
Comparison and evaluation of machine-learning-based spatial downscaling approaches on 

satellite-derived precipitation data 

Honglin Zhu a, Qiming Zhou a, *, Aihong Cui a

a Department of Geography, Hong Kong Baptist University, Hong Kong, China - 20482787@life.hkbu.edu.hk;
qiming@hkbu.edu.hk; 17482402@life.hkbu.edu.hk

KEY WORDS: machine learning, PERSIANN-CDR, precipitation, downscaling 

ABSTRACT: 

Precipitation estimation with high accuracy and resolution is crucial for hydrological and meteorological applications, particularly in 

ungauged river basins and regions with scarce water resources. Many machine learning (ML) algorithms have been employed in the 

downscaling of precipitation, however, it remains unclear which algorithm can outperform others. To address this issue, this study 

evaluates the performance of four ML based downscaling methods to generate high-resolution precipitation estimates at an annual 

scale. The satellite-derived precipitation data, environmental variables, such as, latitude, longitude, normalized difference vegetation 

index (NDVI), digital elevation model (DEM), and land surface temperature (LST), as well as the observations from rainfall gauges 

were used to constructed the regression models. The performance of the four ML algorithms including the Support Vector 

Regression (SVR), Random Forest (RF), Spatial Random Forest (SRF), and Extreme Gradient Boosting (XGBoost) algorithms was 

compared with three conventional methods: Multiple Linear Regression (MLR), geographically weighted regression (GWR) and 

Kriging interpolation model. Results showed that ML-based method generally outperformed traditional interpolation methods in 

precipitation downscaling, as they had higher accuracy and were better at reproducing the spatial distribution of rainfall. Out of ML 

approaches, XGBoost received the best performance, followed by SRF, RF and SVR, indicating its robustness of capturing nonlinear 

relationships. After the XGBoost, better performance of SRF than RF and SVR was found. This might be because the SRF just 

introduced the spatial autocorrelation into the RF models, which illustrated the importance of capturing spatial variations in ML 

algorithms. These findings regarding the comparison and assessment provided a novel downscaling method for generating high-

resolution precipitation data, which could benefit regional flood forecasting, drought monitoring, and irrigation planning.  

1. INDTRODUCTION

Precipitation is an important component in global water cycle 

and energy balance (Chen et al., 2021). The amount and 

distribution of precipitation have significant impact on the water 

resource management, climate research, and environmental 

monitoring (Karbalaye Ghorbanpour et al., 2021). Accurate 

precipitation data is crucial for irrigation planning, reservoir 

operations, and flood control measures. However, precipitation 

is also one of the most difficult meteorological factors to detect 

(Li et al., 2021).  

There are some measurements of precipitation data. Rain gauge 

stations can provide high-quality observations with high 

temporal resolution, but their spatial coverage is very limited 

(Sinha et al., 2018). Alternatively, satellite-based precipitation 

data provide wider spatial coverage. However, satellite-derived 

precipitation estimates were generated at global scale, and their 

coarse spatial resolution limits their utility for regional 

applications such as hydrological modelling and flood 

forecasting. Thus, the downscaling of satellite precipitation is 

vital to provide precipitation estimates at finer spatial 

resolutions. 

Generally speaking, there are two distinguished downscaling 

techniques, the dynamic and statistic downscaling. Both 

techniques have their own advantages and disadvantages. 

Dynamic downscaling uses the regional climate model based on 

strict physical assumptions, and it requires great computing 

resources and is more computationally expensive (Shashikanth 

et al., 2014). Statistical downscaling, on the other hand, is 

achieved by developing statistical relationships between 

environmental variables (such as temperature, pressure, and 

moisture) and the precipitation at a lower spatial resolution. 

These regression relationships are then used to generate 

downscaled precipitation data. Statistic downscaling is much 

easier to use, and has been widely used in many studies (Zhang 

et al., 2018). 

