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ABSTRACT: 

 

The rice plant is an extremely valuable food crop worldwide. Paddy diseases not only reduce the cultivation of rice but most 

significantly, they contribute to environmental damage. The identification of paddy diseases before the onset of any visible signs has 

gained consideration with the development of deep learning (DL) and thermal infrared sensors. According to previous investigations, 

certain internal alterations in the paddy occur before signs of the infection become apparent. Such modifications couldn't be seen by 

exterior visible light sensors. On the other hand, thermal infrared sensors may be able to detect these variations, which will aid in 

predicting illness at earlier phases. However, there are few research articles regarding this topic. This study suggests a DL-based 

model for identifying paddy diseases from thermal images. The proposed DL-based model, in contrast to earlier approaches for 

classifying plant diseases, uses three convolutional neural networks (CNNs) with distinctive configurations. In addition, it makes use 

of discrete wavelet transform (DWT) to give a time-frequency illustration of the spatial deep features gathered via the three CNNs to 

develop the classification models instead of relying on solely spatial data like current models. Furthermore, it merges the spatial-

time-frequency features of the three CNNs and uses a feature selection method based on Relief-F to choose the most beneficial 

attributes and reduce the dimensionality of the feature space. The outcomes of the proposed DL-based model show that spatial-time-

frequency demonstrations are preferable to spatial data. The results additionally demonstrate that integrating high-level features from 

various CNNs can improve classification performance reaching an accuracy of 96.5% using a cubic support vector machine (SVM) 

classifier. Furthermore, the findings attained in this study outperform current DL-based models for plant disease classification. 

 

1. INTRODUCTION 

Rice is a particularly significant grains crop within all forms of 

agriculture because it is an essential food source for numerous 

countries; nearly 75% of them—eat rice. Paddy cultivation, 

which is widespread but especially popular in Egypt in addition 

to East Asian countries, serves as one of the primary crops 

affected by global warming. Paddy illnesses have been 

identified as one of the greatest threats to rice cultivation, 

reducing yields from agriculture and causing increased financial 

losses (Vishnoi et al., 2021). Paddy diseases do not just prompt 

farmers to lose money but also decrease the quality of the end 

product. Hence, quick and precise identification of the illness is 

crucial to prevent the reduction of crop grains and to raise 

overall product quality (Phadikar et al., 2013; Radhakrishnan, 

2020). Typically, either physical examination or laboratory 

evaluation is used to monitor the recognition of rice illnesses. 

Only a professional can perform a laborious visual assessment. 

On the other hand, Chemical reagents are required for 

laboratory experiments, which is an exhausting procedure 

(TÜRKOĞLU and HANBAY, 2018), (Sethy et al., 2020). Thus, 

it is important to automate the process of detecting rice diseases 

in order to reduce the above-mentioned limitations and produce 

an effective and accurate detection of paddy diseases. 

 

