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ABSTRACT:

Digital surface model generation using traditional multi-view stereo matching (MVS) performs poorly over non-Lambertian sur-

faces, with asynchronous acquisitions, or at discontinuities. Neural radiance fields (NeRF) offer a new paradigm for reconstructing

surface geometries using continuous volumetric representation. NeRF is self-supervised, does not require ground truth geometry

for training, and provides an elegant way to include in its representation physical parameters about the scene, thus potentially rem-

edying the challenging scenarios where MVS fails. However, NeRF and its variants require many views to produce convincing

scene’s geometries which in earth observation satellite imaging is rare. In this paper we present SparseSat-NeRF (SpS-NeRF)

– an extension of Sat-NeRF adapted to sparse satellite views. SpS-NeRF employs dense depth supervision guided by cross-

correlation similarity metric provided by traditional semi-global MVS matching. We demonstrate the effectiveness of our approach

on stereo and tri-stereo Pléiades 1B/WorldView-3 images, and compare against NeRF and Sat-NeRF. The code is available at

https://github.com/LulinZhang/SpS-NeRF

1. INTRODUCTION

Satellite imagery and 3D digital surface models (DSM) derived

from them are used in a wide range of applications, including

urban planning, environmental monitoring, geology, disaster

rapid mapping, etc. Because in many of those applications the

quality of the DSMs is essential, a vast amount of research has

been undertaked in the last few decades to enhance their preci-

sion and fidelity.

Classically, DSMs are derived from images with semi-global

dense image matching (Hirschmuller, 2005, Pierrot-Deseilligny

and Paparoditis, 2006) (SGM) followed by a depth map fusion

step (Rupnik et al., 2018) or more recently with hybrid (Hart-

mann et al., 2017) or end-to-end (Chang and Chen, 2018) deep

learning based approaches. A new way of solving the dense

image correspondence problem is proposed by Neural Radi-

ance Fields (NeRF) (Mildenhall et al., 2020). Unlike the tra-

ditional methods, NeRF leverages many views to learn to rep-

resent the scene as a continuous volumetric representation (i.e.,

3D radiance field). This representation is defined by a neural

network and has the unique capacity to incorporate different

aspects of the physical scene, e.g., surface radiance or illumin-

ation sources.

Despite the tremendous hype around the neural radiance fields,

the state-of-the-art results remain conditioned on a rather large

number of input images. With few input images, NeRF has

the tendency to fit incorrect geometries, possibly because it

does not know that the majority of the scene is composed of

empty space and opaque surfaces. In a space-borne setting, it

is rare to have many images of a given scene acquired under

multiple viewing angles within a defined time window. With

the exception of the Pléaides persistent surveillance collection

mode, the most common configuration includes a stereo pair or

a stereo-triplet of images. Previous works have attempted to ap-

ply NeRF on satellite images, including S-NeRF (Derksen and

Izzo, 2021) and Sat-NeRF (Marı́ et al., 2022), but they bypassed

the problem of sparse input views by using multi-date images.

(a) Input (b) NeRF (c) Sat-NeRF (d) Ours (e) GT

Figure 1. SpS-NeRF (Ours) and competitors. NeRF variants

trained on 2 images. Our network leverages dense depth

information calculated by stereo-matching on downsampled

images. Compared to NeRF and Sat-NeRF, SpS-NeRF renders

sharper novel views (□), reconstructs more reliable 3D

geometries (□).

Contributions. In this paper, we present a NeRF variant that

attains state-of-the-art results in novel view synthesis and 3D

reconstruction using sparse single-date satellite images. Inspired

by the architecture proposed in (Marı́ et al., 2022), we lay down

its extension adapted to sparse satellite views and refer to it as

SparseSat-NeRF, or SpS-NeRF. Precisely

• we adopt low resolution dense depths generated with tra-

ditional MVS for supervision and consequently enable the

generation of novel views and 3D surfaces from sparse

satellite images. We demonstrate the efficiency of this

method on as few as two and three input views;

• we increase the robustness of the predicted views and sur-

faces by incorporating correlation-based uncertainty into

the guidance of NeRF using depth information;
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• we provide in-depth analysis of the benefits of adding dense

depth supervision into the NeRF architecture.