Among statistic downscaling, there has been an increasing 

popularity in using machine learning techniques to downscale 

precipitation data. For example, Jing et al. (2016) used Support 

Vector Machine (SVM) to downscale precipitation based on 

NDVI, DEM, and Land Surface Temperature (LST) over 

Tibetan Plateau. Devak et al. (2015) proposed a dynamic 

framework for downscaling climatic variables by integrating K-

Nearest Neighbour and SVM and generating an ensemble of 

outputs, which performed better than individual models in 

simulating extreme precipitation events. He et al. (2016) 

developed an adoptable random forest (RF) model for the 

downscaling of precipitation, in which the single and double RF 

models were applied for the mean and extreme precipitation 

events. Yan et al. (2021) constructed a downscaling-merging 

scheme based on RF and cokriging to acquire high-resolution 

precipitation data, and greatly improved its accuracy and spatial 

details. Chen et al. (2021) introduced the spatial autocorrelation 

to the RF model and proposed a spatial random forest (SRF) for 

downscaling. They found that the SRF outperformed other 

conventional algorithms and illustrated the importance of 

incorporating spatial autocorrelation to ML approaches. After 

the Extreme Gradient Boosting (XGBoost) method was 

proposed, it has been gradually applied in downscaling. The use 

of XGBoost and Artificial Neural Network (ANN) in the 

downscaling of Gravity Recovery and Climate Experiment 

(GRACE) satellite Terrestrial Water Storage (TWSA) estimates 

for monitoring hydrological droughts was explored, and the 

XGBoost model was found to outperform the ANN (Ali et al., 

2023).  
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There are many machine learning algorithms used in the 

downscaling of precipitation data. However, not all ML 

methods are equally effective, and each method may have its 

own strengths and weaknesses. Therefore, the objectives of this 

study were (1) to evaluate and compare five machine learning-

based downscaling algorithms in precipitation estimation (2) to 

investigate the benefits and drawbacks of using machine 

learning methods to improve the spatial resolution of 

precipitation data. 

 

2. MATERIALS AND METHODS 

2.1 Study area 

Guangdong Province is located in the southern part of China, 

and covers an area of approximately 180,000 km2 (Yan et al., 

2020). It has a subtropical monsoon climate, characterized by 

hot and humid summers and mild winters. Guangdong 

experiences abundant rainfall during the rainy season, which 

lasts from April to September, and relatively dry weather during 

the rest of the year (Xin et al., 2021).  

The terrain of Guangdong Province is mountainous and hilly, 

with an average elevation of about 200 m. It has a complex 

topography, with many valleys, basins, and plains. The 

precipitation patterns in Guangdong Province is influenced by 

the monsoon climate and the topography. The rainfall is 

unevenly distributed both spatially and temporally, with middle 

areas experiencing heavy rainfall and flooding, and other 

regions with less rain.  

 
Figure 1. The distribution of rain gauges in Guangdong 

Province, China 

 

2.2 Dataset and Pre-processing 

Table 1. Datasets used in this study 

Data Dataset Resolution  

Precipitation 

Rain Gauges Daily, Point 

PERSIANN-

CDR 
Daily,25 km 

DEM SRTM  -, 90 m 

NDVI 
GIMMS 

NDVI3g 
15d, 8 km 

LST MOD11A2 8d, 1 km 

 

(1) Rain gauge observations 

The study region includes 86 rain gauge stations, with a high 

density in the east and low density in the west, resulting in an 

uneven distribution (Fig. 1). Daily precipitation data for the 

period 2006-2010 was collected from the China Meteorological 

Data Service Centre (CMDSC, 2022), which undergoes strict 

quality controls (Jiang et al., 2021).  

(2) PERSIANN-CDR 

PERSIANN-CDR provides a long-term and high-resolution 

precipitation dataset that spans from 1983 to present with a 

spatial resolution of 0.25 degrees (Ashouri et al., 2015). 

PERSIANN-CDR has been validated against a wide range of 

rain gauge networks and other satellite-based precipitation 

datasets in different regions and has been shown to have good 

accuracy and reliability (Miao et al., 2015). In this study, the 

yearly PERSIANN-CDR data from 2006 to 2010 was obtained 

from the National Oceanic and Atmospheric Administration 

(NOAA) National Centres.  