The recent advancement in image analysis, computer vision, 

and artificial intelligence technologies especially deep learning 

(DL) techniques have great achievements in multiple domains 

including medicine (Attallah, 2023a, 2023b), healthcare 

(Attallah, 2023c, 2023d), renewable able energy (Attallah et al., 

2022), petroleum industry (Rashad et al., 2022), and gas leakage 

detection (Attalah, 2023). Inspired by the accomplishments of 

these technologies, they could present a chance for the 

development of computer-assisted frameworks to help with the 

identification of rice diseases and other issues in the agricultural 

sector (Jiang et al., 2020). The majority of existing computer-

assisted frameworks for plant disease recognition relied on 

pictures taken with visible light cameras (Batchuluun et al., 

2022a), (Attallah, 2023e; Haridasan et al., 2023; Salamai et al., 

2023; Thangaraj et al., 2022; Vishnoi et al., 2021). Each plant 

illness typically results in both internal and external changes in 

the affected crops. If the infection has begun to propagate 

throughout the crop, visible signs show up a few days following 

illness, nevertheless by then the disease has propagated and the 

crop quality has declined, which results in a substantial decrease 

in productivity. Therefore, considering that the crops remain in 

their incubation phase ahead of the first signs of the illness, 

visible camera-based images collapse to accomplish timely 

diagnosis because it is unable to accurately forecast the 

infection before the emergence of lesions. However, internal 

chemical alterations start to show up right away. Infected crops 

experience fluctuations in temperature that are undetectable to 

the naked eye due to those internal alterations (Chen and 

Shakhnovich, 2010). Since it records infrared light across the 

outermost layer of an item in a wavelength spectrum of 7500 to 

14,000 nm (Bhakta et al., 2023), a thermal infrared sensor is 

strongly responsive to this sort of temperature fluctuation within 

the object's body, unlike visible light sensors, which operates in 

the 380 to 700 nm range (Batchuluun et al., 2022a; Vadivambal 

and Jayas, 2011). 

 

There are a few research efforts on the identification of plant 

diseases using images captured by thermal infrared cameras. An 

example of the scarce studies is (Batchuluun et al., 2022b) 
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which employed a convolutional neural network (CNN) and 

explainable artificial intelligence to enhance the performance of 

paddy disease classification. Furthermore, the research article 

(Bhakta et al., 2023) introduced a novel three-layer CNN that 

was suggested to identify rice diseases. Whereas the research 

article (Anasta et al., 2021) employed standard image 

processing techniques to detect disease in banana fruit. In 

addition, the article (Sachan et al., 2022) utilized four CNNs 

separately with a support vector machine (SVM) to identify 

paddy diseases using a thermal camera. Similarly, the article 

(Bompilwar et al., 2022) adopted multiple CNNs to detect plant 

diseases. On the other hand, the study (Banerjee et al., 2018) 

employed an SVM classifier to estimate leaf area in wheat 

crops. 

 

Some of the studies discussed earlier are based on traditional 

machine learning approaches which require several 

preprocessing phases such as segmentation and handcrafted 

feature extraction which are time-consuming and might be 

prone to error. Others utilized DL models including a single 

CNN to achieve the disease identification procedure. Even 

studies that employed several CNNs used them individually to 

perform the recognition procedure. However, employing 

multiple CNNs of various structures, merge their advantages 

and could probably enhance performance. Furthermore, all of 

the previous studies relied solely on the spatial information 

obtained from the CNNs to achieve the plant disease detection 

process. Nonetheless, acquiring time-frequency information as 

well as spatial knowledge most likely boosts the detection 

procedure. Also, non of them employed a feature selection step 

to lower feature dimensionality, thus diminishing classification 

complexity. Therefore, this study proposes a DL-based model 

that relies on three CNNs (Inception, Mobile, and DenseNet-

201) of different constructions for paddy disease identification 

by thermal images. Rather than relying on spatial data alone 

obtained from each CNN, the proposed model acquires time-

frequency representation using the discrete wavelet transform 

(DWT) method which is applied to spatial deep features 

attained from each CNN separately. Afterward, spatial-time-

frequency features of the three CNNs are concatenated, and a 

feature selection approach is adopted to reduce dimensionality 

and pick the most significant features. 

 

The remaining parts of the paper are structured in the following 

manner. Section 2 introduces the material and methods. Section 

3 shows the performance measures. Section 4 discusses the 

results of the proposed model. Section 5 concludes the article. 

 

2. METHODS AND MATERIALS 

2.1 Paddy Thermal Image Dataset 

The FLIR camera is used to capture paddy leaves in this dataset. 

Asian rice, frequently referred to be "Oryza sativa," was the rice 

crop used in this database. This database could be found on 

Kaggle. The database includes thermal photographs of Oryza 

sativa leaves in both healthy and unhealthy conditions. The 

photos available in the database have a resolution of 320 x 240 

pixels. It includes 636 pictures comprising five classes of paddy 

diseases and a healthy leaves class. The paddy disease classes 

involve blast, bacterial leaf blight, hispa, leaf folder, and leaf 

spot. The distribution of the photos among classes and samples 

of images in each class are shown in Table 1 

 

2.2 Discrete Wavelet Transform 

The discrete wavelet transform (DWT) is a well-recognized 

technique utilized in analyzing signals in the time-frequency 

domain. The initial signal could be split into various frequency 

sub-bands using the DWT (Mallat, 1989). Particularly, the high-

frequency sub-band is rescaled using the first decomposition 

level of DWT, and the signal is then rebuilt using this 

developed sub-band. The original signal is initially high-pass 

filtered, producing a trio of detailed coefficients, followed by 

low-pass filtering and down-scaling, producing an 

approximation coefficient sub-band that represents the 1D 

DWT of the signal. The procedure iterates on the approximation 

coefficient sub-band to determine the multi-level decomposition 

of DWT. 

