
ON ACCELERATION OF THERMAL SIMULATION OF URBAN SCENES WITH THE
APPLICATION OF AN EVOLUTIONARY ALGORITHM TO TREE PLANTING

STRATEGIES

Dimitri Bulatov, Marko Hecht, Benedikt Kottler, Jonas Mispelhorn, Eva Strauss

Fraunhofer Institute of Optronics, System Technologies and Image Exploitation (IOSB),
Gutleuthausstrasse 1, 76275 Ettlingen, Germany

KEY WORDS: Digital twin, Evolutionary algorithm, GPU, Urban morphology, Vegetation.

ABSTRACT:

Tree planting is one of the most popular in urban morphology measures for urban heat island reduction since, at a relatively low
monetary cost and with a marginal alteration of the scene, trees provide shadows and neutralize harmful gases. Findings for their
optimal distribution within the urban scene exist in numerous environmental studies. However, merely the digital twin of the
scene possesses the capability to analyze further developments of the scene, such as changes in dominant wind directions. Today’s
extensive computational resources allow for thermal simulations of digital twins on multiple (not-yet-existing) urban scene designs,
aiming at minimizing the average or peak temperatures. From the point of view of computer graphics, this paper proposes four tools
to accelerate an evolutionary algorithm for tree planting strategies. Using GPU arrays for rendering, pre-rendering default scenes,
and pre-filtering trees in the early morning and late evening hours helps accelerating the rendering process. Computation of fitness
function on different computers allows a further acceleration of the evolutionary algorithm. The total acceleration factor of a scene
using computational set-up exceeds 218, thus demonstrating the enormous potential the evolutionary algorithm may bring about in
future investigations.

1. INTRODUCTION

Due to numerous reasons, such as the abundance of dark pa-
ved surfaces or lack of greenery and water bodies, the air tem-
perature in densely built areas is generally higher than in the
surrounding countryside. According to (Osmond and Sharifi,
2017), the temperature difference can reach up to 12◦C. This
phenomenon is known as the “Urban Heat Island” or UHI ef-
fect. This effect creates many negative repercussions (Williams
et al., 2012, Kjellstrom et al., 2009) and should be mitigated
while planning and designing a city. Commonly used meas-
ures for improving scene designs with respect to UHI include,
but are not limited to: sustainable roofing and paving materials,
drafting of parks with trees and water bodies, smart building
design and solutions for transportation, and raising the aware-
ness of the population to the problem. In particular, tree plant-
ing has proved to be an effective measure for preventing UHIs,
since trees act as shade-provider and effective heat-storage sys-
tems, and they grant the city an endearing, livable visual aspect
(Wong and Yu, 2005).

Since the tree planting process is always associated with some
costs, the positions and kinds of trees to be planted require thor-
ough planning. Moreover, since a city cannot be built from
scratch, many researchers have worked on modeling urban tem-
peratures using sensor and cadaster data (Helmholz et al., 2021).
Nowadays, urban planners often have to perform multiple year-
long simulations to evaluate and optimize the competing design
(new urban area) or retrofit (existing urban area) alternatives.
From the points of view of automatic algorithms, such as ge-
netic or evolutionary algorithms, methods based on reinforce-
ment learning, and many others, the machine is supposed to as-
sess tens of thousands of scene designs, requiring acceleration
in the evaluation.

In this paper, we aim to outline the scenario of tree planning

measure assessment within an evolutionary algorithm (EA). For
each scene design, the simulation is run, for example, during
a diurnal cycle. A fitness value, such as the negative average
of the temperatures, is assigned to the design. Scene designs
yielding a higher fitness value are preferably kept in the next
iteration of the algorithm, and so on.

We emphasize that in this article, we are merely interested in
accelerating this evolutionary algorithm. The investigations on
maximizing the fitness value and creating a new scene design
are not the focus of this paper and will be covered in further
work, in broad experiments. We present four improvements
aimed at acceleration of the fitness value computation. Firstly,
using the GPU instead of the CPU already leads to a consider-
able acceleration of the occlusion analysis module. Secondly,
considering that only a marginal update of the scene is required,
we pre-render the default scene and only update the occlusion
map by newly rendered trees. Thirdly, we can take a prelim-
inary decision about the occluded trees. For the last, fourth
module on acceleration, the loop for the computation of fit-
ness is addressed whereby the availability of several computers
with GPUs to compute fitness in a controller-and-worker-like
approach is assumed.

