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ABSTRACT:

Remotely sensed Earth elevation data or digital surface model (DSM) typically contains both terrain and above-ground information
such as vegetation and man-made constructions. However, many applications require pure bare-terrain data, also known as digital
terrain model (DTM). But how do we separate 3D objects on the DSM from the ground? The most commonly used approaches are
still based on various filtering techniques, which in turn involve the pre-definition of thresholds or specific parameters depending on
the inhomogeneity of the scene. Despite many long existing and newly developed approaches the general fully automatic extraction
of large-scale, reliable DTMs is still a problem – especially the preservation of steep terrain features in terraced landscapes. In this
context, we explore several deep learning models and select one based on the EfficientNet architecture. This model serves as an
encoder in the UNet-shaped framework and – despite its relatively low amount of parameters compared to common network archi-
tectures – it can automatically distinguish non-ground pixels and estimate the bare-ground height information while maintaining the
complexity of the anthropogenic geomorphology of landscapes. In a series of experiments, we demonstrate that the DTM generated
with the proposed method significantly outperforms other DTM generation approaches – both quantitatively and qualitatively. To
enable further comparisons with our methodology the training, validation and test datasets have been collected together and made
available at https://github.com/KseniaBittner/DSM2DTM.

1. INTRODUCTION

A Digital terrain model (DTM) is a representation of the bare
Earth surface without vegetation and any human constructions
such as buildings, roads, bridges, and others. A DTM is a
powerful supportive information in various disciplines such
as surveying and construction engineering of pipelines, canals
or highways, disaster management systems, water-runoff, land
cover mapping and many more. Therefore, having a precisely
accurate, detailed, and not over-smoothed DTM is a require-
ment for developing technologies.

DTMs can be generated directly from terrain measurements
or extracted from digital surface models (DSMs). DSMs can,
in turn, be derived from active sensing approaches like laser
scanning, radar interferometry, or from processing optical ste-
reo images from either aerial or satellite sensors (Krauß et al.,
2011). Deriving a DTM from a given DSM necessitates the
detection of all above-ground objects first, followed by their re-
moval, and then interpolating the resulting empty spaces with
meaningful height information. In addition to a range of clas-
sical DSM filtering algorithms, some deep learning based meth-
odologies have also been recently developed. However, most
of those methods, are multi-step procedures which often re-
quire predefined conditions, filter characteristics, or thresholds.
Moreover, a common issue with existing algorithms is their fail-
ure to preserve sharp terrain slopes, especially in the terraced
landscapes.

In this paper, we propose a deep learning approach capable to
automatically generate a large-scale DTM out of a provided
∗ Corresponding author

(a) Input DSM (b) Generated DTM (ours)

(c) Zoomed input DSM (d) Zoomed DTM (ours)

Figure 1. Sample of area from our Fribourg test dataset
illustrated both (a) input DSM to the network and (b) the

resulting DTM. Zoomed areas, highlighted in a white box, in a
zone with steep mountain reliefs on both DSM and DTM are

depicted in (c) and (d), respectively.
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DSM in an end-to-end manner. The approach is independent
of the type of terrain and works equally good on mountain and
urban scenes (see Figure 1).

2. RELATED WORK

A common procedure for generating a DTM from remote sens-
ing data involves removing above-ground objects (e.g. build-
ings, vegetation, and vehicles) and replacing the eliminated
pixels with appropriate elevation values. However, the main
challenge lies in detecting these above-ground objects quickly
and accurately. To address this problem, a wide variety of rule-
based algorithms have been developed.