2. RELATED WORK

Image matching vs NeRF Traditional stereo or multi-view

stereo (MVS) matching approaches (Hirschmuller, 2005, Gal-

lup et al., 2007, Bleyer et al., 2011, Bulatov et al., 2011, Fur-

ukawa and Ponce, 2009) establish correspondences between

pixels in different images by calculating patch-based similar-

ity metrics such as correlation coefficient or mutual informa-

tion. Although these methods often produce impressive res-

ults in favourable matching conditions, they tend to struggle

with images lacking texture, at discontinuities or in the pres-

ence of non-Lambertian surfaces such as forest canopies or icy

surfaces. Learning-based MVS methods (Bittner et al., 2019,

Stucker and Schindler, 2020, Gao et al., 2021, Gómez et al.,

2022, Huang et al., 2018) attempt and often succeed in over-

coming those challenges, however, they require very precise

and up-to-date ground truth depth maps for training and those

are difficult to obtain in a satellite setting. In contrast, NeRF of-

fers a self-supervised deep learning approach without resorting

to ground truth geometry, and relying exclusively on images

at input. Because it operates on a truly single-pixel level, it

overcomes the shortcomings of traditional patch-based meth-

ods (Buades and Facciolo, 2015). Furthermore, NeRF defined

as a function of radiance accumulated along image rays opens

up the possibility to model physical parameters of the scene

such as reflectance of scene’s materials.

NeRF variants towards fewer input views. Vanilla NeRF re-

lies exclusively on RGB values to maintain consistency between

training images. Consequently, it requires a large number of

images to resolve the ambiguity embedded within the modelled

volumetric fields. This greediness of NeRF has been addressed

across several research works, which focus on adding priors

through incorporating semantic information, or sparse/ dense

depth supervision. The latter is particularly interesting because

Structure from Motion (SfM) or the subsequent MVS match-

ing provide reliable depth information. Additionally, in satellite

imaging, the dense depth information is available without extra

processing through, e.g., the global SRTM elevation model.

Learning priors with semantics. PixelNeRF demonstrates

excellent results in novel view synthesis over an unknown scene

with only one view. To this end, (Yu et al., 2021) extend the ca-

nonical NeRF with deep features and pre-train the entire archi-

tecture enabling its generalization to new scenes. Analogously,

DietNeRF (Jain et al., 2021) adopts a pre-trained visual trans-

former (ViT) and enforces consistent semantics across all views

(including the novel view). SinNeRF (Xu et al., 2022) extends

further this idea by combining global semantics using the self-

supervised Dino ViT, then instead of using image feature em-

beddings leverages the classification token representation, thus

making their approach less susceptible to pixel misalignments

between views. SinNeRF also employs local texture regular-

ization and depth supervision through depth warping to novel

views. MVSNeRF (Chen et al., 2021) borrows from multi-

view stereo matching in projecting 2D convolutional neural net-

works (CNN) features to planes sweeping through the scene.

3D CNNs are then used to extract a neural encoding volume,

which once regressed translate to RGB and density.

Sparse depth supervision DS-NeRF (Deng et al., 2022) was

the first to propose sparse depth supervision using 3D points ob-

tained from SfM. The authors propose an adapted ray sampling

strategy and a depth termination loss weighted by the 3D point’s

reprojection error. Sat-NeRF (Marı́ et al., 2022) applied the

same sparse depth supervision in multi-date satellite images,

reducing the number of training images to approximately 15.

Interestingly, Sat-NeRF architecture includes scene’s physical

parameters specific to earth observation satellites such as al-

bedo and solar correction (for asynchronous acquisitions).

Dense depth supervision. NerfingMVS (Wei et al., 2021)

combines learning-based multi-view stereo with NeRF for in-

door mapping. Starting from a set of sparse 3D points output

from SfM, NerfingMVS first trains a monocular dense depth

prediction network. Consistency checks between per-view pre-

dicted depths serve as error maps and guide the following ray

sampling in the final NeRF optimization. In their most view-

sparse scenario 35 images are available for training. Simil-

arily, Roessle et al. (Roessle et al., 2022) (referred to in the

following as DDPNeRF) incorporate dense depth supervision

in their NeRF variant. However, unlike in NerfingMVS where

dense depths are guessed from single views, DDPNeRF learns

a depth completion network from sparse depth maps. This, to-

gether with an explicit depth loss, makes it a better performing

method. Experiments demonstrate good performance with as

few as 18 train images.