The article will be organized in the following way. We provide
a concise summary of the previous works and all the reader is
supposed to know about the digital twins, thermals simulations,
and EAs in Sections 2 and 3, respectively. The methodology
will be presented in Section 4. Results and conclusions are
given in Sections 5 and 6, respectively.

2. RELATED WORK

Occlusion analysis is a very simple algorithm. One triangle
after another is projected into the scene. The current depth is
calculated from its baricentric coordinates. After this, for all

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-1/W1-2023
ISPRS Geospatial Week 2023, 2–7 September 2023, Cairo, Egypt

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-X-1-W1-2023-9-2023 | © Author(s) 2023. CC BY 4.0 License.

9

image pixels, for which the current depth lies below the initial
depth, both the foreground index (or feature) map and depth
map are overwritten by the relevant values of the current tri-
angle. The initial values of the depth map and index map are
set to the positive infinity. Starting at this, numerous variations
have been proposed. For example, triangles may be reordered
according to the distance of their center of gravity to the image
plane. The transparent ones are usually rendered from back-
ground to foreground, and the opaque ones from foreground
to background. In order not to search huge images for pixels
exceeding the value of the initial depth map, constraining the
search range is practice. One can reverse the procedure and emit
the rays from image pixels searching for intersection with ob-
jects within a scene, giving origins to ray tracer and path-tracer
algorithms (Feldmann, 2015), implemented on modern GPUs.
To minimize the number of intersections, ray tracers employ
spatial indexes to organize the scene to be rendered (Hapala et
al., 2011). The problem of dealing with large models is covered
in (Landaverde et al., 2014), where an efficient way of storing
the GPU memory resources in the RAM is presented.

With respect to the calculation of sun radiation in thermal sim-
ulation, a very interesting approach was presented by (Guo et
al., 2018). The authors have subdivided the half-sphere into
patches and for the sun position in each patch, the scene was
pre-rendered and stored. During simulation at an arbitrary time,
only the position of the sun must be computed, and the corres-
ponding foreground index map is loaded. The problem with this
approach is that in our application, many scene designs must be
evaluated which even degrades the problem of memory load.
The work of (Jones et al., 2012) focuses on the computation of
solar radiation during longer cycles. For a fixed area, the sunlit
pixels are pre-computed on every 20th day while for intermedi-
ate times, the B-spline is calculated to model the sunlit areas as
continuous functions of time. The modern view synthesis ap-
proaches try to compute the intermediate views using machine
learning, in particular, generative-adversarial techniques; thus,
the results are realistically looking fantasy products (Srinivasan
et al., 2019).

Finally, many authors tried to accelerate EAs. While (Cantu-
Paz, 2000) discussed a master-slave implementation of EAs,
articles like (Wong, 2009, Arora et al., 2010) focused on effi-
cient exploitation of the available GPU. In particular, in (Arora
et al., 2010), the authors have not only parallel evaluation of
solutions, but also adjusted the remaining modules of EA to
perform efficiently on the GPU architecture. For more sources
on efficient GPU-based implementation of EAs, we refer to
(Cheng and Gen, 2019), whereby we are more interested in
algorithmic than in hardware-relevant improvements and will
therefore pursue a controller-worker solution in Section 4.4.

3. PRELIMINARIES

3.1 Notation

Throughout this work, we will use the following notation:

• A denotes the default mesh;
• B denotes the new meshes (trees);
• There are J trees per solution (so we can refer to meshes

Bj for j-th tree);
• i denotes the foreground index map;
• d is the foreground depth map;
• The total number of tree positions is U ;

• The EA has G generations;
• Every generation has N solutions, or individuals, so we

will occasionally refer to Bjn(g);
• Finally, we parallelize the processing using K computers

