
 
* corresponding author 

ESTIMATION OF WHEAT KERNEL MOISTURE CONTENT IN-FIELD BASED ON 
PLANETSCOPE AND SENTINEL-2 SATELLITE IMAGES  

 
 

Junhan Luo1, Zhaocong Wu1,2,3*, Keyi Rao1, Haoyu Lin1, Siqing Zhang1, Zhixiong Dai1, WeiHua Lin1, Yixian Yue1 
 

1 School of Remote Sensing and Information Engineering, Wuhan University, China (jh_luo123, zcwoo, kkkkae, linhaoyu021, 
zhangsiqing, zhixiongd, linweihua, YueYiXian)@whu.edu.cn 

2 Hubei Luojia Laboratory, China 
3 State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, China 

 
 

KEY WORDS: Wheat kernel moisture content, Sentinel-2, PlanetScope, Vegetation indices, Random Forest Regression, Dynamic 
changes. 

 
 
ABSTRACT: 
 
Strict limitation of wheat kernel moisture content (KMC) has been set during wheat trading, as it determines the quality, storage 
safety, and economic efficiency. The acquisition of timely and precise wheat KMC data in-field constitutes a vital component of 
harvest management, as it can enable farmers to gather grain that meets industry standards, optimize their financial returns, and 
safeguard food resources. However, so far efficient monitoring methods have remained elusive. To address this challenge, this study 
utilized remote sensing satellite imagery, specifically, PlanetScope (PS) and Sentinel-2 (S2), to bridge this crucial gap. By leveraging 
the sensitive bands and vegetation indices for wheat KMC that were extracted from S2 and PS, respectively, this study constructed 
wheat KMC estimation models utilizing Random Forest Regression (RFR) to achieve high accuracy (R2>0.85). Furthermore, this 
study evaluated different spectral feature combinations to optimize the mapping retrieval quality of wheat KMC monitoring. Notably, 
the results revealed that the B5 band on PS was the most effective original band for wheat KMC monitoring, while B11 and B12 on 
S2 performed well but were susceptible to soil background interference along field edges. In terms of vegetation indices, the Plant 
Senescence Reflectance Index (PSRI) was deemed a reliable monitoring indicator. The practical implications of this study provided a 
dependable and convenient tool for monitoring wheat KMC in-field and scientific methods to assist harvest decision-making. 
 
 

1. INTRODUCTION 

Wheat kernel moisture content (KMC) has attracted significant 
attention in previous research due to its crucial role in wheat 
harvest management, grain storage safety, and the resultant 
impact on grain quality for consumption and seeding (Atzema, 
1993; Nasir et al., 2004; Wang et al., 2020). Current 
recommended standard for wheat KMC at harvest time is 13.5% 
(Loewer et al., 1994). Artificially drying wheat that has not met 
the required standard will result in additional costs and waste 
thermal resources. Proper monitoring methods for wheat KMC 
in-field before harvest can assist with making scientific 
decisions for agricultural management. Such approaches can 
contribute to improving economic benefits and protecting grain 
resources, particularly in large-scale automated farmland aimed 
at enhancing production efficiency where there are gaps in these 
approaches at the moment, unfortunately. 
The changes in wheat KMC occur in several distinct stages, 
which are of crucial significance to the wheat farmers. The 
initial lag phase is marked by a rapid increase in wheat KMC, 
which can exceed 70% (Pepler et al., 2006). And then it is 
worth noting that after reaching the physiological maturity 
stage, where wheat KMC is about 40%, the growth of wheat 
plants stops gradually, and environmental drying processes 
primarily drive the decrease in wheat KMC (Schnyder and 
Baum, 1992; Calderini et al., 2000). Consequently, the rate of 
declines in wheat KMC is rapid, specifically manifested as it 
takes only about 10 days to reach a standard level of 13% 
(Celestina et al., 2021). Farmers need to pay closer attention to 
changes in wheat KMC in-field after their crops have reached 
maturity to ensure timely harvesting during this brief period. 
Measurements for wheat KMC currently available primarily 
cater to post-harvest grain trading, which can be categorized 
into direct and indirect methods. Direct methods involve 