Some rules work through morphological operations, making an
assumption that terrain does not contain sharp height differ-
ences within a local neighborhood (Vosselman, 2000; Sithole
and Vosselman, 2001; Wang and Tseng, 2010). Looking within
a certain size of window, a predefined threshold is used for
filtering points with distinctively different heights. Some ap-
proaches rely on automatic threshold definitions, such as adapt-
ive filters (Sithole and Vosselman, 2001) or knowledge-based
filters (Wang and Shan, 2009). But these strategies are still
suitable only for relatively flat terrains. Moreover, the selec-
tion of an appropriate size of search neighbourhood plays a
crucial role. When the search neighbourhood is too small, only
small features can be detected well but large objects are then
marked as ground. If the search neighbourhood is too big,
peaks, rocks, and hills can be filtered out (Pingel et al., 2013).
To overcome those problems, Arefi et al. (2007) developed an
iterative filtering method based on geodetic dilation operator
which thresholds off-terrain information in an adaptive window
size. Krauß and Reinartz (2010) propose a steep edge detection
approach which applies two median filters with different filter
sizes to generate a DTM. So areas at the bottom of steep walls
are detected. But there are some drawbacks like the identifica-
tion of objects on the rooftops as independent buildings result-
ing in incorrect detection of lower roof pixels as ground pixels
or overseeing small bushes and setting them as ground pixels.
For better preservation of steep slopes and local heterogeneity
of elevations, Hui et al. (2016) combines a progressive morpho-
logical filtering algorithm with multi-level interpolation filter-
ing approach. In an iterative manner with a gradually downs-
ized filtering window, a morphological opening operation is ap-
plied to detect off-terrain pixels, while kriging interpolation is
used to interpolate eliminated pixels at different levels accord-
ing to the different search neighbourhood.

More advanced methodologies pay more attention on over-
coming window size sensitivity problem and parameterization
minimization for automatic DTM-from-DSM generation. The
method of Duan et al. (2019) uses rule-based classification
utilizing multi-scale morphological analysis to detect above-
ground objects while preserving local reliefs in both flat and
highly mountainous areas. Defining several different thresholds
based on statistics of bare-terrain elevations from input DSM,
a final DTM is generated via the least squares solution. Au-
thors assure that the method is robust to worldwide large-scale
DSMs and does not require parameters tuning. Since the slope
aspect is often not entirely mono-directional across hillslope,
the work of Pijl et al. (2020) proposed non-linear filters driven
from terrain slope anisotropy which has a primary focus on the
preservation of sharp terrain features.

In recent years, the rapid development of deep learning tech-
niques and especially their impressive performance on clas-

sification and segmentation tasks, shifted the focus towards
learning-based methods for DTM generation problems as well.
For example, Marmanis et al. (2015) explored the perform-
ance of multi-layer perceptron (MLP) and its knowledge-
transferability on satellite images from different sensors to
separate ground/off-ground information. The method demon-
strate good performance in dense urban areas and its inde-
pendence from any predefined thresholds. Following this
study, Tapper (2016) investigates a three-layer artificial neural
network (ANN), which simultaneously extract features from
RGB, DSM and NIR images to output four classes: ground,
man-made objects, vegetation, and water. Then the DTM height
is calculated for all detected and filtered above-ground ob-
jects. Later, Gevaert et al. (2018) used more advanced archi-
tecture based on convolutional neural network (CNN) to gen-
erate a DTM by firstly extracting off-ground training samples
through morphological operations and then training the de-
veloped model. Although, the learning-based approaches for
classification task methodologies demonstrate superior per-
formances in comparison to traditional filter-based approaches,
they are still two-step strategies.

The power of deep neural networks is not limited to detection,
classification or segmentation tasks. With modern architectures
it is also possible to generate depth images – images with height
values. A recent study of Amirkolaee et al. (2022) demonstrates
the potential of deep learning to automatically generate DTMs
out of DSMs using a UNet encoder-decoder architecture with
residual connections. However, some necessary pre- and post-
processing steps are still involved in the procedure. The au-
thors perform a pre-processing of the input DSM by localizing
the prepared for training height images in pre-defined height
ranges. As post-processing step, a multi-scale fusion strategy
is involved to produce the final DTM from generated DTMs at
different scales and with different spatial shifts.