3.2 Digital twin computation

As in (Bulatov et al., 2020), a semantic mesh may be extracted
from the airborne sensor data, optionally, we some additional
input, such as GIS building outlines. Together with mathem-
atical (normal vectors) and physical (density, emissivity, and
other relevant for simulation) properties of its triangles, we have
a parametric mesh A, which is denoted as a three-dimensional
digital twin. At the beginning of the simulation, the weather
information is retrieved (e.g. from a weather server), thus cre-
ating a four-dimensional digital twin. The scene A consists
of the ground model, building polygons, and trees. The trees
are given in a twofold manner. For large groups of trees and
even forests, there is not much sense to model every single tree;
hence, we use a forest box, a prismatic structure whose base is
described by an irregular polygon. On the contrary, single trees
are modeled using a closed tree-like surface consisting of ap-
proximately 150 triangles. This is also the case for the virtual
trees to be planted within EA. Since we have the landcover clas-
sification result, which we compute using one of the state of the
art procedures, (Volpi and Tuia, 2016, Bulatov et al., 2019), we
know where the trees can or cannot be planted in our semantic
mesh A. Tree planting is only permitted upon the classes soil
or grass of the ground model.

3.3 Evolutionary algorithm in a nutshell

We evaluate N scene designs within one generation of the EA.
Every design differs from the default scene by J trees, added at
random, but meaningful positions. Then we can assume that the
input for the first generation is a J×N matrix of random integer
numbers, all of which are between 1 and U . From this matrix,
the corresponding meshes Bjn, with j ∈ {1, . . . , J} referring
to the individual tree index and n ∈ {1, . . . , N} denoting the
running index for scene design, are formed and added to A.

The thermal simulation algorithm developed in (Kottler et al.,
2019, Bulatov et al., 2020) allows computing the unknown tem-
perature using the heat balance equation for each discrete time,
each triangle, and each scene design. Since we want to keep
the temperatures low, the fitness value is a negative norm of
the temperature array over time and over the triangles. After
evaluating N scene designs, we obtain N fitness values. The
second generation of the EA begins, which presupposes the
evolution of the best solutions, denoted as parents. The two
most common tools for evolution are crossovers and mutations.
Crossover means taking“the chromosomes from two or more
parents”, which in our case means random combining integer
numbers corresponding to tree positions from the best solutions
received so far. Mutation, or “arbitrary chromosomes altera-
tion”, means that in a given solution, some few integers are ar-
bitrarily replaced by the others from the pool 1, . . . , U . The two
steps, fitness value computation and evolution, are carried out
for G iterations.

4. METHODOLOGY

4.1 Occlusion computation on the GPU

The occlusion is the negation of the exposure to the light source
and has to be calculated for each triangle. The equation for the

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-1/W1-2023
ISPRS Geospatial Week 2023, 2–7 September 2023, Cairo, Egypt

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-X-1-W1-2023-9-2023 | © Author(s) 2023. CC BY 4.0 License.

10

heat radiation from the sun in dependence of cloud coverage
index Ic, surface albedo a, solar irradiation ESun, and elevation
angle of the sun θ,

S = (1− a)IcESun cos(θ)γSun, (1)

allows for the calculation of the thermal energy S emitted from
the sun towards the simulation scene. The factor γSun is an
array of booleans values that determines the occlusion of a tri-
angle face. The value is 1 if the face is exposed to the sun and 0
if it is concealed. The array contains the same number of values
as triangles in the mesh that define the scene, with each value
of γSun indicating the exposure for a triangle.

In order to accelerate the computation for the occlusion or ex-
posure of the scene triangles, it is executed via OpenGL on a
graphics processing unit. There are two outputs of the OpenGL
executable, which is a depth mask d and an index mask i. Both
masks are provided in a 2048 × 2048 matrix. The depth mask is
the distance of the center of each triangle from the perspective
of the light source is rescaled from −1 to 0, with lower values
being closer to the light source. The index mask codes the index
of the triangle closest to the light source lodged at the position
of the grid and allows to retrieve γSun in (4.1).

Although it would be possible to compute the term in (4.1) en-
tirely on the GPU, we prefer making the short detour over i
and d because the simulation is supposed to be computed every
minute. Since γSun does not change too frequently for almost
all triangles, the time-consuming process of occlusion analysis
may only be performed every 10 minutes. The presence of
highly time-dependent variables, such as Ic, does not allow us-
ing the term in (4.1) throughout 10 minutes.

