respectively, however, the 

mAP results of first scenario according to aerial, GF-2, JL-1 and 

Pleiades satellite test sets are 0.902, 0.831, 0.227, 0.579 

respectively. 

 

The mAP of two scenarios for the second experiment GF-2 

satellite trained model are compared according to the results in 

test sets. The first scenario has a high mAP than the second 

scenario in aerial and Pleiades satellite test sets. However, the 

second scenario gives a higher mAP than the first scenario in JL-

1satellite test set. The mAPs of both scenarios are the same for 

GF-2 test set. The results indicate that the distribution of objects 

in datasets could improve the accuracy of GF-2 satellite trained 

model besides the proposed convenient anchor sizes. 

 

The results shows that the accuracy of the two experiments aerial 

trained model according to aerial, GF-2, JL-1 and Pleiades 

satellite test set are 0.898, 0.977, 0.506, 0.656 respectively, and 

GF-2 trained model according to aerial, GF-2, JL-1 and Pleiades 

satellite test set are 0.68, 0.96, 0.394 and 0.484 respectively. Both 

experiments gave higher accuracy compared to the DOTA 

trained model according to DOTA and Pleiades satellite test sets 

0.717, 0.364 respectively(Alganci et al., 2020). Hence, the aerial 

and GF-2 trained models are more likely to perform well in aerial 

and satellite tests than the DOTA-trained model. 

 

 Finally, this section presents some samples images of the two 

experiments. The detection results from the aerial and satellites 

test set are inspected visually to assess the performance of two 

different trained models. The detection of aerial trained model in 

the first experiment for aerial and satellites test set provide 

selected samples in Figures 8,9,10,11 which include different 

sized aircrafts, and the image patches have illuminance 

difference, background complexities, and different band 

information. The detection results of the second experiment using 

two the Gf-2 satellite trained model for aerial and satellites test 

set are depicted in, Figures 12, 13,14, 15. 

       Figure 8. Aerial image.               Figure 9.  GF-2 image.  

   

 Figure 10. JL-1 image.                    Figure 11. Pleiades image.    
                              

 

        Figure 12. Aerial image.             Figure 13. GF-2 image. 

 

 

               
    Figure 14. JL-1image.                    Figure 15. Pleiades image. 

 

 

5.       CONCULSION 

 

Modern deep learning-based object detection frameworks and 

convolutional neural networks have opened up many new ways 

to improve the accuracy, robustness, and detection speed of 

aircraft detection algorithms. The networks trained by the aerial 

and Gf-2 satellite sets separately from the DOTA datasets and the 

performance of them was evaluated with the aerial, GF-2, JL-1 

and Pleiades satellite test datasets. The best results are obtained 

from the aerial trained network according to the COCO metrics. 

The satellite trained model also provides promising results. 

Results were also impacted by the object sizes, diversities and 

anchor sizes. Hence, using K means algorithm is the effective 

approach to estimate appropriate anchor sizes for object detection 

models. In summary, transfer learning and parameter tuning 

approaches on pre-trained object detection networks generate 

promising results for airplane detection from satellite and aerial 

images. Additionally, because R, G, and B bands are primarily 

created for natural images, the object detection network 

frequently uses them. However, a satellite detection model that 

trained by one band (grayscale) images and low resolution 1 m, 

shows promising results for both training and testing sets. The 

approaches of data augmentation consist of altering the 

intensities of the RGB channels in training images improve the 

performance of detection model, especially when using RGB 

images from heterogenous sensors. Faster RCNN with Resnet-50 

as backbone CNN turned out to be a promising framework for 

aircraft detection, which is suitable for detection aircrafts. with 

high precision. Also, object detection from heterogeneous 

sensors overcomes the gap of revisit time between sensors and 

cost. 

 

A comparative study is conducted between the dedicated object 

detection model and generalized object detection model on 

optical various aircrafts detection datasets. The intent is to 

investigate the effectiveness of the dedicated model under 
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various conditions (such as various resolutions, different bands, 

sizes, heterogenous sources). The results show that the dedicated 

object detection model achieves better performance, even under 

different sensors datasets. In addition, the performance of the 

dedicated training models with appropriate anchor sizes selection 

for aircraft detection are tested in large various images, which 

have good robustness. 
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