Despite significant contributions from deep learning method-
ologies towards DTM generation, none of the approaches are
end-to-end, requiring several additional steps to generate the
final DTM. Different from them, in this paper we present a
method which is able to overcome the problem of multi-stage
procedure and generate a DTM from DSM in a single step. Our
contributions are:

• We developed a method based on a simple and efficient
network architecture, which has far less amount of para-
meters in comparison to most popularly used network ar-
chitectures.

• We perform a comparison study between most common
deep network architectures and demonstrate that the model
do not need to be very complex and have a huge amount
of parameters in order to fulfill a task of generating DTMs
out of DSMs.

• We demonstrate that no pre-processing steps of input data
are needed. With a smart data normalization procedure
during the training, the performance of the network is not
limited due to the different regions with various height
ranges.

• Our method is independent of any predefined thresholds
and can generalize even over particularly challenging ter-
rain types like steep slopes, vegetated slopes, or discon-
tinuous terrain features.
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Figure 2. Schematic overview of the proposed architecture for DTM generation out of DSM. The module is represented by an
encoder-decoder network which is based on EfficientNet encoder for analysing the surface information on detecting above-ground

areas, and a decoder module, which generate a clean terrain landscape.

3. METHODOLOGY

Recent studies of Bittner et al. (2020) and Stucker and Schind-
ler (2020) demonstrated that CNNs are capable of generating
good-quality height images representing urban constructions
from photogrammetric DSMs. Inspired by those studies and
that the interest to deep-learning approaches for DSM-to-DTM
rapidly increases, we developed an end-to-end methodology
which is capable to generate DTMs out of DSMs even for com-
plex mountain and urban scenes. Among widely used backbone
networks, such as UNet (Ronneberger et al., 2015) or Res-
Net (He et al., 2016), we have decided to use EfficientNet (Tan
and Le, 2019) and implement it in a UNet shape architecture.

3.1 Network Architecture

In order to achieve better accuracy, many developed baseline
networks, are usually further scaled up by one of three dimen-
sions – depth (He et al., 2016), width (Szegedy et al., 2015), or
image size (Huang et al., 2019). In general, the scaling is per-
formed arbitrarily and, as a result, requires tedious manual tun-
ing that is in turn very time-consuming. The research of Tan and
Le (2019) proposes to scale the network not only in one dimen-
sion but in all three dimensions uniformly balancing them with
a constant ratio. Their baseline network called EfficientNet is
constructed using a multi-objective neural architecture search,
which finds an optimal input size, depth, and width for the ar-
chitecture. The basic building block used to design a network is
borrowed from the class of efficient mobile-size models and has
a mobile inverted residual structure called MBConv (Sandler et
al., 2018; Tan et al., 2019). In contrary to a traditional residual
block, the input and output of the MBConv block are thin bot-
tleneck layers which are joint via a short skip connection. In
between the input is extended using a 1×1 convolution, then
narrowed by a 3×3 lightweight depth-wise convolution to fil-
ter features as a source of non-linearity, and finally squeezed by
another 1×1 convolution in order to match the initial number of

channels. As a result the inverted residual block has far fewer
parameters in comparison to the original residual block which
fits exactly the purpose of mobile networks. Moreover, Tan and
Le (2019) attach asqueeze-and-excitation (SE) block (Hu et al.,
2018) with reduction ratio (R) of four to MBConv block to add
a content-aware mechanism to explicitly model channel rela-
tionships and channel interdependencies. Besides, they use a
Swish activation function fSwish = x

1+e−βx , which combines
the power of both ReLU and LeakyReLU activation functions,
but is learnable due to the β ≥ 0 parameter.

There exist a family of EfficientNets which are based on several
popular ConvNet architectures. In our work we use a baseline
model EfficientNet-B0 as an encoder for a UNet shape archi-
tecture. We have a five level decoder, where each decoder con-
struction block consists of a transposed convolution, which per-
forms a learnable up-sampling of the features, twice followed
by a sequence of 3×3 conv – batch norm – ReLU. The number
of parameters for overall architecture is 14.115 million. Fig-
ure 2 depicts the detailed network architecture.