The above methods resort to learning-based dense depth pre-

diction because their focus is on indoor scenes, with texture-

less surfaces where traditional MVS might fail. In our real

world satellite scenario this is, in general, less of an issue and

we demonstrate that dense image matching with SGM is good

enough to guide the NeRF optimization.

3. METHODOLOGY

Our method builds on top of Sat-NeRF (Marı́ et al., 2022) and

DDPNeRF (Roessle et al., 2022). We borrow from Sat-NeRF the

general architecture save for the transient objects and solar cor-

rection modelling as we deal with synchronous acquisitions.

We add a dense depth supervision and depth loss similar to

the one proposed in DDPNeRF, but we replace the depth loss

distance metric and define an uncertainty based on SGM’s cor-

relation maps. The workflows of NeRF, Sat-NeRF and SpS-

NeRF are illustrated in Figure 2.

3.1 Neural Radiance Fields Preliminaries

NeRF (Mildenhall et al., 2020) learns a continuous volumet-

ric representation of the scene from a set of images character-

ised by the sensor position and the viewing direction. This rep-

resentation is defined by a fully-connected (non-convolutional)

deep network. It samples N query points along each camera

ray through the 3D field and integrate the weighted radiance to

render each pixel, and optimize the NeRF network FΘ by im-

posing the rendered pixel values to be close to the training im-

ages. For each query point, NeRF simultaneously models the

volume density σ and the emitted radiance c = (r, g, b) at that

3D point x = (x, y, z) from the viewing angle d = (dx, dy, dz):

FΘ(x, d) = (c, σ) . (1)

Each camera ray r is defined by a point of origin o and a direc-

tion vector d as r(t) = o + td. Each query point in r is defined

as xi = o + tid, where ti locates between the near and far

bounds of the scene, tn and tf . The rendered pixel value C(r)
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of ray r is calculated as:

C(r) =

N
∑

i=1

Tiαici ,

αi = 1− e
−σiδi , Ti =

i−1
∏

j=1

(1− αj) , δi = ti+1 − ti ,

(2)

where αi represents the opacity of the current query point xi, Ti

stands for the probability that xi reaches the ray origin o without

being blocked. In other words, the color ci of the current query

point xi contributes to the accumulated color C(r) only if it is

highly opaque (i.e., large value of αi) and there are no opaque

particles in front of it (i.e., high value of Ti).

3.2 SparseSat-NeRF

Pre-processing. Following the Sat-NeRF’s pipeline, the RPC-

poses of our input images are first refined in a bundle adjust-

ment. Then, for N input images, we run N independent SGMs

to obtain a low-resolution depth map for each image (i.e., scale

factor of 2−2). We choose to rely on low resolution depths to

(i) avoid biasing our SpS-NeRF towards the SGM solution; and

(ii) because high resolution depths might provide incomplete

depth information at challenging surfaces (e.g., low texture).

The depth maps are accompanied by similarity metrics that will

further act as depth prediction quality measures in supervising

the SpS-NeRF. In our case, the metric is the cross-correlation

map. If low-resolution depth maps are not available, the SGM

depths can be replaced by coarse global DEM such as SRTM

(with the similarity metric globally set to a constant value).

Depth supervision. Our goal is to include the depth prior

in SpS-NeRF optimization. Analogously to the formulation

presented in (Roessle et al., 2022), three ingredients are neces-

sary for that end: (i) a way to predict the depth of a given ray by

accumulating radiance fields throughout the optimized volume;

(ii) description of the sample distribution along a given ray; and

finally (iii) input depth maps and their associated uncertainty

metrics. The depth prediction along a ray D(r) can be calcu-

lated as:

D(r) =

N
∑

i=1

Tiαiti , (3)

where the depth ti of the current sample point i would contrib-

ute to the accumulated depth D(r) if it is opaque, ignoring the

sample points in front of ti. To characterise the samples’ distri-

bution along the ray we follow the standard deviation equation

(Roessle et al., 2022):

S(r)2 =

N
∑

i=1

Tiαi(ti −D(r))2 . (4)

Here, lower standard deviation values indicate samples located

around the estimated depths and lead to sharper edges at object

surfaces. We now define an equivalent uncertainty driven by

our input data, i.e., the similarity metrics produced by SGM:

Σ(r) = γ · (1− corr(r)) +m , (5)

where corr(r) is the cross-correlation similarity for a ray sample

at the input depth, γ and m are the normalizing scaling and

shift parameters, in our experiments empirically set to 1.0 and

10e−4. The uncertainty measure (Equation (5)) intervenes three

times during the optimization: (i) as a weight applied to the

final depth loss; (ii) as a threshold to determine whether the

loss should be activated; and (iii) in guided ray sampling (see

next paragraph).