 Disease Name # Images Sample Image 

Hispa 142 

 
Bacterial leaf 

Blight 

220 

 
Leaf folder 34 

 
Hispa 142 

 
Blast 67 

 
Leaf spot 80 

 
Healthy 93 

 

Table 1. The distribution of the photos among classes and samples of 

images in each class. 
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2.3 Proposed DL-Based Model  

The proposed DL-based model has five cascaded steps 

consisting of paddy thermal image preprocessing, CNN model 

formation, feature extraction and time-frequency interpretation, 

integration and feature selection, and paddy disease 

classification. In the first step, paddy thermal photos are 

prepared to fit the CNN's input layer dimension and then 

augmented. Secondly, three CNN models including Mobile, 

DenseNet-201, and Inception are built with transfer learning. 

Thirdly, deep features are acquired from each of the CNNs, 

followed by a DWT process that produces time-frequency 

representation. Fourthly, the spatial-time-frequency features 

gathered in the previous step are integrated and a feature 

selection procedure is applied to these features. Finally, in the 

classification step, two SVM classifiers are built. Figure 1 

summarizes the steps of the proposed DL-based model. 

 

 

Figure 1. Summary of the steps of the proposed DL-based model. 

2.3.1 Paddy Thermal Images Preprocessing 

The infrared Camera's thermal images possess distinct sizes 

from the input layer dimensions that each of the CNN models 

embraces. In order to maintain a comparable size to what these 

models allow, the picture resolution should be changed to 224 x 

224 x 3 for DenseNet-201 and Mobile, whereas for Inception, it 

is equal to 229 x 229 x 3. After that, a number of augmentation 

techniques are used to increase the total number of photographs 

utilized for instructing the CNN models. The augmentation 

action typically promotes these models' learning and prevents 

overfitting. 

 

2.3.2 CNN Model Formulation 

The three pre-trained CNNs employed in the proposed DL-

based model are Mobile, DenseNet-201, and Inception. They 

are three state-of-the-art DL models having different 

architectures. The three pre-trained CNNs are modified using 

transfer learning to have a final output layer size of 6, which is 

equivalent to the total amount of paddy disease and healthy 

classes that make up the dataset. Mini-batch and learning rate 

are two additional hyper-parameter settings that have been 

tweaked. Both have been changed to 4 (mini-batch) and 0.0002 

(learning rate), respectively. Additionally, 100 epochs have 

been allocated. Subsequently, thermal pictures are employed for 

retraining these CNNs. 

 

2.3.3 Feature Extraction and Time-Frequency 

Interpretation 

After terminating the training procedure of the three CNNs, the 

feature extraction process is done. Repurposing transfer learning 

allows for the acquisition of high-level features out of the 

pooling layer, which comes before the fully connected layer. 

Those attributes offer merely spatial data. The Inception, 

DenseNet-201, and Mobile CNNs, respectively, produce feature 

vector lengths that are equal to 2048, 1920, and 1280. These 

features are then subjected to additional analysis using the 

DWT technique resulting in the time-frequency representation 

of the features resulting in the spatial-time-

frequency illustrations. The total amount of these attributes is 

reduced as well using DWT to reach half of their original 

dimensions 1024, 960, and 640 for the Inception, DenseNet-

201, and Mobile models, respectively. Note that, one level of 

DWT is utilized with the “Haar’ wavelet, where the 

approximation coefficients are employed as features. 

