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ABSTRACT: 

 

Leaf Water Potential (LWP) is an indicator widely used to understand water relations in a coffee tree. Monitoring water potential is a 

challenge for remote sensing using low-cost multispectral cameras, with images taken by remotely piloted aircraft. The objective of 

this work was to evaluate the potential of a low-cost camera to discriminate different water treatments in the coffee tree. In addition, 

the accuracy of models to estimate LWP in the coffee crop was evaluated. The results showed that the NDVI (Normalized Difference 

Vegetation Index) vegetation index was able to discriminate 61.6 % more plots in a drought regime than the Near-InfraRed (NIR) band 

in the rainfall regime. For LWP, the architecture that presented the best performance in the detection of water stress was for the first 

flight (SMOreg algorithm using as predictor variables all bands, Red, Green, and NIR, and the NDVI vegetation index) with RMSE 

value of 0.1880 and RMSE% of 34.18. For the second flight (Random Tree algorithm, using as predictor variables all bands and NDVI) 

with RMSE (0.0520) and RMSE% (32.00) values. 

 

 

1. INTRODUCTION 

Agriculture in Brazil is one of the main economic activities due 

to its large share in the Gross Domestic Product (GDP). The 

country is the second largest coffee consumer and the largest 

producer and exporter of cultivated product. In 2020, with the 

highest production ever recorded, 63.08 million bags of Arabica 

and Conilon coffee were produced (CONAB, 2022). 

 

The phenological stage of the Arabica coffee tree (Coffea 

Arabica L.) presents a succession of vegetative and reproductive 

phases, which occur in approximately 2 years. According to 

Camargo and Camargo (2001), the phenological stage, for 

tropical conditions in Brazil, was subdivided into six distinct 

phases, two of which occur in the vegetative period (1st 

phenological year), and another four in the reproductive period 

(2nd phenological year). Regarding the first phenological year, 

the first phase refers to the vegetation and formation of leaf buds, 

normally from September to March, and the second to the 

induction and maturation of flower buds (from April to August).  

 

In relation to the second phenological year, the third phase refers 

to flowering, plumbing and fruit expansion (usually from 

September to December). The fourth phase is the fruit set, which 

occurs in midsummer (usually from January to March). At this 

phase, water stress can be harmful, producing poorly grained 

fruits. Fruit maturation occurs in the fifth phase, usually between 

April and June. The sixth and last phase, in July and August, is 

the senescence of non-primary productive branches, conditioned 

to the self-pruning of the coffee trees. 

 

Irrigation has been used to correct water deficiencies caused by 

irregular rainfall, since droughts and temperatures, when 

unfavourable, are major limitations on coffee production 

(Damatta and Ramalho, 2006). As irrigation management has the 

potential to mitigate such negative effects related to coffee 

cultivation, multiple efforts are being made in several regions of 

Brazil to improve this process, mainly aimed at the Cerrado 

region conditions (Vinecky et al., 2017). 

 

In this regard, depending on the phenological stage of the coffee, 

water stress is a relevant environmental factor as it can be 

excessively harmful to the growth of the plant (Damatta and 

Ramalho, 2006). However, when water stress is controlled in the 

pre-flowering period, it can increase the productivity and 

nutritional quality of the grain when used rationally (Liu et al., 

2018).  

 

An indicator widely used in research aimed at better 

understanding the water relations of plants is the LWP (Leaf 

Water Potential) (Ding et al., 2014). LWP is an important 

agronomic index of the water stress condition of plants, as its 

decrease can be used as an indicator in the evaluation of 

physiological processes in plants, such as changes in stomatal 

behaviour and reduced ability to carry out photosynthesis (Taiz 

and Zeiger, 2004). 

 

Monitoring water conditions in coffee plantations requires the 

use of technologies that allow the identification of alterations in 

plants in relation to those not affected by water stress. According 

to Damm et al. (2018), Remote Sensing is a powerful technology 

for agricultural monitoring, allowing the estimation of 

biophysical parameters that can be used in different areas, such 

as agrometeorology.   

 

Models generated by Remote Sensing are already being used to 

detect the first signs of the underdevelopment of coffee under 

different irrigation management (Silva et al., 2021). Studies show 

several techniques that can be applied related to LWP, as well as 

Maciel et al. (2020) who estimated the LWP of coffee areas from 

the surface reflectance obtained from the Landsat-8 satellite OLI 

(Operational Land Imager) sensor. The authors indicate that the 

best model to estimate the LWP was generated using a quadratic 
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NDVI (Normalized Difference Vegetation Index) vegetation 

index regression (Rouse et al., 1974) (R² > 0.85 and RMSE < 

0.21 Mpa).  

 

Easterday et al. (2019) showed that, using multispectral sensors 

equipped in unmanned aerial vehicles, it was possible to monitor 

the progress of a water manipulation experiment in a Baccharis 

pilularis shrub. The authors report that NDVI was the index most 

capable of distinguishing water treatments, being also more 

positively correlated with field measurements of LWP.  