4.2 Pre-rendering

The second acceleration of the occlusion computation roots in
the separate handling of the default scene and the artificial trees.
By pre-rendering the default scene and storing the depth mask
dA and the foreground index mask iA of the default scene, this
rendering process can be skipped for later simulations. Instead,
only the occlusion for the artificial trees has to be determined,
which also results in a depth mask dB and an index mask iB
output.

To obtain the occlusion map for the entire scene, dA and iA for
the same relative position of the sun have to be imported. It
is important to notice that the spatial buffer (or 3D scene exten-
sions) while rendering B must coincide with those for rendering
A to avoid co-registration problems. In other words, if we ima-
gine that at a certain moment of time, the highest object of the
scene seen by the sun is one of the new trees, this object will be
cut (unlike to rendering the scene A ∪ B), leading to marginal
inaccuracies.

After pairs of images of the size 2048 × 2048 are stored in
a directory in regular time steps, at the moment of rendering a
solution B = Bjn, we need to compare dA and dB to determine
the combined occlusion map of the artificial trees.

The indices of the scene with a lower value of the d at the same
position of the mask then conclude the index mask iA∪B of the
merged scene, as explained in (2).

iA∪B =

{
iA if dA < dB

iB otherwise.
, (2)

After comparing the depth values and updating the index mask
for the entire scene, the indices present in iA∪B then indicate
which triangles are exposed to the sun. Their values of γSun

are set to one.

Also, here one could wonder why we do not pre-render the
temperatures of the default scene, which would require merely
the computations the of triangles in B and those triangles of A
which are occluded by them. There are two objections: Tem-
poral shadows and the heat conduction term. Because of the
temporal shadows, triangles formerly but not anymore occluded
have a different temperature than the triangles that have not
been occluded. The conduction term is responsible for the dis-
tribution of the (negative) heat to the neighboring triangles, even
if those are not occluded by newly-added trees.

Figure 1. The advantages of pre-rendering and preliminary
decisions for single tree rendering. In the case of the tree on the
left, the default scene is not supposed to be rendered every time.

The tree on the right is partly visible even though its highest
point is occluded. Discarding this tree while pre-filtering would

result in inaccuracies. However, as we will see in Results
section, inaccuracies of this kind happen rarely.

4.3 Preliminary decision for single tree rendering

Even with our improvement using the pre-rendered default sce-
ne, we may still have several thousands of small triangles to
render because trees are very detail-rich objects, which is espe-
cially problematic in the case of CPU-based rendering. At the
same time, these are compact types of objects, located in dif-
ferent parts of the scene. Bearing in mind this as well as the
fact that the position of the sun is over the scene, we can take a
preliminary decision about the trees that may be occluded and
further accelerate the algorithm at cost of accuracy.

Meshes from J trees are given an index number. Let cj denote
the highest center of gravity over all triangles in the mesh Bj .
The depths of projections of cj are compared to the values of A
at corresponding rounded pixel positions. If a tree top cj is vis-
ible, we can proceed with rendering Bj as described in Sec. 4.2.
However, if cj is occluded – by a building wall or a box forest,
for example, – then we conclude that the tree itself is not vis-
ible, too. Thus, we ignore situations as in Fig. 1, resulting in

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-1/W1-2023
ISPRS Geospatial Week 2023, 2–7 September 2023, Cairo, Egypt

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-X-1-W1-2023-9-2023 | © Author(s) 2023. CC BY 4.0 License.

11

slight inaccuracies. The loss of accuracy could be significantly
reduced if, instead of the highest triangles, the bounding boxes
were taken. However, this would take longer and, besides, we
wish to exploit the fact that the sun shines from above.

Computation of projections of cj takes place on the CPU. That
is, the per-tree balance of speed compared to GPU would roughly
be estimated as

s0|Bj | − overhead, (3)

where s0 is the proportion of occluded trees and |Bj | is the
average number of triangles in a tree mesh. The term overhead
emphasizes the necessity of numerous relabel routines: From
the highest triangle index to the subset of j, from this subset to
the whole set, and further to A ∪ B. Thus, the quintessence of
equation (3) is that from a certain percentage of occluded trees
on, pre-filtering will allow saving computing time. Section 5
will help us to find this critical percentage.