(3) Environmental factors  

In this study, Normalized Difference Vegetation Index (NDVI), 

Digital Elevation Model (DEM), and Land Surface Temperature 

(LST) were commonly used as predictors in downscaling 

models. They could influence the precipitation through 

evapotranspiration process, orographic effect, and land 

surface’s energy balance (Duan andBastiaanssen, 2013; Shah et 

al., 2019; Zhan et al., 2018). Therefore, incorporating these 

variables into the downscaling model can improve the accuracy 

of precipitation estimates. 

The Global Inventory Monitoring and Modelling System 

(GIMMS) NDVI dataset was adopted. It has a spatial resolution 

of 8 km and a temporal resolution of 15-day (Tucker et al., 

2005). The Shuttle Radar Topography Mission (SRTM) based 

DEM data was applied, with a spatial resolution of 90 m 

(CGIAR, 2022). The LST data were obtained from the 

Moderate Resolution Imaging Spectroradiometer (MODIS) at a 

spatial resolution of 1 km, and a temporal resolution of 8 days 

(Krishnan et al., 2022). 

 

2.3 Abstract Brief description of downscaling algorithms 

 

ML downscaling model training

Constructed ML downscaling model

Applying the 1 km to drive 

the  trained model

Environmental

 predictors

Land surface data

(1km × 1km) 

Auxiliary 

(1km × 1km) 

PERSIANN-CDR

(25km × 25km) 

Environmental predictors (25km × 25km)

Land surface data

(25km × 25km)

Auxiliary 

(25km × 25km) 

Downscaled precipitation (1km × 1km)

 

Figure 2. The flowchart of ML based downscaling models. 
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In this study, we compared four machine learning algorithms for 

downscaling precipitation: SVM, RF, SRF, and XGBoost. 

These four models were selected because of their wide 

applications in precipitation downscaling and their ability to 

capture nonlinear relationships between predictor and response 

variables (Cheng et al., 2022; Sachindra et al., 2018). SVM is a 

popular algorithm for classification and regression tasks, and 

has been used successfully in precipitation downscaling. RF is 

an ensemble learning method that can handle a large number of 

input variables and capture complex interactions between them. 

SRF is an extension of RF that integrated spatial autocorrelation 

in modelling. XGBoost is a gradient boosting method that has 

shown excellent performance in various prediction tasks. By 

comparing the performance of these four models, we aimed to 

provide insights into their strengths and weaknesses for 

precipitation downscaling applications. 

 

2.4 Accuracy measures 

In order to assess the accuracy and reliability of the 

downscaling results, four commonly used indicators were used, 

including: correlation coefficient (CC), root mean square error 

(RMSE), mean absolute error (MAE), and Kling-Gupta 

efficiency (KGE). KGE is a comprehensive evaluation index 

that considers three components: correlation, variability, and 

bias (Liu, 2020). Their equations are as followed: 
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Where Ei is the estimated precipitation at station i, and Oi is the 

observed precipitation at station i, n is the number of rain gauge 

stations. 

 

3. RESULTS AND DISCUSSION 

3.1 Accuracy analysis of downscaled results based on 

different models 

Table 2 and Table 3 presented the performance of different 

models for predicting precipitation from 2006 to 2010. As 

shown, ML methods generally had better performance than the 

others, with higher CC and KGE. This might be because ML 

algorithms were more capable of constructing the complex and 

nonlinear relationships between environmental predictors and 

precipitation, whereas traditional methods just assumed linear 

relationships. Meanwhile, ML models can handle outliers in 

data and models’ overfitting more effectively compared to 

traditional methods. It is worth noting that the GWR models 

reported good performance in other studies (Chen et al., 2018; 

Wang et al., 2022; Xu et al., 2015), but its performance in this 

study was slightly worse than the ML models. This might be 

because that ML algorithms included the feature selection 

techniques that help identify the most important variables for 

prediction, but GWR does not have built-in feature selection 

capabilities. Additionally, ML models had more parameters in 

model training, such as regularization strength, learning rate to 

achieve optimal performance. The superior performance of ML 

downscaling models can help to improve the accuracy and 

resolution of precipitation data.  