crushing grains or altering their properties during measurement, 
such as through drying or chemical methods (Grabe, 1989; 
Klomklao et al., 2017). Although such methods are reliable and 
accurate, they are not efficient. Indirect monitoring methods 
analyse the moisture content inside kernels by utilizing their 
properties, such as physical, chemical, and optical 
characteristics, without changing their state or chemical 
properties, such as through dielectric properties (Brain, 1970), 
acoustic methods (Amoodeh et al., 2006), or spectral 
measurement (Gergely and Salgó, 2003; Nath K and 
Ramanathan, 2017), while those methods are non-destructive, 
responsive, and easy to operate (Reid et al., 2010; Nath K and 
Ramanathan, 2017). Besides, using current methods to monitor 
the dynamic change of wheat KMC on-site in large-scale 
farmland is too cumbersome, time-consuming, and labor-
intensive (Li et al., 2021). These non-destructive monitoring 
methods can only offer single-point observations and cannot be 
effectively applied to fields before harvest.  
Therefore, exploring monitoring methods with high throughput, 
high precision, and non-destructive characteristics for 
estimating wheat KMC in-field can effectively solve the 
problem of inadequate data support for agricultural decision-
making and research. Remote sensing is a powerful method to 
monitor plant phenotypes (Tariq et al., 2020). By receiving 
radiation information, quantitative models can be established to 
describe the relationship between remote sensing observation 
signals and the characteristics and properties of crops on the 
ground (Wójtowicz et al., 2016). Remote sensing satellite 
images provide an effective source of radiation information for 
large-scale crop phenotype retrieval, quickly providing the 
necessary parameters for agronomic decision-making (Dalla 
Marta et al., 2015). Various multispectral satellites are widely 
used to estimate various phenotype parameters of wheat. 
Xianfeng Zhou et al. compared various methods, such as 
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vegetation index, machine learning, spectral transmission model 
lookup table, and mixed model, to explore the potential of 
Landsat 8 multispectral data in the retrieval of wheat 
chlorophyll content (Zhou et al., 2020). Haitao Zhao et al. 
constructed vegetation indices based on canopy hyperspectral 
and multispectral data to establish the wheat kernel protein 
content retrieval model using a multi-stage linear regression 
method. To conclude, spectral analysis is a powerful tool for 
monitoring and estimating crop parameters (Zhao et al., 2019). 
However, there is limited research currently on estimating 
wheat KMC in-field using satellite remote sensing. This study 
aims to evaluate the potential of multispectral satellite images 
for this purpose. We analysed sensitive bands and vegetation 
indices of wheat KMC from PlanetScope (PS) and Sentinel-2 
(S2) and constructed retrieval models in the framework of 
random forest regression (RFR) to map the distribution of the 
wheat KMC in-field at different dates. Furthermore, the 
retrieval quality of mapping for wheat KMC based on different 
spectral feature combinations was compared to better 
characterize the ability of these features. 
 

2. DATA AND METHODS 

2.1 Study Site 

Henan is located in central China and belongs to the warm belt 
monsoon climate zone, which is the primary growing area for 
winter wheat. The research was carried out on a highly 
standardized farmland (35°22 ′ N,114°12 ′ E, as shown in 
Figure 1) with a total cultivation area of 3,000,000 m2 located in 
Qi County, Hebi City, Henan Province, China. The crop 
structure in this area is simple and the main crop is wheat. The 
experiment was conducted from 25th May to 6th June in 2022, 
when the wheat had reached the physiological maturity stage. 
During the experiment period, the weather was sunny and 
cloudy mostly, with the daytime temperature around 30°C. 
 

 
Figure 1. The situation of the study area and sampling points 

layout. (a) Three field were selected as sample-collecting fields. 
(b) Location details of the study area. 

 
2.2 Ground Measurements of Reference Wheat KMC 

Three wheat fields were selected as sample collecting fields, 
and a total of 50 sampling points were set up in the fields 
(Figure 1 (a)). Regular data collection of wheat KMC was 
conducted daily throughout the entire period from 25th May to 
6th June in 2022. Due to limited manpower, we selected 
different part of the sampling points for data collection every 

day. The wheat KMC is measured through the drying method, 
which is considered the most accurate way. The specific drying 
steps are divided into two steps: first, the wheat is wilted by 
setting the drying temperature to 130℃ and time to 2 hours; 
secondly, the oven temperature is lowered to 85℃  and the 
wheat is dried until it reaches a constant weight. The formula 
for calculating the wheat KMC M is as follows: 
 

 2 1

1

×100%W WM
W
−

=  (1) 

 
Where W1 represents the weight of the sample before drying 
(fresh weight), while W2 represents the weight of the sample 
after drying (dry weight). 
 
