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ABSTRACT:

Vehicle reconstruction from single aerial images is an important but challenging task. In this work, we introduce a new framework
based on convolutional neural networks (CNN) that performs monocular detection, pose, shape and type estimation for vehicles in
UAV imagery, taking advantage of a strong 3D object model. In the final training phase, all components of the model are trained
end-to-end. We present a UAV-based dataset for the evaluation of our model and additionally evaluate it on an augmented version
of the Hessingheim benchmark dataset. Our method presents encouraging pose and shape estimation results: Based on images of
3 cm GSD, it achieves median errors of up to 5 cm in position and 3◦ in orientation, and RMS errors of ±7 cm and ±24 cm in
planimetry and height, respectively, for keypoints describing the car shape.

1. INTRODUCTION

Detecting and retrieving the pose and shape of object instances
in a scene based on aerial imagery is still a challenging task in
photogrammetry and computer vision. Information about the
pose and the shape of objects is crucial in many applications
requiring vision-based scene understanding, such as autonom-
ous driving and traffic monitoring. In this paper, traffic sur-
veillance at critical points is the focus application, where UAVs
are assumed to be part of the infrastructure that monitors those
scenes. Such UAVs can exchange information with other
vehicles or infrastructure for autonomous driving, so that traffic
agents can use it to know about road conditions, traffic conges-
tion, accidents, etc. These applications usually use monocular
camera setups because of their ease of use compared to more
sophisticated set-ups such as stereo or multi-view systems.

However, object reconstruction based on a single image is very
challenging due to the loss of information caused by the di-
mensionality reduction that takes place when projecting a three
dimensional (3D) object to a 2D image plane. Traditional meth-
ods for 3D reconstruction of objects rely on the use of explicit
prior shape models for specific object types, but they often re-
quire assumptions that might not be valid for real applications.
Recently, the use of deep learning for object reconstruction has
become an active research topic (Li et al., 2021; Alidoost et al.,
2019). In deep learning based approaches, neural networks are
trained to learn the relationship between a 2D image and a 3D
object. Although they have achieved remarkable results thanks
to their powerful learning capability, deep learning methods still
face many problems, which include handling the shape com-
plexity of objects, the selection of the optimum shape represent-
ation, and the completion of parts of objects that are not visible
in the image (Ahmed et al., 2018; Chabra et al., 2020; Reddy
et al., 2019). We address these challenges while reconstructing
vehicles based on UAV imagery using a deep learning method
together with a strong 3D object model learned from data.

In this paper, we introduce a methodology for the estimation
of the pose and shape parameters of vehicles using a single
UAV image with known orientation parameters. The method
∗ Corresponding author

is based on a strong object model similar to (Zia et al., 2013).
The following major contributions are made: (1) We introduce
a new method to jointly estimate the shape, pose and type of a
vehicle in 3D from a single UAV image. It is based on (El Am-
rani Abouelassad and Rottensteiner, 2022), which extends the
Faster R-CNN model for object detection (Ren et al., 2017) to
predict rotated bounding boxes, but goes beyond that work by
additional branches predicting the vehicle type and the shape
parameters of the 3D model. The new model is trained end-
to-end, extending previous work by two variants of a regres-
sion loss for shape parameter estimation. (2) We introduce a
new dataset for 3D vehicle pose, shape, and type estimation
from UAV imagery including reference information for all these
tasks1. (3) We evaluate the new method using the new data-
set and an augmented variant of the Hessingheim benchmark
(Kölle et al., 2021) and show that the method achieves prom-
ising results for shape and pose estimation.

2. RELATED WORK

In this section, we discuss related work on the estimation of the
pose and shape of objects for 3D object reconstruction.