3.2 Loss Function

To generate an image with detailed terrain information, we ap-
ply an absolute error loss L1 during training

L1(ŷ,y) = ∥ŷ − y∥1, (1)

to compute the absolute difference between an estimated set
of DTM samples ŷ and the actual, ground truth DTM set of
samples y.

3.3 Baselines

We compare the developed DSM-to-DTM approach against a
non deep learning approach based on the work of Krauß et al.
(2008) and two baseline networks.
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Filtering approach: Instead of applying a classical mor-
phological erosion using a filter size of estimated largest
cross-section of all buildings for their elimination from
DSMs (Weidner and Förstner, 1995), the approach of Krauß et
al. (2008) propose to use percentile filters instead of the gray-
value mophological filter which is less sensitive to outliers be-
low the real terrain in a DSMs. Using a low percentile filter re-
sembling a morphologic erosion followed by a high percentile
filtering resembling a morphologic dilation results in a percent-
ile opening of the DSM. Afterwards a gaussian filtering using
the same filter size is applied to obtain a smoother DTM. The
method is applicable for the whole image at ones without tiling.

UNet: We found it reasonable to compare the results with a
fairly standard UNet (Ronneberger et al., 2015) architecture,
since the general shape of our developed network also follows
its form. The last layer of the network is a 1×1 convolution
which outputs one channel image – the DTM. The number of
parameters for the overall architecture is 34.526 million.

UResNet: In remote sensing it is very common to place popu-
lar ConvNet architectures developed for classification tasks into
a UNet form (Bittner et al., 2020; Schuegraf et al., 2022). A
common nowadays ResNet50 build in UNet shape is taken as a
baseline to compare our results with. In this network, the last
layer is also set as a 1×1 convolution which outputs one chan-
nel image – a DTM. The number of parameters for the overall
architecture is 139.421 million.

4. EXPERIMENTS

4.1 Dataset

We evaluated our method on the dataset consisting of raster-
ized DSMs and DTMs with a ground sampling distance (GSD)
of 0.5 m. The data is provided by the Federal Office of Topo-
graphy of Switzerland and is freely available on the Swisstopo
Portal1. According to an official description the DSMs are de-
rived from airborne light detection and ranging (LiDAR) using
all relevant returns filtered by the spike-free algorithm (Khosra-
vipour et al., 2016). For deriving the DTMs the airborne LiDAR
data were used for areas below 2000 m and automatic stereo-
matching techniques were used for areas above 2000 m. In
addition, the remaining gaps were closed with manual stereo-
matching in case the automatic stereo-matching did not work.

We used the data of the Cantons of Zuerich, St. Gallen, and
Vaud for training and validation. The data for each Canton
is provided in 2000×2000 px image patches out of which we
have selected only eight random non-overlap samples of size
256×256 px. We took 10 % of images from each of those Can-
tons to perform a validation phase. The Canton of Fribourg of
588 km2 area was used for testing. The exact data distribution
between the training and validation samples and the exact im-
ages tiling on patches is accessible at https://github.com/
KseniaBittner/DSM2DTM.

4.2 Implementation Details

We have implemented the DSM-to-DTM pipeline in PyTorch
and run it on a single NVIDIA TITAN X (PASCAL) GPU with
12 GB of memory. We use training and validation patches
of size 256×256 px for three selected Cantons. The prepared

1 https://www.swisstopo.admin.ch/en/geodata.html

training dataset for the learning process consisted of 44 580
pairs of samples and validation dataset contained 1241 pairs of
samples. During the training phase the samples were augmen-
ted not only by random horizontal and vertical flipping but also
by random rotations to improve the robustness of the model. To
facilitate the network optimization process and maximize the
probability of obtaining good results, we performed the nor-
malization of DSM and DTM data for neural network training.
We followed the strategy of Stucker and Schindler (2020) and
globally normalised terrain heights by centering them to mean
height 0 and scaling by the global standard deviation of the
heights, computed on all patches of DSM data from the training
set and averaged afterwards.