2.3 Satellite Data  

The multispectral satellite data sources investigated in this study 
are S2 and PS. S2 is well-known for its outstanding temporal, 
spatial, and spectral performance and is widely used for 
vegetation monitoring and precision agriculture (Segarra et al., 
2020). Its revisiting cycle is 5 days and it can provide 13 
imaging bands covering the visible, NIR, and shortwave 
infrared regions with spatial resolutions ranging from 10 meters 
to 60 meters, except for the cloud detection band B10, which is 
excluded from L2A product. The S2 images were obtained from 
the Copernicus Open Access Hub (European Space Agency, 
2023). The Copernicus Open Access Hub provided top-of-
atmosphere reflectance products S2L1C, and the Sen2Cor 
plugin was used to perform atmospheric correction on all bands, 
resulting in the surface reflectance S2A product. Additionally, 
all band resolutions were resampled to 10m. PS is a commercial 
constellation of microsatellites operated by Planet Labs that 
offers greatly improved spatial resolution compared to the S2 
mission. PS currently includes over 180 constellations, 
achieving global coverage almost every day. In March 2022, PS 
launched new products with eight spectral bands, covering 
visible and NIR regions, in addition to the original four-band 
products. PS has added a yellow band (600-620nm, B5) in the 
visible range, but cannot provide shortwave infrared bands and 
more extensive NIR information compared with S2. The PS 
images were acquired from Planet (Planet Labs PBC, 2023), 
where surface reflectance products with a spatial resolution of 
3m can be downloaded. During the study period, there were 7 
cloud-free images collected by PS within the study area, while 
the S2 satellite collected 3 images (Table 1). 
 

Platform PS S2 

Date 

5/26  
5/27 5/27 
5/28  
5/30 6/01 
6/01  
6/03 6/06 
6/05  

Total 7 3 
Table 1. Specific date statistic of collected images. 

 
2.4 Vegetation Index (VI)  

Drawing upon previous research (Andreatta et al., 2022), 15 
representative vegetation indices were selected as candidate 
features to investigate the sensitive parameters for monitoring 
wheat KMC (Table 2). These indices are the Enhanced 
Vegetation Index (EVI), Green Normalized Difference 
Vegetation Index (GNDVI), Global Vegetation Moisture Index 
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(GVMI), Normalized Burn Ratio (NBR), Normalized 
Difference Infraded Index (NDII), Normalized Difference RE1 
(NDRE1), Normalized Difference Vegetation Index (NDVI), 
Plant Senescence Reflectance Index (PSRI), Red-Edge 
Chlorophyll Index (RECI), Red-Edge Normalized Difference 
Vegetation Index (RENDVI), Red-Edge Spectral Index (RESI), 
Ratio Vegetation Index (RVI), Soil Adjusted Vegetation Index 
(SAVI), Visible Atmospherically Resistant Index (VARI), Wide 
Dynamic Range Vegetation Index (WDRVI), including 
commonly used ones like NDVI (Pettorelli et al., 2005) and 
EVI (Huete et al., 2002), as well as those closely related to 
vegetation physiological parameters, such as NDII (Klemas and 
Smart, 1983) (sensitive to LAI) and RECI (Gitelson et al., 2003) 
(sensitive to chlorophyll). Additionally, indices closely related 
to vegetation status were included, such as NRB (Xiao et al., 
2020) and PSRI (Nath K and Ramanathan, 2017). All of these 
indices can be computed using S2 due to their rich infrared 
bands, while 10 of these indices can be computed using PS. 

VI Formula Reference 

EVI 2.5*(NIR-RED) 
/(NIR+6RED-7.5*BLUE+1) 

(Huete et al., 
2002) 

GNDVI (NIR-GREEN) 
/(NIR+GREEN) 

(Gitelson et 
al., 1996) 

GVMI (NIR+0.1-SWIR+0.2) 
/(NIR+0.1+SWIR+0.2) 

(Ceccato et 
al., 2002) 

NBR (NIR-SWIR2190) 
/(NIR+SWIR2190) 

(García and 
Caselles, 

1991) 

NDII (NIR-SWIR1610) 
/(NIR+SWIR1610) 

(Klemas and 
Smart, 1983) 

NDRE1 (REDedge740-REDedge705) 
/(REDedge740+REDedge705) 

(Gitelson and 
Merzlyak, 

1994) 

NDVI (NIR-RED) 
/(NIR+RED) 

(Pettorelli et 
al., 2005) 

PSRI (RED-BLUE)/REDedge705 
(Nath K and 
Ramanathan, 

2017) 

RECI (NIR/REDedge705)-1 (Gitelson et 
al., 2003) 