 

In a bean culture area, Ranjan et al. (2019) evaluated subplots 

treated with complete irrigation and half irrigation. From a 

terrestrial multispectral remote sensing, the authors verified a 

strong correlation of the NDVI index with the harvest yield 

(Spearman's correlation coefficient = 0.62, p <0.05) during its 

growth cycle, thus being an index capable of discriminating the 

dynamic changes in the water content of the canopy. 

 

In addition, several advanced machine-learning techniques have 

been developed to adjust empirical models, capable of relating 

productivity data to factors that influence the crop growth cycle 

(Bocca and Rodrigues, 2016). In Filgueiras et al. (2019), remote 

sensing and regression techniques were used to estimate 

parameters related to water management, such as actual 

evapotranspiration and soil water content, in commercial corn 

areas irrigated by pivots. Among the regression models tested, 

random forests were one of the algorithms that best fit the actual 

evapotranspiration and the soil water content data. The authors 

conclude that only with Red and InfraRed wavelengths is it 

possible to efficiently monitor irrigation. 

 

Considering the importance of monitoring the water conditions 

of the coffee crop, the objective of this study was to evaluate the 

potential of low-cost cameras to discriminate different irrigation 

conditions as well as to estimate LWP through machine learning 

algorithms. 

 

2. MATERIAL AND METHODS 

The experiment was performed in the municipality of Monte 

Carmelo, Minas Gerais (MG) State, Brazil, which is located in 

the Mesoregion of Triângulo Mineiro and Alto Paranaíba (Figure 

1). The region covers about 1,094 m² of planting of the Coffea 

arabica L. species, Topázio MG cultivar. According to the 

Köppen-Geiger classification, the climate of the study area is 

classified as Aw, that is, with hot and rainy summer and cold and 

dry winter (Alvares et al., 2013). 

 

 

Figure 1. Location of the study area and demarcation of the 

experimental area highlighted in yellow. 

The drip irrigation system is 3.80 x 0.60 m apart. To define the 

experimental area for this study, a regular sample grid was 

created with a RBD (Randomized Block Design) with 32 plots. 

The plots were arranged in eight planting rows submitted to 

irrigation with two different treatments: normal water and 

magnetized water and four levels of irrigation depths, 125 %, 

100 %, 75 % and 50 %, in which each plot was constituted by a 

set of 18 plants (Figure 2). Levels of irrigation depths would be 

water replacement levels. In the 100% treatment, the coffee 

plants received water replacement to ensure adequate water 

conditions for the good development of the crop. In the 

treatments 50 and 75%, the plants received an amount of 50% 

and 25% less than the ideal water requirement and in the 

treatment 125%, the plants received 25% of the predicted water 

volume. 

 

 

Figure 2. Experiment design for irrigation levels using two 

water treatments: non-magnetized water (1 to 4; 9 to 12; 21 to 

24; 25 to 28) and magnetized water (5 to 8; 13 to 16; 17 to 20; 

29 to 32). 

 

2.1 Data Acquisition 

Using the fast-static relative positioning method, the plots were 

delimited by a pair of Promark 500 and Promark 200 GNSS 

(Global Navigation Satellite System) receivers. 

 

Two aerial surveys were planned to use the DroneDeploy 

software with a 4 cm GSD (Ground Sample Distance). The 

aircraft used was the Drone Phantom 4 Advanced with an 

embedded Mapir Survey 3W Camera operating in the Red, Green 

and Near-InfraRed (NIR) regions of the electromagnetic 

spectrum. The characteristics of the Mapir Survey 3W camera are 

specified in Table 1.  

 

Parameter Specification 

Image resolution 12 Megapixels (4,000 x 3,000 pixels) 

Optical lens 
87° HFOV (19 mm)  

f/2.8 Aperture 

Red 550 nm center wavelength 

Green 660 nm center wavelength 

NIR 850 nm center wavelength 

Table 1. Mapir Survey 3W sensor specifications. 

 

The first flight was held on October 2, 2018, and the second on 

March 29, 2019, between 11 am and 12 pm. The radiometric 

calibration of the images was performed using the Mapir Camera 

Control software.  
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The water status of the plants was evaluated in situ on the exact 

two days of the flights, between 5 a.m. and 6 a.m. by the 

determination of the LWP of the morning, by the Scholander 

Pressure Chamber. The starting point of line measurements was 

from bottom to top as shown in Figure 2. Figure 3 illustrates how 

the samples were selected, collected, and analyzed. 