The network is trained in a fully supervised manner by minim-
izing the pixel-wise absolute distance between generated DTM
and the ground truth. We employed the mini-batch stochastic
gradient descent (SGD) using the Adam optimizer (Kingma and
Ba, 2014) with an initial learning rate of α = 0.0002 which was
dropped by a factor of 10 after 100 epochs. The momentum
parameters were set to β1 = 0.5 and β2 = 0.999, and a batch
size of 16 was used. The training was performed for a total of
200 epochs.

At inference time, we do a large-scale DTM generation by ap-
plying only the best performing models from the validation
stage in a sliding window of size 256×256 px with overlap of
128 px between neighboring patches. The resulting DTM is av-
eraged at the overlapping regions.

4.3 Evaluation Metrics

For quantitative evaluation of resulted DTM, we measure the
mean absolute error (MAE)

εMAE(h, ĥ) =
1

n

n∑
j=1

(|ĥj − hj |) (2)

the root mean squared error (RMSE)

εRMSE(h, ĥ) =

√√√√ 1

n

n∑
j=1

(ĥj − hj)2, (3)

the median residual error (MedErr)

εMedErr(h, ĥ) = median(ĥj − hj), (4)

and the normalized median absolute deviation (NMAD)

εNMAD(h, ĥ) = 1.4826 ·median
j

(|∆hj −m∆h|), (5)

computed pixel-wise between predicted ĥ and reference h
heights for a total number of n pixels. Moreover, for NMAD
we denote a height errors as ∆hj = ĥj − hj and median error
as m∆h = median(ĥj − hj).

5. RESULTS AND DISCUSSION

We have performed the evaluation on Fribourg city and its vi-
cinity. This area combines both the urban environment and very
steep mountain neighborhood. This complex area is selected for
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(a) DSM depicting urban area (b) Ground truth DTM

(c) DTM generated with morphological approach (d) Residual errors for morphological approach

(e) UNet generated DTM (f) Residual errors for UNet approach

(g) UResNet generated DTM (h) Residual errors for UResNet approach

(i) EfficientUNet generated DTM (ours) (j) Residual errors for EfficientUNet approach (ours)

−3 m 3 m

Figure 3. Detailed visual analysis of DTMs, generated by (e) UNet , (g) UResNet, (c) morphology based methodology Krauß et al.
(2008) and (i) the proposed EfficientUNet out of (a) initial DSM in comparison to (b) referenced terrain model over selected sample
area depicting urban environment in Fribourg city. The images are color-shaded for better visualization. Additionally, residual error

maps between generated DTMs with respect to the ground-truth are illustrated on (d), (f), (h) and (j).

the purpose to better demonstrate the strength of the proposed
methodology.

In Figure 3 we compare for an urban environment the perform-
ances of the classical morphology approach, two commonly
used network architectures and our presented approach. The se-
lected sample scene has not only densely placed houses within a
city but also very dense forest (see Figure 3a). By investigating

the obtained DTMs, one can say that all methods succeeded to
detect and remove above-ground information, however with a
different level of accuracy. The morphology method performed
the worst. The city area is just smoothed out and obviously
changed, without preserving the areas which do not have above-
ground information. Also the inhomogeneity in the forest en-
vironment exist in form of holes. Moreover, no terrain informa-

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-1/W1-2023 
ISPRS Geospatial Week 2023, 2–7 September 2023, Cairo, Egypt

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-1-W1-2023-925-2023 | © Author(s) 2023. CC BY 4.0 License.