RENDVI (NIR-REDedge705) 
/(NIR+REDedge705) 

(Gitelson and 
Merzlyak, 

1994) 

RESI 

(REDedge780+REDedge740- 
REDedge705) 

/(REDedge780+REDedge740+ 
REDedge705) 

(Xiao et al., 
2020) 

RVI NIR/RED (Jordan, 
1969) 

SAVI 1.5*(NIR-RED) 
/(NIR+RED+0.5) 

(Huete, 
1988) 

VARI (GREEN-RED) 
/(GREEN+RED-BLUE) 

(Nath K and 
Ramanathan, 

2017) 

WDRVI (0.1*NIR-RED) 
/(0.1*NIR+RED) 

(Gitelson et 
al., 2003) 

Table 2. Description of VIs evaluated in this study. 

2.5 Regression Approach 

In this study, the Random Forest Regression (RFR) framework 
was utilized to investigate the sensitive feature domain and 
high-precision retrieval of wheat KMC. The RFR model is 
constructed using the RandomForestRegressor class in the 
Sklearn package of Python, and it also provides Gini 

importance as a measurement of feature importance. The 
random forest (RF) algorithm was proposed by Breiman 
(Breiman, 2001) ，  which can effectively reduce bias and 
reduce variance. RFR employed an ensemble learning method 
to synthesize the results of all trees for obtaining the regression 
prediction result (Smith et al., 2013). 
To compare the retrieval performance of wheat KMC between 
PS and S2, RFR models were constructed using spectral data 
collected from PS and S2 on the position of the sampling points 
respectively. The alternative feature dimension on PS is 18 (8 
original bands, 10 vegetation indices) with n=200 samples, 
while the dimension on S2 is 27 (12 original bands, 15 
vegetation indices) with n=74 samples. The two significant 
parameters in the RFR algorithm, n_estimators and max_depth, 
were set to 20 and 7, respectively. The optimized feature subsets 
from the candidate feature space were selected by the RFR 
model for wheat KMC estimation.  

3. RESULT

3.1 Wheat KMC Spectral Analyse 

Spectral characteristics of the wheat canopy are significantly 
affected by the wheat KMC (Figure 2). As wheat KMC 
decreases, the trend of spectral change is similar to leaf drought 
stress: reflectance increases in yellow and red band ranges while 
decreasing in NIR bands (Caturegli et al., 2020). Figure 3 
illustrates the trend of gradient change in vegetation indices 
after standardization. It is clearly shown that the PSRI index 
exhibits a clear gradient trend on PS, while all vegetation 
indices exhibit a clear gradient trend on S2. The performance of 
the same vegetation index on different satellites is not entirely 
consistent. There are two possible reasons for this phenomenon: 
first, the difference in the numbers of sampling data between PS 
(200 samples) and S2 (74 samples), and second, due to the 
higher temporal resolution of PS, the fluctuations caused by 
changes in sensor imaging conditions are more significant. 

Figure 2. Reflectance spectral curves at different wheat KMC. 
(a) Spectral curves on PS. (b) Spectral curves on S2.

Figure 3. Vegetation indices at different wheat KMC. (a) 10 
vegetation indices on PS. (b) 15 vegetation indices on S2. 
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3.2 Feature Performance 

To reduce the complexity of the model and obtain the optimal 
feature domain, we quantitatively evaluate the contribution of 
each feature to the model using the Gini importance of RFR. 
Features were added step by step to the RFR model according 
to their importance and the accuracy of R2 by each step was 
observed on the train-test split dataset (with a test set ratio of 
0.2). Figure 4 shows the feature importance ranking and 
retrieval steps. The result indicated that for PS, the significant 
features are B5 (importance=0.74) and PSRI 
(importance=0.11). For S2, the most significant features are 
B11 (importance=0.33), B12 (importance=0.26), and PSRI 
(importance=0.09). As features were gradually added to the 
model, the R2 of the training and test set first increased and then 
stabilized or decreased, and the model reached relatively high 
precision at the inflection point of the accuracy curve, where 
instructed the optimal feature domain. Therefore, the optimized 
feature domain for PS is B5 and PSRI (R2=0.97/0.87, 
RMSE=0.0220/0.428), and for S2, it is B11, B12 and PSRI 
(R2=0.99/0.94, RMSE=0.0116/0.0292). On S2, R2 increased by 
2% on the training set and by 8% on the validation set when 
compared to PS, while RMSE decreased by 47% on the training 
set and by 32% on the validation set.