All ingredients combined constitute the depth loss encouraging

depths’ predictions D(r) to be close to the input dense depths

D(r), guided by the input uncertainty:

Ldepth(r) =
∑

r∈Rsub

(corr(r)(D(r)−D(r))2 . (6)

The Rsub is defined as a ray’s subregion where either of the two

conditions are satisfied: (1) S(r) > Σ(r); (2)
∣

∣(D(r)−Dr)
∣

∣ >

Σ(r). Those bounds favour ray termination within (1 · Σ) from

our depth priors (Roessle et al., 2022). Outside this region, the

depth loss is inactive or clipped. The depth loss participates in

all training iterations.

Total loss. Our SpS-NeRF is supervised with the ground truth

pixel color C(r) and the dense depth information D(r) weighted

by the quality metric corr(r). Following Equation (2), the color

(RGB) of a pixel is rendered through the accumulation of the

RGB values of samples along the casted ray. The color loss

encourages the predicted pixel colors C(r) to be as close as

possible to the ground truth colors and is defined on a set R

containing all ray samples (there is no clipping unlike in the

depth loss):

Lcolor(r) =
∑

r∈R

∥

∥C(r)−C(r)
∥

∥

2

2
. (7)

The SpS-NeRF’s total loss is thus a combination of Equation (7)

and Equation (6):

L = Lcolor(r) + λLdepth(r) , (8)

where λ is a weight balancing the color and depth contributions.

We empirically found that λ = 1

3
performs best in urban areas

and λ = 50

3
in rural areas.

Ray sampling We adopt guided sampling from (Roessle et

al., 2022), whose approach takes advantage of depth cues to ef-

ficiently query samples. It substitutes the hierarchical sampling

coarse network in the original NeRF. More specifically, the ray

samples are divided into two groups queried sequentially. The

points of the first group are sampled randomly within the entire

scene’s envelope, while the second group of points is concen-

trated around the known input (train) or predicted (test) surface.

The points around the surface are spread following a Gaussian

distribution determined by (1) the input depth N(D(r), Σ(r))
for the pixels with input depth information during training; or

(2) the estimated depth N(D(r), S(r)) for all the pixels during

testing, as well as the pixels without input depth during training

(e.g., SGM provides no depth in occluded areas). We illustrated

the distribution of the rays sampled by this strategy in Figure 3.

4. EXPERIMENTS

We conduct experiments on two datasets:

• Djibouti dataset located in the Asal-Ghoubbet rift, Re-

public of Djibouti, introduced in (Labarre et al., 2019) and
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Figure 2. Workflows of SpS-NeRF (Ours), Sat-NeRF and

NeRF. In our experimental setting we use 2 or 3 satellite images

to optimize the neural radiance fields for photo-realistic novel

view rendering, and for DSM recovery. Without any depth

supervision, NeRF fails to render high quality novel views and

DSM. Sat-NeRF incorporates sparse depth information and uses

the bundle adjustment re-projection errors as uncertainties to

weigh the depth loss; it improves the results, but the artifact

remain present due to the insufficient number of training views.

SpS-NeRF further employs low resolution dense depth maps

from traditional methods such as SGM, and uses the

(1− correlation) score as uncertainty, and takes advantage of

the dense depth to guide sampling along the casted ray, leading

to improved performance.

illustrated in Figure 4. It represents a series of 21 multian-

gular Pléiades images collected in a single flyby on Janu-

ary 26, 2013. During training we use only two or three

RGB cropped images (∼ 800 × 800 px), with 2m Ground

Sampling Distance (GSD).

• DFC2019 dataset The 2019 IEEE GRSS Data Fusion Con-

test (Le Saux et al., 2019) contains different areas of in-

terest (AOI) in the city of Jacksonville, Florida, USA, prov-

iding in total 26 WorldView-3 images collected between

2014 and 2016. We choose the AOI 214 as it contains 3

images taken at the same time and use it to train two in-

dependent networks: with 2 and 3 views used in the train-

ing images. For novel view generation, we choose another

image from the dataset and consider it the ground truth.