2.3.4 Integration and Feature Selection 

High-level features obtained from each CNN in the previous 

step, after applying the DWT are concatenated. The dimensions 

of features after this step reached 2624 which is huge. Thus, 

diminishing the size of this feature vector is essential to lower 

the complexity of classification. Feature selection is the process 

of choosing a significant set of lowered features that impact 

classification, leading to a lesser classification complexity as 

well as avoiding overfitting (Attallah et al., 2017). In this step, 

Relief-F feature selection (Urbanowicz et al., 2018) is applied to 

the integrated high-level features. The Manhattan distance is 

used by ReliefF for determining weighting elements, which 

results in positive as well as negative weighting elements. 

Redundancy is distributed all over the ReliefF using 

unfavorable weight quantities. The default threshold of Matlab 

is used for the weighting procedure. 

2.3.5 Paddy Disease Classification 

To accomplish the paddy disease classification step, two SVM 

classifiers of distinct kernels are employed. These kernels are 

quadratic and cubic. The sequential minimal optimization 

algorithm is used to learn these SVMs.  5-fold cross-validation 

is utilized to validate the performance of the proposed DL-based 

model. Specifically, the entire data set is split at random into 

five comparable sub-datasets for 5-fold cross-validation.  Four 

of the sub-portions are applied for learning the classifiers, while 

a single subset is placed aside for testing purposes where the 

classification accuracy is computed. This procedure is carried 

out multiple times, using a distinct testing portion from among 

the 5 sub-portions every single time.  The accuracy of 

classification of the five sub-datasets utilized in evaluating the 

performance is averaged to determine the final accuracy. 
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3. ASSESSMENT METRICS  

This section provides examples of the assessment metrics that 

were utilized to assess the effectiveness of the suggested DL-

based model. Accuracy, sensitivity, precision, F1-score, and 

specificity are some of the above measures. Formulas (1–5) are 

employed for calculating the measures. 

 

 

 

 

 

 

Where the term "true positive' (TP), represents the number of 

properly determined positive instances. The term "true 

negative" (TN) designates the total of exactly recognized 

negative instances. The term "false negative" (FN) refers to 

positive instances that were wrongly identified as negative, 

while the false positive (FP) refers to the number of negative 

instances that were erroneously detected as positive. 

 

4. RESULTS AND DISCUSSIONS 

4.1 Spatial Deep Features Results 

This section provides the results of the SVM classifiers learned 

with spatial deep features of each CNN separately. Table 2 

shows the results of the SVMs trained with these spatial 

features. Table 2 indicates that both quadratic SVM (Q-SVM) 

and cubic SVM (C-SVM) reached an accuracy of 89% using 

spatial features of DensNet-201. Whereas Mobile CNN’s spatial 

features used to train the SVM classifiers led to an accuracy of 

88.4% and 87.6% for Q-SVM and C-SVM respectively. While 

spatial features of Inception achieved an accuracy of 87.1% and 

88.1% for the Q-SVM and C-SVM classifiers respectively. 

 

Model Q-SVM C-SVM 

DenseNet-201 89 89 

Mobile 88.4 87.6 

Inception 87.1 87.3 

Table 2. The classification accuracy (%) of the SVM classifiers learned 

with spatial deep features of each CNN. 

 

4.2 Spatial-Time-Frequency Features Results 

This section discusses the results after the DWT process is 

applied for each spatial deep feature set obtained for each CNN 

independently. The results are displayed in Figure 2. As shown 

in Figure 2, the classification accuracy has improved after the 

DWT process to reach 89.5% and 89.2% for Mobile CNN, 

87.6%, 87.9% for Inception CNN, and 90.4% and 89% for 

DenseNet-201 CNN using the Q-SVM and C-SVM classifiers 

respectively. Note that for the spatial-time-frequency of 

DenseNet-201 CNN, the C-SVM attained the same accuracy 

achieved with the spatial features, however, the number of 

spatial-time-frequency features (960) is much lower than that of 

the spatial features (1920). Likewise, the number of spatial-

time-frequency features is lesser for Mobile (640) and Inception 

(2048) compared to 1280 and 2048 for spatial features. These 

results prove that spatial-time-frequency demonstration is 

superior to spatial data. The results also verify that DWT is 

capable of enhancing performance with a lower amount of 

features. 