Figure 4. Feature importance ranking and RFR retrieval 
precision plots. 

3.3 Wheat KMC Retrieval 

The study area's cloud-free PS and S2 satellite images were 
used to conduct wheat KMC mapping using the trained RFR 
models. The boundaries of fields were manually drawn, and 
Figure 5 shows the distribution of wheat KMC on different 
dates. The result indicates a consistent decrease in wheat KMC 
over time, confirming the reliability of the trained RFR models. 
However, wheat KMC prediction of S2 at the edge of fields was 
significantly lower. Satellite images with higher spatial 
resolution can display more details of wheat KMC in different 
locations within fields.  
Wheat KMC data was extracted pixel by pixel and the dynamic 
changes of wheat KMC within the research area were plotted 
over time (Fig 6). The wheat KMC decreased from 

approximately 50% at the start to around 10% within 12 days, 
following an inverted-S-shaped curve with a faster initial 
decrease and a slower decline later on. On 27th May and 1st 
June, PS and S2 had similar distribution ranges of moisture 
content, which can confirm the uniformity of the RFR model 
from different data sources. However, due to its higher temporal 
resolution, PS was able to capture the dynamic changes in 
wheat KMC more clearly.  

Figure 5. Estimated wheat KMC map in the study area and 
period based on the prediction models of PS (a) and S2 (b). 

Figure 6. Boxplot of dynamic changes of wheat KMC within 
the research area. 

3.4 Additional Effective Features 

The random forest model has been proven to have excellent 
predictive performance and embeds Gini importance to measure 
the input features (Mutanga et al., 2012; Smith et al., 2013; 
Belgiu and Drăguţ, 2016). In the feature selection section, all 
features were ranked according to their Gini importance and 
gradually added to the RFR model to determine the effective 
feature domain based on the inflection point of the accuracy 
curve. The importance calculation result showed that the 
importance of B5 in PS was much higher than that of other 
features, as well as B11 and B12 of S2. The appropriately 
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selected domain contained B5 and PSRI on PS, while B11, B12, 
and PSRI on S2. 
However, the disadvantage of Gini importance is that, in the 
case of multiple related features, it may easily ignore the second 
feature, leading to biased feature importance rankings (Strobl et 
al., 2007; Nicodemus et al., 2010). To more accurately delineate 
feature domains for wheat KMC, B5 on PS and the SWIR 
spectrum part on S2 were ignored to find out if there were still 
effective features for measuring wheat KMC (Figure 7). The 
same process was executed and the alternative feature domains 
were selected. The feature domains are B1, B3, B7, PSRI, EVI 
on PS (R2=0.95/0.86, RMSE=0.0269/0.0450), and PSRI, 
NDRE1, VARI, RESI, B4 on S2 (R2=0.99/0.89, 
RMSE=0.0158/0.0381). Compared with the initial feature 
domain, alternative domains still achieved high accuracy levels 
(R2>0.85), although the accuracy of models was slightly lower 
than that of the original model. Accuracy of R2 decreased by 
2%/3% and RMSE increased by 22%/5% on PS, while R2 
decreased by 0%/5% and RMSE increased by 36%/30% on S2. 

Figure 7. Features without B5 on PS and SWIR spectrum part 
on S2 were evaluated by Gini importance and then input to the 

RFR in order of values of importance. 

Figure 8. Comparison of wheat KMC results based on original 
and alternative domains. (a) On PS. (b) On S2. 

Furthermore, based on the RFR models constructed from 
alternative feature domains, wheat KMC mapping was carried 
out. The mapping results of representative days, 27th May and 
1st June, were compared (Figure 8), and it was found that on PS, 
the new feature domain produced obvious noise in the mapping, 

possibly because the sensitivity of the new combination of 
features was not as good as that of the original features, and 
combining more features brought more noise to the model. On 
S2, the original features showed a significant underestimation of 
the predicted moisture content at the edge of fields, and the 
alternative feature domain significantly improved this 
phenomenon, but there was significant heterogeneity in the 
predicted moisture content in the centre of fields. 