 
929



(a) DSM depicting mountainous area (b) Ground truth DTM

(c) DTM generated with morphological approach (d) Residual errors for morphological approach

(e) DTM generated with UNet (f) Residual errors for UNet approach

(g) DTM generated with UResNet (h) Residual errors for UResNet approach

(i) DTM generated with EfficientUNet (ours) (j) Residual errors for EfficientUNet approach (ours)

−3 m 3 m

Figure 4. Detailed visual analysis of DTMs, generated by (c) morphology based methodology Krauß et al. (2008), (e) UNet, (g)
UResNet, and (i) the proposed EfficientUNet out of (a) initial DSM in comparison to (b) referenced terrain model over selected
sample area depicting mountain landscape in Fribourg city. The images are color-shaded for better visualization. Additionally,

residual error maps between generated DTMs with respect to the ground-truth are illustrated on (d), (f), (h) and (j).
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Method Error

MAE RMSE MedErr NMAD

Morphology 3.522 8.026 -0.624 3.201
UNet 0.419 0.991 0.033 0.253
UResNet 0.354 0.860 0.017 0.065
EfficientUNet (ours) 0.270 0.758 -0.019 0.107

Table 1. Height difference statistics between generated DTMs
and the reference DTM, evaluated over selected test area of

Fribourg city. All values are meters.

tion, such as hills or lowlands, is preserved. That can be clearly
seen on Figure 3d depicting residual errors.

Investigating deep learning based approaches on Figures 3e, 3g
and 3i, it is noticeable that they can better adapt to terrain pro-
files and actually keep them. All networks were able to detect
above-ground objects, like trees and buildings, and filter them
out. Roads, hills and lowlands are still visible and their features
were not changed much. But further examining the results,
some differences between the achievement of the three architec-
tures can be observed. For example, the forest area on the right
was the best removed by EfficientUNet. The resulted surface is
less rough and has more precise heights, in comparison to UNet
and UResNet generated surfaces in this area. Analysing the re-
sidual error map of the urban environment on Figure 3h, one can
notice that the UNet generated surface has many areas, where
ground was set to much lower heights (blue coloured areas), but
the rest of the area is higher than original heights (red coloured
areas on the ground which should not be changed). Investigat-
ing the UResNet residual map on Figure 3h, it can be observed
that the above-ground objects are quite strongly visible on the
resulted DTM. The possible explanation can be that this type of
network is a good detector and it manages to identify all objects
very precisely. However, it cannot assign a very correct height
to the areas, where objects were removed. Analysing both the
surface area Figure 3i and the residual map Figure 4j, we can
say that EfficientUNet model performed the best on this area. It
looks very similar to the ground truth DTM: all necessary fea-
tures, such as lines and edges are preserved, hills and lowlands
are unchanged, the forest is completely removed. The differ-
ences to the referenced DTM are minimal.

Overall, one can say that with an appropriate deep neural net-
work architecture one can generate much better DTMs within
urban areas with a mixture of small and very large buildings
which was very problematic to do in the past.

We go on by testing the limits of investigated approaches on
more challenging area – mountains. The selected scene of
a complex relief together with resulted and reference DTMs
are depicted on Figure 4. Starting with investigation of
morphology-based generated DTM shown on Figure 4c, we
can immediately conclude that the methodology fails on such
places since it strongly over-smoothed any steep reliefs by flat-
ting peaks and sharp edges. The resulted DTM does not have a
realistic appearance in comparison to reference and deep learn-
ing DTMs. Furthermore, the terrain information is again very
roughly estimated within a vegetated area and has many out-
liers. This investigations are even strongly observable on dif-
ference map (see Figure 4d). On the other hand, deep learn-
ing approaches were able to preserve all contours of complex
mountain relief and on the first sign they look very similar to
each other. However, investigating residual error maps, the dif-
ferences can be found and they are correlated with the perform-

Method Error

MAE RMSE MedErr NMAD

Morphology 1.327 2.215 -0.465 1.752
UNet 0.441 0.891 0.111 0.160
UResNet 0.363 0.767 0.046 0.120
EfficientUNet (ours) 0.276 0.621 -0.009 0.133

Table 2. Height difference statistics between generated DTMs
and the reference DTM, evaluated over selected test urban area

of Fribourg city depicted in Figure 3. All values are meters.