4.4 Controller-worker subdivision

We now suppose availability of K computers possessing a migh-
ty GPU. Since the computation of fitness values can be com-
puted for different individuals independently within one gener-
ation, we can additionally accelerate the processing by distrib-
uting the simulation task between different GPUs in a simple
controller and worker way. We are conscious that many ap-
proaches (Arora et al., 2010) exist that perform multi-threading
even during parents’ selection and evolution of EA. However,
in our case, the by far most computationally intensive part of
the procedure is the simulation of temperatures, needed for fit-
ness value assignment to a scene design. We compute the fitness
value on every machine and obtain values t1, t2, . . . tK for com-
puting times. Now, supposing the population size to be again
N , we have to determine how many fitness computations N
into a1, a2, . . . , aK are run at each GPU to minimize the over-
all computing time. Overall, we have to determine

minmax
l

(nktk) s.t.
∑
k

nk = N. (4)

There is a closed form solution for partition of N into K posit-
ive numbers satisfying (4):

nk = Nt−1
k

(∑
k

t−1
k

)−1

, (5)

Of course, since nk are integer numbers, we must carry out
rounding, resulting in a constraint for one of the numbers. An-
other small issue to be aware of is a particularity of many EAs.
Starting from the first generation, the first couple (N0) of the
best individuals from the previous generation remain unchanged
to prevent the solution to become worse with increasing g. Thus,
the simulation must not be carried out for these individuals
since their fitness values can be kept. Because of this, (5) is
valid only for the first generation, while from the second gen-
eration on, we slightly modify this equation by replacing N by
N0 and simply adding N0 to n1, thus copying the solutions.
This means that if all GPUs are equally powerful, then the total
time is Nt/K. However, in practice, data exchange between
the computers as well as components related to the CPU work-
around of the EA (see next paragraph) always needs some extra
time, as Amdahl law and other similar estimations state.

The key element of our controller-worker approach is that for a
given generation, the controller (master computer) generates the
solution prototypes, after which these are redistributed between
the master and the worker using a shared directory accessible
by all computers. The workers carry out the computation of
fitness from solutions (we remind that the solutions form a N ×
J matrix of integers while the fitness values are, in essence, N
floating point numbers). The fitness values are again imported
by the master. Parents’ selection and offspring creation take
place by the master only. Together with the data exchange, this
is the main reason our theoretical estimation of the total time is
optimistic for the practice.

5. RESULTS

5.1 Experimental setup

The default scene is, in essence, the digital twin of the dataset
described in (Bulatov et al., 2020). It has been reconstructed us-
ing the remote sensed data (laser point cloud and multispectral
imagery), close range data (aerial and drone imagery), and open
street data (GIS outlines of buildings). The single trees, both in
the default scene (mesh A) and in BJ are all equal prototypes
scaled to the correct size in x, y, z direction. Each prototype
consists of a hexagonal trunk and a crown, needed to simulate
shadows. The crown mesh is sampled from 500 random ver-
tices x, y in a unit circle, with z coordinates given by a higher
degree parametric bivariate function z(x, y), and edges stem-
ming from the Delaunay triangulation in 2D. Doing so ensures
consistent orientation of the normal vectors pointing outwards.
Now, using standard tools for mesh decimation, we can keep
the number of vertices flexible while the form of the tree crown
is widely preserved. We usually keep 10 to 50% of initial ver-
tices; the larger the percentage, the more noticeable the effect
of pre-filtering trees.

5.2 Acceleration of occlusion analysis

The default scene A consists of 1.65 million triangles, and we
add to A 2000 trees with around 110 triangles each. During a
diurnal cycle, we measure the time needed to compute the solar-
exposed triangles in one-hour intervals. This temporal resolu-
tion is insufficient to compute the temperatures accurately be-
cause the changes in occlusion status should better be recorded
every ten minutes. However, for us, it is acceptable since we
only want to measure the performance at arbitrary times of the
day. At the same time, we will compare the lists for occluded
triangles to measure the accuracy of our method.