 

 

Figure 3. Selection, collection, and analysis of samples, 

respectively 

 

One plant from each plot was identified and the collection of two 

leaves (one sample) per plant, totaling 32 sample points. The four 

levels of irrigation tested were 125 %, 100 %, 75 %, and 50 % 

required to replenish the coffee tree’s water consumption 

estimated by the daily water balance of the crop (Figure 2). In 

addition, four repetitions of each treatment were submitted to 

magnetized water and 4 repetitions of non-magnetized water. 

 

2.2 Evaluation of the sensor potential to discriminate levels 

of irrigation 

Due to the high correlation between the NDVI vegetation index 

and the NIR spectral range in relation to the coffee crop stress 

(Martins et al., 2017), a dendrogram analysis was performed to 

investigate how many irrigation classes would be discriminated 

from the image generated by the Mapir Survey 3 camera.  

 

The dendrogram was used to analyze clusters of observations as 

a function of similarity levels. The dendrogram is a diagram that 

displays the groupings of observations according to the levels of 

similarity, the number of clusters identified being proportional to 

the number of classes discriminated. In both cases, the level of 

similarity used was 3σ (three sigma). 

 

Finally, from the result obtained by the dendrogram, a map 

showing the discrimination of the irrigation levels was elaborated 

according to the spectral bands or vegetation index best 

discriminated of the plots in each aerial survey. Differentiable 

parcels were represented using a set of colors, while non-

differentiable parcels were represented using only one color. 

 

2.3 Adjustment of Machine Learning Models for LWP 

Prediction 

First, the databases were created in the format of tables 

containing the LWP values collected in the field and the average 

of the radiometric values extracted from the images of the 

spectral bands and vegetation index of the region of each 

evaluated plant.  

 

Two architectural structures for the construction of the prediction 

model were evaluated. The first subset was composed of the 

average radiometric values of the NIR band, and the second 

subset was composed of the average of the radiometric values of 

the Red, Blue, Green and NIR bands and the NDVI vegetation 

index.  

 

In total, based on the main algorithms used for estimating 

agricultural variables from remotely sensed data, highlighted in 

Damm et al. (2018), three classification algorithms available in 

the WEKA 3.9.4 (Waikato Environment for Knowledge 

Analysis) software were trained: Random Tree; Multilayer 

Perceptron, and SMOreg. In the 32 sampling sites, measurements 

from 24 sites were used to train the algorithms, and 

measurements from the remaining 8 sites were used to validate 

the models. 

 

To validate the quality and determine the best prediction model, 

the RMSE (Root Mean Square Error) evaluation metric was used, 

considering as the best estimation model the architecture that 

presented the lowest RMSE and RMSE% values (Equations 1 

and 2). 

 

 

𝑅𝑀𝑆𝐸 =  √
∑ (𝑥𝑖 − 𝑥𝑚𝑒𝑎𝑠

𝑛
𝑖=1 )2

𝑛
 

(1) 

 

𝑅𝑀𝑆𝐸 % = √
∑ (𝑥𝑖 − 𝑥𝑚𝑒𝑎𝑠

𝑛
𝑖=1 )2

𝑛
𝑋 (

100𝑋𝑛

∑ 𝑥𝑚𝑒𝑎𝑠
𝑛
𝑖=1

) 

 

 

(2) 

where,  𝑥𝑖 represents the estimated LWP value 

  𝑥𝑚𝑒𝑎𝑠 represents the measured LWP value 

  𝑛 the number of samples 

 

Finally, the images were transformed into a text file with the 

location and numerical value of each pixel. The model was 

applied to each of the flights, estimating the LWP in the entire 

area. Then the text data was rasterized and the maps were 

generated. 

 

3. RESULTS AND DISCUSSION 

3.1 Irrigation level discrimination capability by the images 

from Mapir Survey 3W Camera 

 

Figure 4 illustrates the grouping of 13 parcels discriminable by 

NDVI for the first flight. Thus, it would be possible to 

discriminate 13 of the 32 spectral classes. This result indicates 

that 40.6 % of the experimental area can be differentiated for the 

dry condition.  

 

In addition, from the Figure 4 it is possible to infer that the 4th 

row was the one with the greatest discrimination between classes, 

being composed by the treatment with magnetized water. As for 

the first row, there was no discrimination between the plots, 

which are subjected to non-magnetized water treatment. 

 

Thus, seven plots with magnetized water treatment and five plots 

with non-magnetized treatment were discriminated. As for water 

depths, 100% showed greater discrimination in relation to the 

others, totaling four out of eight discriminable plots. The water 

depth of 125 % was discriminated in only two of the eight 

treatments. 
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Figure 4. Discrimination of the irrigation levels by NDVI in the 

first flight generated from the spatialization of the dendrogram. 