 

 (a) 

 
(b) 

 
(c) 

Figure 2. Classification accuracy (%) for the SVM classifiers trained 

with spatial-time-frequency features compared to spatial features alone. 

4.3 Feature Selection Results 

This section illustrates the results after the integration and 

feature selection processes. Table 3 demonstrates the 

assessment metrics after the integration and feature selection 

processes. The results shown in Table 3 indicate that the 

accuracy, sensitivity, specificity, precision, and F1-score are 

(95.92%,96.5%), (95.55%, 95.94%), (99.11%,99.17%), 

(95.98%,97.08%), and (95.69%,96.47%) for the Q-SVM and C-

SVM respectively. These results confirm that the integration of 

high-level features from multiple CNN could improve 

classification performance. These results are obtained with only 

1000 features which is much lower than the concatenated 
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features (2624). Thus, feature selection can successfully reduce 

and select significant features while enhancing performance. 

The receiving operating characteristics curves (ROCs) for the 

Q-SVM and C-SVM classifiers are also plotted and shown in 

Figure 3.  

 Accur

acy 

Sensitivity Specificity Precision F1-

score 

Q-

SVM 

95.92 95.55 99.11 95.98 95.69 

C-

SVM 

96.50 95.94 99.17 97.08 96.47 

Table 3. The assessment metrics (%) of the SVM classifiers after the 

feature selection process. 

 

Q-SVM 

C-SVM 

Figure 3. ROC curves after the integration and feature selection 

processes 

4.4 Comparisons with Previous Work 

The results of the developed DL-based model are contrasted 

with current models that utilize thermal imaging and 

DL techniques, as shown in Table 4, to illustrate and confirm its 

competitive capability. The outcomes in Table 4 attest to the 

created DL-based model's superiority. This is because the 

provided DL-based model achieves a greater classification 

accuracy of 96.5% in comparison with existing methods that 

employ thermal imaging sensors and DL techniques. 

Furthermore, all other assessment metrics achieved using the 

proposed DL-based model are greater than existing models. 

 
Article Accu

racy 

Sensit

ivity 

Precisi

on 

Specifi

city 

F1-

score 

(Chompookham 
and Surinta, 2021) 

0.886 0.601 0.625 - 0.597 

(Batchuluun et al., 

2022b) 

0.900 0.623 0.655 - 0.638 

(Ashwinkumar et 
al., 2022) 

0.879 0.609 0.635 - 0.610 

(Chakraborty et 

al., 2021) 

0.876 0.592 0.624 - 0.605 

Proposed 0.965 0.959 0.971 0.992 0.965 

Table 4. Comparisons with existing DL-based models based on the 

Paddy thermal images dataset 

5. CONCLUSION 

Numerous research efforts have focused on classifying paddy 

diseases via images obtained by visible light sensors. Thermal 

infrared sensors, on the other hand, just recently began to be 

utilized for recording patterns and characteristics of paddy's 

exterior and interior that can't be observed by visible-light 

sensors. There aren't many studies, though, that use thermal 

infrared sensors to classify paddy images. This paper proposed a 

DL-based model for paddy disease classification using thermal 

images. Contrary to previous methods for plant disease 

classification, the proposed DL-based model employed three 

CNNs with distinct structures. Furthermore, it employed  DWT 

to provide a time-frequency representation of spatial deep 

features acquired from the three CNNs in order to train the 

classification models. In addition, it integrated the spatial-time-

frequency features of the three CNNs and applied a feature 

selection approach based on Relief-F to pick the most useful 

features and lower feature space dimensionality. The results of 

the proposed DL-based model indicated the superiority of 

spatial-time-frequency demonstrations over spatial data. The 

outcomes also demonstrated that DWT could improve 

performance with fewer features. Moreover, the findings 

illustrated how combining high-level features from different 

CNNs could enhance classification performance. Compared to 

the combined features (2624), these results were obtained using 

only 1000 features. Thus, feature selection was capable of 

eliminating non-essential features and choosing the important 

ones whilst improving efficiency. In addition, the outcomes of 

the proposed DL-based model in comparison to recent methods 

for plant disease classification confirmed its outperforming 

capacity.  
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