 

Table 2. The performance of different downscaling models 

using CC and KGE 

 
Dataset 2006 2007 2008 2009 2010 

CC PERSIANN-CDR 0.52 0.47 0.6 0.79 0.51 

 Kriging 0.57 0.51 0.56 0.8 0.48 

 MLR 0.63 0.55 0.68 0.84 0.53 

 GWR 0.66 0.62 0.73 0.89 0.49 

 RF 0.78 0.69 0.82 0.91 0.64 

 SRF 0.79 0.71 0.84 0.95 0.62 

 SVR 0.77 0.65 0.79 0.9 0.68 

 XGBoost 0.78 0.71 0.8 0.93 0.62 

KGE PERSIANN-CDR 0.36 0.35 0.57 0.67 0.35 

 Kriging 0.38 0.36 0.54 0.7 0.31 

 MLR 0.32 0.32 0.57 0.59 0.3 

 GWR 0.48 0.45 0.69 0.75 0.31 

 RF 0.51 0.46 0.72 0.72 0.35 

 SRF 0.56 0.5 0.73 0.79 0.34 

 SVR 0.51 0.42 0.71 0.72 0.49 

 XGBoost 0.57 0.53 0.73 0.79 0.46 

 

Table 3. The performance of different downscaling models 

using MAE and RMSE 

  Dataset 2006 2007 2008 2009 2010 

MAE 
PERSIA

NN-CDR 
351.99 247.2 367.76 244.33 357.02 

(mm) Kriging 341.71 240.34 362.81 239.91 355.26 
 

MLR 313.69 241.83 326.73 267.97 282.81 
 

GWR 278.62 203.05 281.33 184.33 350.51 
 

RF 244.63 193.28 222.57 172.37 299.61 
 

SRF 236.56 186.56 211.41 126.67 353.75 
 

SVR 245.48 196.61 243.7 184.19 302.78 
 

XGBoost 244.43 188.79 247.21 139.59 270.83 

RMSE 
PERSIA

NN-CDR 
435.96 294.62 446.05 297.34 415.81 

(mm) Kriging 426.48 291.53 444.1 289.8 414.34 
 

MLR 417.41 291.33 415.81 315.71 332.88 
 

GWR 355.34 249.63 353.08 223.15 409.47 
 

RF 308.46 233.58 282.48 205.04 355.91 
 

SRF 298.42 224.72 268.24 153.89 403.48 
 

SVR 310.61 245.3 305.09 217.24 353.59 
 

XGBoost 305.13 226.37 309.09 171.29 318.29 
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Out of four ML algorithms, XGBoost outperformed other 

models, showing the highest correlation coefficient (0.78), the 

highest KGE (0.57), and the lowest MAE and RMSE (244.43 

mm and 305.13 mm, respectively). The better performance of 

XGBoost might be due to the regularization techniques 

involved in XGBoost, which help to prevent overfitting and 

improve the generalization performance of the model. The SRF 

model also showed better performance than SVR and RF, 

because the spatial autocorrelation has been introduced into the 

RF model and SRF was better at handling spatially correlated 

data.  

The scatter plot in Figure 3 compared the estimated 

precipitation from different downscaling models with the 

observed values. As shown, the result of PERSIANN-CDR was the 

worst, suggesting that the original satellite data contained large bias and 

uncertainty. The results presented in the scatter plot are 

consistent with those in the tables above. ML algorithms had 

better performance as their scatter plot displayed a more tightly 

concentrated distribution around the 1:1 line, indicating a closer 

agreement between the estimated and observed values. Across 

all the scatter plots of downscaling models, a consistent trend 

can be found with the original satellite data, in which it tended 

to underestimate when observed values are larger, and 

conversely, overestimate when observed values are smaller. 