Because SpS-NeRF does not model transient objects, our

goal was to minimize the acquisition time gap and respect

the seasonality in choosing the novel views. The sun el-

evation, azimuth and the acquisition time of the 4 selected

images are displayed in the table.

4.1 Implementation details

We use Sat-NeRF as the backbone architecture (lr=1e−5, de-

cay= 0.9, batch size=1024). Our focus is on sparse views cap-

tured synchronously from the same orbit thus we disable the

(a) A selected image

row (–)

(b) Ray sampling along the selected image

row

(c)

Zoom

Figure 3. Ray sampling. The samples in (b) correspond to the

selected image row in (a), while in (c) we zoom over a few ray

samples. Similarily to Roessle et al., we divide ray samples in

two groups of the same cardinality (i.e., 2× 64). The first group

draws samples (- -) within the near and far planes. At inference,

the second group draws samples (- -) following a Gaussian

distribution around the estimated dense depths D(r) (- -) (see

Equation (3)), their upper and lower bounds are defined by the

estimated standard deviation S(r) (see Equation (4)). At train

time we use the input depths and their corresponding

uncertainties {D,Σ}. The yellow lines (|) represent the rays.

Figure 4. Djibouti dataset, (Labarre et al., 2019). The images

labeled {9, 11} are used for training 2-views scenario, and the

images labeled {9, 11, 13} are used for training 3-views

scenario. The image labelled {10} is used for testing both

scenarios. The remaining images are ignored. The yellow

rectangle (□) represents the area of interest cropped for our

experiments.

Image Sun Sun Acquisition
name elevation azimuth date y-m-d

007 33.5 158.9 14-12-2716:11:09

008 36 155.0 15-01-2116:12:43

009 36 155.1 15-01-2116:12:53

010 36 155.2 15-01-2116:13:08

Table 1. DFC2019 dataset, AOI 214, (Le Saux et al., 2019).

During training, we use the following subsets of images:

{009, 010}, {008, 009, 010}.

uncertainty weighting for transient objects and the solar correc-

tion. We also disable the two components for Sat-NeRF be-

cause our experiments are conducted on single-epoch images.

In contrast to NeRF and Sat-NeRF, SpS-NeRF uses only the

coarse architecture (no fine model) with 64 initial samples and

64 guided samples (- - and - - in Figure 3). For a fair com-

parison the number of samples and importance samples (i.e.,

fine model) in NeRF and Sat-NeRF are also 64 each. We op-

timize SpS-NeRF for 30k iterations, which takes ∼2 hours on

NVIDIA GPU with 40GB RAM. The input low resolution DSMs

were computed from images downscaled by a factor of 4

(SGMscl4).
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4.2 Evaluation

Tests are carried out using 2 and 3 views leading to 4 scenarios:

(1) DFC2v , test on 008 and train on {009, 010};

(2) DFC3v , test on 007 and train on {008, 009, 010};

(3) Dji2v , test on 10 and train on {9, 11};

(4) Dji3v , test on 10 and train on {9, 11, 13}.

We evaluate the performance of SpS-NeRF qualitatively and

quantitatively on 2 tasks: (1) novel view synthesis and (2) alti-

tude extraction. Precision metrics are Peak Signal-to-Noise Ra-

tio (PSNR) and Structural Similarity Index measure (SSIM)

(Wang et al., 2004) for view synthesis, and Mean Altitude Er-

ror (MAE) for altitude extraction. We differentiate between

MAEin and MAEout for errors computed on valid pixels and

invalid pixels (e.g., due to low correlation or occlusions). The

classification into valid and invalid pixels is produced by SGM.

Ground truth (GT) images are true images not seen during train-

ing, while GT DSMs are a LiDAR acquisition for the DFC2019

dataset, and a photogrammetric DSM generated with 21 high-

resolution panchromatic Pléiades images (GSD=0.5m) for Dji-

bouti dataset. SpS-NeRF is also compared with competitive

vanilla NeRF, Sat-NeRF, and DSMs generated with SGM us-

ing full-resolution images (i.e., SGMscl1).

4.3 Results & discussion

Novel view synthesis Qualitative and quantitative results are

given in Figure 5 and Table 2. In the urban DFC2019 data-

set NeRF’s and Sat-NeRF’s novel views are poorly rendered.