The numbers are the similarity levels of the dendrograms. 

 

For the second flight, Figure 5 shows the dendrogram in the 

graphical form of a water management class map as a function of 

the NIR band. Only 15.6% of the plots were differentiated 

compared to the rainy conditions. 

 

 

Figure 5. NIR capability for discrimination of the irrigation 

levels in the second flight generated from the spatialization of 

the dendrogram. The numbers are the similarity levels of the 

dendrograms. 

 

From Figure 5, it is possible to notice that the NIR band was able 

to discriminate only 4 parcels. The discrimination of water 

treatments was 50 % for each treatment. It is noteworthy that the 

sensor was not able to discriminate the parcels located from the 

3rd to the 7th row. In addition, no water depth of 50 % was 

discerned. The water depth of 125 % was the most discriminated, 

being two of the eight treatments. 

 

The results show that none of the plots could be discriminated 

against simultaneously in the two aerial surveys. 

 

3.2 Empirical Model of the LWP Distribution 

Table 2 presents the results obtained for the RMSE and RMSE%, 

in relation to the first and second flights, for each algorithm and 

input data set errors. 

 

For the first flight, the SMOreg algorithm showed the best 

performance to estimate LWP, using as predictor variables all 

bands and NDVI generated from multispectral images, with the 

lowest values for RMSE and RMSE% (0.1880 and 34.18, 

respectively). 

 

Algorithm Metric 
1º flight 2º flight 

NIR ALL NIR ALL 

Multilayer  

Perceptron 

RMSE 0.2305 0.2277 0.0542 0.0587 

RMSE% 41.91 41.40 33.35 36.12 

SMOreg 
RMSE 0.1932 0.1880 0.0563 0.0559 

RMSE% 35.13 34.18 34.65 34.40 

Random 

Tree 

RMSE 0.3038 0.2552 0.0550 0.0520 

RMSE% 55.24 46.40 33.85 32.00 

Table 2. RMSE and RMSE% results of each algorithm and of 

both flights. 

 

For the second flight, the Random Tree algorithm presented the 

best performance to estimate the LWP, using as predictor 

variables all bands and NDVI generated from multispectral 

images, presenting the lowest values of RMSE (0.0520) and 

RMSE% (32.00). 

 

In order to represent the distribution of LWP in the area, the maps 

illustrated in Figures 6 and 7 were generated by SMOreg and 

Random Tree, respectively. As shown in Figure 6, the LWP 

values are homogeneous and are within a relatively high range of 

data, since they are obtained during the dry season. Thus, the soils 

expressed values below -0.6 MPa and the canopies showed the 

highest values, ranging from 0 to -0.59 MPa (Megapascal 

Pressure Unit).   

 

 

Figure 6. Map of LWP distribution from the image obtained 

in the first flight. 

 

In early September, producers limit irrigation so that the coffee 

suffers from induced water stress, aspiring for better flowering 

and greater uniformity of the types of fruit. Thus, the lowest 

available water values in the soil are observed due to the 

induction of water stress by the beginning of the pre-flowering 

period of the coffee tree. 

 

 

Figure 7. Map of LWP distribution from the image obtained in 

the second flight. 
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The second aerial survey, as shown in Figure 7, was carried out 

at the time of coffee granulation, that is, the phase of grain 

formation. According to studies carried out by Fraga Júnior et al. 

(2018), in this same period, water is more accessible to plants, 

which in turn should have higher values of water potential in the 

leaf.  

 

The highest LWP class was influenced by soil moisture and, the 

presence of weeds, competition between the existing inter-rows 

during the second flight. However, these results are not related to 

the positions of the water pipes since drip irrigation is not 

observable between the rows of coffee trees.  

 
4. CONCLUSION 

This paper presents a low-cost methodology to estimate coffee 

LWP from multispectral images and machine learning 

algorithms, which can be an alternative to classical LWP 

measurement techniques. However, the algorithms employed in 

this research produced a high RMSE% while creating models to 

estimate LWP. 

 

For the definition of water management classes, drought 

conditions were more favorable to spectral discrimination of 

experimental plots than rainy conditions. To estimate the LWP, 

in dry periods the models generated by the SMOreg algorithm 

were more accurate, while for the rainy period, the most accurate 

algorithm was the Random Tree.  

 

Due to the high variability observed in the coffee crop, and the 

effective methodology used in this experiment, it is suggested 

that the approached techniques can be applied to other areas since 

this research reflects management and environmental conditions, 

which can occur in the most diverse areas of planting. 

 

For future works, it is assumed the need to estimate from spectral 

models, morphological, physiological and phenological 

parameters of the coffee tree, which, together with the water 

parameters, may provide information regarding the expected 

productivity of the crop.  
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