3.5 Explanation for Sensitive Features 

Based on existing research, it is evident that the spectral 
reflectance of the wheat canopy gradually changes from the 
filling stage to the maturity stage, with two absorption valleys 
disappearing in the visible spectrum and the reflectance 
gradually increasing in the infrared spectrum (Sharabian et al., 
n.d.). As the wheat matures, both chlorophyll and moisture
content decreases rapidly (Gergely and Salgó, 2003; Islam et al.,
2014). Chlorophyll has a significant absorption spectrum in the
visible part (chlorophyll a: 430nm, 660nm; chlorophyll b:
460nm, 640nm) (Curran, 1989), and the most dramatic changes
occur in the range of 600nm-700nm. Therefore, B5 in PS and
B4 in S2 are sensitive parameters for wheat KMC, and other
bands and indices related to chlorophyll have a certain impact
on wheat KMC estimation. Similarly, SWIR bands like B11 and
B12 in S2 located within the water absorption spectrum range
(Hamrouni et al., 2022) are also strong indicators of changes in
wheat KMC. In terms of vegetation indices, PSRI maximizes
sensitivity between carotenoids to chlorophylls ratio, and it can
indicate an increase in canopy stress, which effectively
characterizes plant fruit maturity, so it also shows strong
sensitivity to changes in wheat KMC.

Figure 9. The spectral curves of S2 at different positions on 
5/27 and 6/01. 

In addition, when using NIR regions to retrieval water content, 
there is a noticeable phenomenon of under-prediction at the 
edge of the field. From figure 9, it can be seen that the spectrum 
at the edge of the field deviates more from the middle towards 
the bare soil in the infrared region. The reason for this may be 
that the longer the wavelength of the spectrum, the more 
diffraction occurs (Glenar et al., 1994). Therefore, in sparsely 
populated areas of wheat density at the edge of the field, 
infrared light is more likely to pass through the plants and reach 
the ground. It carries more information similar to bare soil. 

4. DISCUSSION

Current wheat KMC measurement methods are passive and 
lagged, only judging the quality of harvested grain, and cannot 
guarantee a high qualification rate of the harvested grain. This 
study introduced multispectral imagery to retrieval wheat KMC 
in-field before harvest. Sentinel-2, a widely utilized 
multispectral satellite, and the recently introduced PS images 
were selected as data sources in this study. Notably, PS boasts 
high-frequency revisiting capabilities and superior spatial 
resolution that make it an outstanding data source for 
monitoring rapidly changing wheat KMC, though it must be 
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noted that commercial satellite image acquisition can be a costly 
undertaking. Thus, assuming the implementation of precise 
predictive models, the use of public Sentinel-2 images with 
lower spatial and temporal resolution may offer a cost-effective 
method of accurately harvest time guidance. 
It is important to acknowledge the limitations of this study. 
Firstly, the method employed in this study relies on 
multispectral satellite imagery as the data source, which may be 
susceptible to cloud cover, potentially hindering the timely 
acquisition of wheat KMC distribution information in-field. 
Secondly, the use of RFR algorithm to directly invert wheat 
KMC requires further validation to establish the model’s 
transfer-ability over time and space. Lastly, the drying process 
in-field is a dynamic interaction between wheat and multiple 
environmental factors. Nevertheless, this study limits its 
consideration to surface temperature and relative humidity, 
neglecting other potentially influential factors such as rainfall, 
wind, atmospheric pressure, and so on. To overcome these 
limitations, extensive samples covering extended periods and 
broad regions, as well as a more in-depth exploration of the 
underlying mechanisms, are needed to aid in the precise 
simulation and prediction of wheat KMC. This could help 
further enhance crop growth models in the moisture module and 
provide reliable tools for making optimal crop harvest 
decisions. 
 

5. CONCLUSION 

This study explores the ability of multispectral images to 
monitor the dynamic of wheat KMC in-field. Based on PS and 
S2 images, sensitive features for wheat KMC were selected 
from original bands and vegetation spectral indices to build the 
estimation model by RFR. It successfully generated spatial 
distribution maps of wheat KMC at 3m and 20m resolutions 
within the study area, providing an efficient monitoring solution 
for rapid dynamic changes of wheat KMC over large areas.  
From the result, the following major conclusions are drawn: 
1) There are different sensitive bands for wheat KMC on 
different satellite platforms, which are B5 on PS, and B11 and 
B12 on S2. The vegetation index PSRI exhibited strong 
sensitivity on both data sources, making it an excellent feature 
for monitoring wheat KMC. Using bands in the SWIR range for 
retrieval can easily cause deviations of wheat KMC at the edge 
of fields. 
2) Based on the selected features, the RFR model achieved high 
inversion accuracy on both data sources (R2>0.85), with slightly 
higher accuracy on S2.  
3) In terms of the accurate dynamic depiction ability of wheat 
KMC in-field, S2 is weaker than PS due to the lower spatial and 
temporal resolution.  
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