SpS-NeRF provides better quality synthetic views with 2 in-

put images (Figure 5(k)), and further improves the result with 3

input images (Figure 5(l)). In the rural Djibouti dataset, the per-

formance gap between NeRF, Sat-NeRF and SpS-NeRF is less

significant, however, in Figure 5 ghost artifacts are revealed by

NeRF (c), which are attenuated by Sat-NeRF (g) and are not

present in SpS-NeRF (o).

Altitude extraction The qualitative and quantitative results

are in Figure 6 and Table 2. NeRF fails to recover reasonable

DSM geometries for all 4 scenarios (a, b, c, d). This is because

using only RGB consistency between input images is insuffi-

cient to recover the scene’s surface with 2 or 3 images. Adding

sparse depth supervision in Sat-NeRF helps to recover rough

buildings’ shapes in DFC3v scenario (f). Nevertheless, it fails

at the remaining three scenarios (e, g, h), indicating that sparse

depths are not enough to complete the missing information with

2 or 3 input images.

Our SpS-NeRF takes as input dense depths computed with SGM

using downsampled images (factor 4). The input depth maps

are incomplete (due to occlusions) and imprecise (×4 bigger

GSD), but SpS-NeRF is able to complete and refine the depth

information. We attribute this to the jointly optimized RGB and

depth losses. Compared to the SGM result obtained with full-

resolution images (SGMscl1), SpS-NeRF behaves better close

to the outlines of buildings and is free of outliers, but lacks reg-

ularization on flat surfaces (see Figure 7). Such local irreg-

ularities are a common problem in NeRF (Marı́ et al., 2022).

Adding semantic information to the framework might be a pos-

sible solution. Interestingly, SpS-NeRF with 3 views is capable

of recovering trees’ canopy surface (see Figure 6 (n)), a task tra-

ditionally challenging for traditional patch-based methods such

as SGM.

It should be mentioned that the GT DSM in the Djibouti data-

set Figure 6(w, x) was generated with the very same SGM as

the best performing SGMscl1. This correlation might poten-

tially bias the comparison. Additionally, SGM is susceptible

to outliers, as shown in the zoom-in view of GT DSM in Fig-

ure 6(w). Hence, our GT DSM is likely corrupt with some er-

roneous depth estimations.

Ablation study. We perform two experiments training differ-

ent variants of NeRF with 2 views from the DFC2019 dataset:

(i) Dense Sat-NeRF where we train the vanilla Sat-NeRF and

replace the sparse depth supervision with our dense depths;

(ii) SpS-NeRF \Corr where we train our SpS-NeRF and set

the corr(r)=1 for every pixel in Equation (5) and Equation (6)

thus we deactivate the uncertainty metric but maintain the ray

sampling strategy.

In Figure 8 we compare the novel view and depths generated

by Dense Sat-NeRF, SpS-NeRF\Corr with our full SpS-NeRF.

Without the guided ray sampling, Dense Sat-NeRF struggles to

recover a high contrast image (a) and sharp buildings’ outlines

(e). The performance improves in SpS-NeRF\Corr (b and f),

where the network is encouraged to estimate the depth within

the m margin (Equation (5)) of the input depth while balancing

the color loss. The performance is further enhanced by adding

corr(r) (Figure 8(c, g)). Quantitative results in Table 3 show

the same tendencies.

5. CONCLUSION

We presented SparseSat-NeRF (SpS-NeRF) – an extension of

Sat-NeRF adapted to novel view generation and 3D geometry

reconstruction from sparse satellite image views. The adapta-

tion consists of including dense depth supervision with low res-

olution surfaces obtained with traditional dense image match-

ing, and a suitable ray sampling borrowed from (Roessle et

al., 2022). To add robustness to our supervision we incorpor-

ate uncertainty metrics based on dense image matching cross-

correlation maps. We demonstrate that SpS-NeRF performs

better than NeRF and Sat-NeRF in sparse view scenarios. It

is also competitive with the traditional semi-global matching.
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PSNR ↑ SSIM ↑ MAEin ↓ MAEout ↓

DFC2v DFC3v Dji2v Dji3v DFC2v DFC3v Dji2v Dji3v DFC2v DFC3v Dji2v Dji3v DFC2v DFC3v

NeRF 12.89 14.56 27.8 35.22 0.65 0.67 0.8 0.94 9.51 6.56 9.72 14.44 13.2 11.98

Sat-NeRF 17.72 18.46 32.3 36.17 0.8 0.83 0.9 0.95 5.89 4.63 9.51 10.11 11.75 7.53

SpS-NeRF 20.2 19.06 32.85 36.26 0.87 0.86 0.92 0.95 3.02 2.86 1.57 1.35 7.77 5.62

SGMscl1 / / / / / / / / 2.77 2.05 1.15 0.81 9.82 6.68

Table 2. Quantitative metrics. Best performing metrics in PSNR and SSIM are in bold, while best and second best performing

metrics in MAEin and MAEout are in blue and magenta. SpS-NeRF outperformed NeRF and Sat-NeRF in all the scenarios.