Method Error

MAE RMSE MedErr NMAD

Morphology 14.247 29.057 -2.209 9.699
UNet 0.824 1.826 0.142 0.648
UResNet 0.652 1.642 0.135 0.318
EfficientUNet (ours) 0.559 1.627 -0.001 0.272

Table 3. Height difference statistics between generated DTMs
and the reference DTM, evaluated over selected test mountain

area of Fribourg city depicted in Figure 4. All values are meters.

ance on urban areas. Analysing Figure 4f, it is obvious that
UNet again performed the worst in producing the correct height
within the whole area. Peaks of mountain relief are lower. The
vegetation on the slope areas was not completely removed. On
the other hand, Figure 4h demonstrates that UResNet is able to
keep the areas without above-ground information unchanged,
including the complex mountain peak region, much better in
comparison to UNet. However, the areas, where the initial DSM
was covered with vegetation, were not correctly reconstructed
and are still higher than the referenced DTM. The resulted DTM
from the EfficientUNet resembles the appearance of the ref-
erenced terrain the most, which is supported by the residual
map on Figure 4j. The surface is smooth, less hint of veget-
ation is left on the resulted terrain. The steep relief is very well
preserved and features all terrain details from the initial DSM.
Only minor differences between the referenced DTM and ours
are observable. This experiment again supports the fact that
EfficientUNet model outperforms the rest of analysed method-
ologies.

To quantify the generated DTMs, we evaluated the proposed
metrics for the selected test area depicted on Figure 1 on all
setups, and their performances are reported in Section 5. In
general, a significant difference can be observed in all met-
rics between deep learning approaches and morphology-based
one. It is reasonable, since morphology-based approach was
not able to keep important features, like mountain peaks, steep
terrain relief or urban contours, and just flatted them out in most
cases. On the contrary, deep learning approaches better adapted
to such terrain profiles that is totally supported by all evaluated
metrics.

We go on by studying the differences in the performance
between presented deep learning architectures. Lower numbers
of MAE and RMSE metrics for DTM generated with Efficien-
tUNet in comparison to UNet and UResNet only further support
our qualitative investigation. This is reasonable, since each of
these both models have some problems on generated terrain. As
the MedErr shows only a 1.9 cm difference for EfficientUNet,
the large difference between RMSE and NMAD indicates that
the remaining errors are not normally distributed, and visual in-
spection shows the few remaining differences concentrate on
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steep terrain boundaries and forests, which are difficult to filter
out without ground points, particularly in mountainous terrain.

We additionally performed the same quantitative evaluation
on two selected regions, urban and mountain, shown on Fig-
ure 3 and Figure 4, respectively, to investigate if different land-
scape characteristics influence the performance of the model.
Both Section 5 and Section 5 have only further confirmed the
superiority of EfficientUNet over UNet and UResNet, and its
independence from the terrain relief.

6. CONCLUSION

In this work, we present a methodology that generates digital
terrain models (DTMs) from digital surface models (DSMs)
with the help of efficient deep learning neural network. The
proposed EfficientUNet framework is based on an Efficient-
Net architecture used as encoder which is smaller than exist-
ing popular baselines. The approach is end-to-end and useful to
automatically recognize non-ground pixels on a DSM and es-
timate the bare-ground height information in a way, that there
are no differences in the heights between the surrounding bare-
ground area and the resulting ones. EfficientUNet is particu-
larly good at keeping a very complex relief of landscapes. It
is able to reconstruct DTMs at a large-scale and, in our experi-
ments, achieved lower MAE, RMSE and NMAD in comparison
to the traditional morphology approach, and other deep learning
baselines. Future research includes testing the model on differ-
ent locations to explore its geographical generalization, com-
paring it against another non-deep learning algorithms, training
a model on the combination of data from different sensors, such
as light detection and ranging (LiDAR)-derived images, photo-
grammetric DSMs from both aerial and satellite images with
different ground sampling distances (GSDs) to set up one gen-
eric model for different scenarios.
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