This was not surprising because all the downscaling models 

were constructed based on the satellite precipitation, and the 

over- and under-estimations would be inherited by the models.  

 

 
Figure 3. Scatter plots between the observed and estimated 

precipitation based on different models 

 

3.2 Spatial distribution of downscaled results 

In Figure 4, the spatial distribution patterns of the original 

PERSIANN-CDR and its downscaled results in 2010 were 

compared. The downscaled precipitation maps shared similar 

distribution patterns with the original satellite map, with higher 

precipitation in the middle and lower precipitation in other 

areas, which was not surprising given that all the regression 

models were trained from satellite precipitation and would 

exhibit similar distribution characteristics in the PERSIANN-

CDR map. While the original PERSIANN-CDR annual 

precipitation map contained mosaic-like pixels due to its coarse 

resolution, the downscaled maps generated by ML-based 

algorithms provided more spatial information and replicated 

basic spatial features.  

 

 
Figure 4. Spatial distribution pf downscaled results based on 

different models.  

 

Particularly, GWR showed good accuracy and successfully 

captured the spatial features of the PERSIANN-CDR 

distribution. MLR generally had higher CC and KGE values 

than Kriging, but it struggled to reproduce the spatial 

distribution and underestimated precipitation in the middle area. 

Kriging and the original PERSIANN-CDR both had poor CC 

and KGE results and produced almost the same spatial pattern, 

possibly because Kriging interpolation only generated smooth 

values of the original satellite data. SVR and XGBoost, on the 

other hand, provided more details with large spatial variations, 

as seen in the downscaled maps of the regions highlighted by 

the black circles (Figure 4g-h), where they reproduced low 

precipitation levels. 
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3.3 Future work 

The results of this study suggest that ML-based approaches 

have significant potential in improving the accuracy of 

precipitation downscaling, with XGBoost being the most 

effective in generating high-resolution precipitation data. 

However, there are opportunities for further improvement in 

future studies. Firstly, using a larger and more diverse training 

dataset would be beneficial to reduce overfitting and improve 

the generalization of ML models. The size and quality of 

training data have a significant impact on the performance of 

machine learning models, and a larger and more diverse dataset 

can help enhance the accuracy, generalization ability, and 

robustness of ML models (Liu et al., 2021). Secondly, it is 

important to involve more observations from rain gauges for 

testing the ML models. In this study, validation results were 

based on in-situ data from a limited number of rain gauges, 

which may not be sufficient to accurately capture the spatial 

variability of precipitation across the entire region (Sun et al., 

2022). This could lead to incomplete and potentially biased 

results. Furthermore, incorporating multiple satellite-derived 

precipitation data sources could enhance the accuracy and 

reliability of downscaling models. Although PERSIANN-CDR 

was used in this study due to its longer temporal coverage and 

good consistency with measurements, other remote sensing 

precipitation products may have their own advantages and 

limitations (Miao et al., 2015). Combining multiple satellite-

derived precipitation data sources could reduce the uncertainty 

contained in individual products and provide more reliable 

precipitation estimates (Arshad et al., 2021). 

 

CONCLUSION 

This study evaluated the performance of four ML-based 

downscaling methods, including XGBoost, SRF, RF, and SVR, 

for generating high-resolution satellite precipitation data. 

Results showed that ML-based algorithms outperformed 

conventional methods in terms of CC and KGE, indicating their 

superior capability in fitting nonlinear relationships between 

satellite precipitation and environmental variables. Among the 

four ML-based algorithms, XGBoost and SRF tended to 

produce the best results having higher CC and KGE and lower 

MAE and RMSE at most validation years. The downscaled 

precipitation maps showed comparable distribution patterns 

with the original PERSIANN-CDR map, reproducing the basic 

spatial features and more importantly, providing enriched 

spatial information. It was found that overestimations were 

obtained at most rain gauges, especially in the middle area and 

the eastern side. Overall, this study provides valuable insights 

into the performance of different downscaling methods for 

satellite precipitation data, which can help improve the accuracy 

of precipitation estimates in various applications. 
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