SpS-NeRF is less good than SGMscl1 in altitude extraction on valid pixels (MAEin) which we attribute to the lack of regularization.

However, SpS-NeRF is better than SGMscl1 in occluded and poorly textured areas (MAEout). Note that no invalid pixels were

identified for the Djibouti dataset.

(a) NeRF DFC2v (b) NeRF DFC3v (c) NeRF Dji2v (d) NeRF Dji3v

(e) SatNeRF DFC2v (f) SatNeRF DFC3v (g) SatNeRF Dji2v (h) SatNeRF Dji3v

(i) SpS-NeRF DFC2v (j) SpS-NeRF DFC3v (k) SpS-NeRF Dji2v (l) SpS-NeRF Dji3v

(m) GT DFC2v (n) GT DFC3v (o) GT Dji2v (p) GT Dji3v

Figure 5. Novel view synthesis. Qualitative evaluation is performed on DFC2019 (DFC) and Djibouti (Dji) datasets using 2-views

(2v) and 3-views (3v) for training. NeRF renders blurry images, Sat-NeRF reduces the blur thanks to sparse depth supervision,

SpS-NeRF renders sharpest images of all.
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(a) NeRF DFC2v (b) NeRF DFC3v (c) NeRF Dji2v (d) NeRF Dji3v

(e) SatNeRF DFC2v (f) SatNeRF DFC3v (g) SatNeRF Dji2v (h) SatNeRF Dji3v

(i) SGMscl4 DFC2v (j) SGMscl4 DFC3v (k) SGMscl4 Dji2v (l) SGMscl4 Dji3v

(m) SpS-NeRF DFC2v (n) SpS-NeRF DFC3v (o) SpS-NeRF Dji2v (p) SpS-NeRF Dji3v

(q) SGMscl1 DFC2v (r) SGMscl1 DFC3v (s) SGMscl1 Dji2v (t) SGMscl1 Dji3v

(u) GT DSM DFC2v (v) GT DSM DFC3v (w) GT DSM Dji2v (x) GT DSM Dji3v

Figure 6. Altitude extraction. SpS-NeRF outruns all tested NeRF variants, and reconstructs 3D geometry comparably to SGMscl1. In

urban DFC2019 dataset, SpS-NeRF is better at reconstructing vegetation (□) and at handling building outlines near occlusions (□) but

the surface is generally less smooth than that of SGMscl1. In rural Djibouti dataset, notice the more detailed and coherent

reconstruction of SpS-NeRF in (o) compared to SGMscl1 result in (s).
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(a) SpS-

NeRF DFC2v

(b) SpS-

NeRF DFC3v

(c) SpS-

NeRF Dji2v

(d) SpS-

NeRF Dji3v

(e) SGMscl1

DFC2v

(f) SGMscl1

DFC3v

(g) SGMscl1

Dji2v

(h) SGMscl1

Dji3v

Figure 7. Difference of DSMs. We compute the differences

w.r.t. GT DSMs for the two best performing methods. Although

SpS-NeRF behaves better near discontinuities in urban DFC

dataset, it is unable to recover high frequency details in rural

Djibouti. Notice that the difference maps for SGM (g,h) carry a

repetitive signal typical for aliasing due to image resampling.

Such artefacts are not present in SpS-NeRF.

(a) Dense Sat-

NeRF

(b) SpS-

NeRF \Corr

(c) SpS-NeRF (d) GT

(e) Dense Sat-

NeRF

(f) SpS-

NeRF \Corr

(g) SpS-NeRF (h) GT

Figure 8. Ablation experiment. Qualitative result on

NeRF variants trained with 2 views (DFC2019). The top row

(a-d) represents the novel views, while the bottom row (e-h)

shows DSMs. Adding dense supervision (a,e), guided ray

sampling (b,f) and uncertainty measures (c,g) contribute to

visually better surface geometries and sharper novel views.
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