Figure 2 shows the results of the accelerated occlusion analysis.
Using GPU arrays, we can decrease the computation time by a
factor of 21.3 at midday to 41.6 at the time of the minimum
sun inclination angle (2.5°C). Here we must put into perspect-
ive the fact that during the CPU rendering, we have to perform
inpainting using repeated dilation (since many triangles’ pro-
jections consist of only one pixel), additionally slowing down
the computation during morning and evening hours. Without
this inpainting, the acceleration constitutes values between 22.2
and 24.2.

At all times of the day, pre-rendering helps to shorten the com-
puting time considerably. The GPU-based processing acceler-
ates to the factor around 3.8 and the CPU-based to the factor
of 7.1. As for the preliminary decision for single tree render-
ing using the highest triangle, the positive impact could only be

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-1/W1-2023
ISPRS Geospatial Week 2023, 2–7 September 2023, Cairo, Egypt

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-X-1-W1-2023-9-2023 | © Author(s) 2023. CC BY 4.0 License.

12

measured at the times of small inclination angles, as one could
have expected. At these times, when 30 to 40% of Bj are not
supposed to be rendered (blue curves), the speed-up using CPU
is more visible than for GPU because the time for rendering a
single tree is considerably higher. At high sun positions, when
almost all trees are visible (s0 ≈ 0), the relabeling overhead (3)
slows down the procedure, even though values of |Bj | are high.

Figure 2. Performance of our occlusion analysis, CPU- and
GPU-based processing on the top and the bottom graphics,

respectively. In the x axis, the current sun position is denoted. In
the left y-axis, bar diagrams denote time in seconds. On the

right, we depict the percentages of remaining after pre-filtering
(1− s0) ∗ 100% with s0 from (3) and values of overall accuracy.

Turning to the results for overall accuracy, we can see that the
values are quite high and with one exception over 98%. The
decay in overall accuracy values while pre-filtering is almost
invisible. We could notice that the number of false negatives
and false positives is approximately the same for most times,
which could hint that the inaccuracies are due to some numer-
ical issues and not systematical. However, for very few meas-
urements, mostly at midday, the deviation reaches some 70%,
for a yet unclear reason.

Figure 3 shows the fragments of rendering results. We remind
that by using pre-rendering, some triangles from A may get cut
out if they do not fit in the bounding box computed from the de-
fault scene. Obviously, this happens only at very early and late
hours of the day. Around midday, when the sun is right above
the scene, the extensions of A and A∪B widely coincide. Note
also how narrow the trees appear in the scene rendered in the

early morning. The reason is that the scene must be stretched
along the z axis to fill completely a 2048 × 2048 image.

5.3 Acceleration of evolutionary algorithm

We consider a small excerpt of the previous scene containing
some 10000 triangles and 10 trees with approximately 100 tri-
angles each. To prove the principle of the EA, a toy example
with N = 6 and G = 6 was run using two computers (CPU: In-
tel Core i9-10980HK - 16Core@2.40GHz; 32GB RAM; GPU:
NVIDIA GeForce RTX 2080 Super) equipped with the up-to-
date MATLAB versions. The temperature computation takes
place for the diurnal cycle every 30 seconds while the pre-ren-
dering version of the occlusion analysis algorithm runs every
10 minutes. Two best solutions were kept from the second
generation on. Using merely one laptop, the program needed
1.25 hours for NG − n0(G − 1) = 26 simulations. Using
this same laptop with two MATLAB instances has resulted in
0.84 hours, or 32.8% acceleration, while the application of two
laptops brought an improvement of 28% (0.9 hours). The dif-
ference between the running time on one or two computers is
explainable by the necessity of storing some data and accessing
it on a network directory. In a further experiment, we opened
two MATLAB instances on each computer and run the program
with one master and three workers, letting the running time to
decrease to 0.62 h or roughly half of the original time. We see
that the waiting time and the overhead calculation do not allow
for the reduction in the running time by a factor proportional to
the number of workers. This confirms Amdahl’s law, but still,
the improvement is quite significant.

To provide a qualitative illustration of the results, we show in
Fig. 4 two screenshots of our model with two scene designs at
two different times. We can see how even after the sunset, the
surface temperature remains higher in the areas of the scene
where no trees are planted while at the afternoon, treed provide
welcomed shadows.

Summarizing, we multiply the acceleration factors yielded by
all modules (28.95, 3.71, 1.09 and 2.00) respectively, to obtain
the overall acceleration factor to be 218.

6. DISCUSSION AND OUTLOOK

We presented a workflow for an evolutionary algorithm for tem-
perature evaluation on the 3D digital twin of an urban scene,
which is a very up-to-date and, literally and metaphorically
speaking, burning topic, as we could see in Sec. 1. In total, four
tools for acceleration of the workflow were presented. Three
of them affect the time-consuming procedure of occlusion ana-
lysis and one the EA itself. Two of them (GPU-based rendering
and controller-worker evaluation of evolutionary algorithm) are
hardware-based. The remaining two, pre-rendering and pre-
filtering of trees have an algorithmic background. We could
see that the application of GPU-based rendering leads to the
highest acceleration, followed by tree pre-rendering, resulting
in double- or high single-digit factors of speed-up. While in
the first case, the efficient usage of graphic card allows render-
ing even very complex scenes, the occlusion computation of
the artificial trees, the reading of the depth and index mask of
the default scene, and the successive comparison are less time-
expensive than the occlusion computation for the entire scene.
Two remaining acceleration suggestions have the advantage to
be quantitatively predictable. For example, the preliminary de-
cision on single tree rendering can be activated at very early

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-1/W1-2023
ISPRS Geospatial Week 2023, 2–7 September 2023, Cairo, Egypt

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-X-1-W1-2023-9-2023 | © Author(s) 2023. CC BY 4.0 License.

13

Figure 3. Depth and index mask images for various settings of the rendered scene. At the top: CPU-based, around the midday. At the
bottom: GPU-based, at early hour. In each configuration, in the top row, from left to right: iA, iB and iA∪B obtained with and without

pre-rendering. Bottom row: corresponding foreground depth values. The lower the sun position (two bottom rows), the higher the
deviation between the results of stratified and simultaneous rendering of A ∪B. For example, a tree at the top of the images is cut up,
and the building corner close to the red cross, despite coinciding in the first three images, appears displaced in the right-most image.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-1/W1-2023
ISPRS Geospatial Week 2023, 2–7 September 2023, Cairo, Egypt

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-X-1-W1-2023-9-2023 | © Author(s) 2023. CC BY 4.0 License.

14

Figure 4. Scene views for two different tree planting designs at two different times.

and very late hours only. Optimal distribution of fitness val-
ues computations between different computers can be achieved
using (5).

To get both speed and flexibility, the proposed algorithm uses
both the CPU (flexibility) and the GPU (speed). Data trans-
fer between the two devices is usually the biggest performance
bottleneck in such setups, because we have to load the model
every time in the GPU instead of merely modifying the angle
between the sunrays and the surface. The reason for this sub-
optimal data processing is that due to the application of the EA,
we have dozens of thousands of different models. However,
taking into account that only a few tree models are dealt with,
it should be investigated in the future to what extent tensors
of transformations Bjng may help to work with a scene model
loaded in the GPU only once or old, not used anymore meshes
may be cleared in VRAM to make place for updated ones. Ad-
ditionally, we are planning to outsource parts of the processing
to the other devices to reduce the volume data transfers. Fi-
nally, the first experiments with the results of the evolutionary
algorithm are being carried out, and the relevant findings will
be discussed in the future.

ACKNOWLEDGEMENTS

We express our deep gratitude to Prof. Mikut (Karlsruhe Insti-
tute of Technology) for the fruitful discussions on evolutionary
algorithms.

REFERENCES

Arora, R., Tulshyan, R., Deb, K., 2010. Parallelization of binary
and real-coded genetic algorithms on GPU using CUDA. IEEE
Congress on Evolutionary Computation, IEEE, 1–8.

Bulatov, D., Burkard, E., Ilehag, R., Kottler, B., Helmholz,
P., 2020. From multi-sensor aerial data to thermal and in-
frared simulation of semantic 3D models: Towards identifica-
tion of urban heat islands. Infrared Physics & Technology, 105,
103233.

Bulatov, D., Häufel, G., Lucks, L., Pohl, M., 2019. Land cover
classification in combined elevation and optical images suppor-
ted by OSM data, mixed-level features, and non-local optimiza-
tion algorithms. Photogrammetric Engineering & Remote Sens-
ing, 85(3), 179–195.

Cantu-Paz, E., 2000. Efficient and accurate parallel genetic al-
gorithms. 1, Springer Science & Business Media.

Cheng, J. R., Gen, M., 2019. Accelerating genetic algorithms
with GPU computing: A selective overview. Computers & In-
dustrial Engineering, 128, 514–525.

Feldmann, D., 2015. Accelerated ray tracing using R-trees.
GRAPP, 247–257.

Guo, S., Xiong, X., Liu, Z., Bai, X., Zhou, F., 2018. Infrared
simulation of large-scale urban scene through LOD. Optics ex-
press, 26(18), 23980–24002.

Hapala, M., Davidovič, T., Wald, I., Havran, V., Slusallek, P.,
2011. Efficient stack-less bvh traversal for ray tracing. Proceed-
ings of the 27th Spring Conference on Computer Graphics, 7–
12.

Helmholz, P., Bulatov, D., Kottler, B., Burton, P., Mancini, F.,
May, M., Strauß, E., Hecht, M., 2021. Quantifying the im-
pact of urban infill on the urban heat island effect – a case

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-1/W1-2023
ISPRS Geospatial Week 2023, 2–7 September 2023, Cairo, Egypt

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-X-1-W1-2023-9-2023 | © Author(s) 2023. CC BY 4.0 License.

15

study for an alternative medium density model. The Interna-
tional Archives of Photogrammetry, Remote Sensing and Spa-
tial Information Sciences, 46, 43–50.

Jones, N. L., Greenberg, D. P., Pratt, K. B., 2012. Fast com-
puter graphics techniques for calculating direct solar radiation
on complex building surfaces. Journal of Building Performance
Simulation, 5(5), 300–312.

Kjellstrom, T., Holmer, I., Lemke, B., 2009. Workplace heat
stress, health and productivity–an increasing challenge for low
and middle-income countries during climate change. Global
Health Action, 2(1), 2047.

Kottler, B., Burkard, E., Bulatov, D., Haraké, L., 2019.
Physically-based thermal simulation of large scenes for infrared
imaging. International Joint Conference on Computer Vision,
Imaging and Computer Graphics Theory and Applications, IN-
STICC, 53–64.

Landaverde, R., Zhang, T., Coskun, A. K., Herbordt, M., 2014.
An investigation of unified memory access performance in
CUDA. IEEE High Performance Extreme Computing Confer-
ence (HPEC), IEEE, 1–6.

Osmond, P., Sharifi, E., 2017. Guide to urban cooling strategies.
Low Carbon Living CRC.

Srinivasan, P. P., Tucker, R., Barron, J. T., Ramamoorthi,
R., Ng, R., Snavely, N., 2019. Pushing the boundaries of
view extrapolation with multiplane images. Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition, 175–184.

Volpi, M., Tuia, D., 2016. Dense semantic labeling of subdeci-
meter resolution images with convolutional neural networks.
IEEE Transactions on Geoscience and Remote Sensing, 55(2),
881–893.

Williams, S., Nitschke, M., Weinstein, P., Pisaniello, D. L., Par-
ton, K. A., Bi, P., 2012. The impact of summer temperatures
and heatwaves on mortality and morbidity in Perth, Australia
1994–2008. Environment International, 40, 33–38.

Wong, M. L., 2009. Parallel multi-objective evolutionary al-
gorithms on graphics processing units. Proceedings of the 11th
Annual Conference Companion on Genetic and Evolutionary
Computation Conference: Late Breaking Papers, 2515–2522.

Wong, N. H., Yu, C., 2005. Study of green areas and urban heat
island in a tropical city. Habitat International, 29(3), 547–558.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-1/W1-2023
ISPRS Geospatial Week 2023, 2–7 September 2023, Cairo, Egypt

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.
https://doi.org/10.5194/isprs-annals-X-1-W1-2023-9-2023 | © Author(s) 2023. CC BY 4.0 License.

16