2.1 Object Pose Estimation

There has been an increasing use of deep learning for the es-
timation of object poses in 2D and 3D using a single image.
Requiring detection, localisation, and prediction of the correct
orientation of multiple objects in an image, pose estimation is
a harder task than localisation. Methods suggested to solve
this problem differ by the object representation that is used.
Some works use keypoint based approaches, whereas others
use bounding boxes for the task. Bi et al. (2019) introduce a
6D pose estimation framework with a segmentation stream and
a 2D keypoint locations stream. The segmentation stream pre-
dicts the label of the object observed at each pixel while the
regression stream predicts the 2D keypoint locations for that ob-
ject. The pose candidates derived from the keypoints are com-
bined into a set of 3D-to-2D correspondences, from which the
1 The dataset will be published at https://data.uni-hannover.de/
organization/i-c-sens; up to then it can be obtained from the
main author on request.
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pose is estimated. Reddy et al. (2019) also estimate the pose of
vehicles in street view images by determining 2D/3D locations
of visible and occluded keypoints. They use a region of interest
feature map from a detector as input for a multi-layer convo-
lutional block to generate heatmaps with a confidence score for
visible keypoints. These confidence scores are passed through a
graph encoder-decoder network trained to localise occluded 2D
keypoints. The output of this network is passed through a 3D
encoder to predict the shape basis and the camera orientation for
vehicles. Garcı́a López et al. (2019) adapt a method for human
pose estimation (Moreno-Noguer, 2017) to determine vehicle
poses. A vehicle with N keypoints is represented by 2D and
3D poses using N × N distance matrices. The method uses a
two-stage network architecture (Newell et al., 2016) to first pre-
dict semantic 2D keypoints from vehicles and then convert them
into 3D world coordinates by 2D-to-3D distance matrix regres-
sion. While these methods show good results, they are compu-
tationally expensive due to the generation of multiple outputs
(keypoints) for a large number of object proposals.

The prediction of 3D bounding boxes has been pursued thanks
to the success of deep learning networks in detecting 2D bound-
ing boxes for target objects. Using monocular street view
images, Ku et al. (2019) use object detectors to generate 2D
bounding boxes for the classes V ehicles and Pedestrians in
image space. These 2D boxes are used to generate image crops
that are passed to an encoder for feature map extraction. The
feature map is used to determine instance-centric 3D proposals
for 3D bounding boxes, regress offsets of the proposals to get
more precise bounding boxes, and predict instance point clouds
using a CNN that was trained using LiDAR points. Such points
may not be readily available for training, and the quality of the
representation by 3D points predicted from a single image may
be doubted. Tekin et al. (2018) use a single-shot deep CNN
to regress a 6D object pose in one stage using 3D bounding
boxes, while Sundermeyer et al. (2018) detect bounding boxes
for object crop generation first and then predict object rotations
using a representation learned from rendered 3D model views.
Although these methods have shown good results, they repres-
ent the target objects as 3D bounding boxes, which leads to
an estimation of the object size, but only to a very coarse rep-
resentation of the shape. In applications such as tracking and
re-identification, representing vehicles by fine-grained shapes
can be very helpful. In this work, we are interested in a better
representation of the vehicle shape. Therefore, we will estimate
oriented bounding boxes for vehicles along with their shapes.

2.2 Object Shape Estimation

Recovering the shape of an object from a single image is a
challenging task, as it requires both, powerful object detection
methods and prior shape knowledge. Object shape priors are
crucial information for 3D reconstruction from images, particu-
larly if the object is observed only partially, as such priors act as
robust regularisation terms and support the shape reconstruction
also for occluded parts of the object. In general, shape repres-
entations can be categorised into implicit ones, e.g. signed dis-
tance and occupancy functions, and explicit ones, e.g. voxels,
point clouds, and meshes (Xiao et al., 2020).

Using an implicit representation, the shape of a 3D object is
described by an implicit function, for example, a signed dis-
tance function (SDF) or an occupancy function (OF). For any
3D point, a SDF delivers its minimal distance from the object
surface, whereas an OF delivers the probability of this point

being located inside the object. In the past, implicit representa-
tions were commonly approximated by sampling from the im-
plicit function in a regular manner and storing the results in a
3D voxel grid, whereas values for points between voxel centres
were obtained via interpolation. Following this approach, En-
gelmann et al. (2016) propose to use a truncated SDF for es-
timating the pose and shape of detected vehicles from stereo
images by energy minimization. In more recent work, impli-
cit functions have commonly been approximated using deep
neural networks. Still relying on the concepts of a SDF (Park et
al., 2019; Xu et al., 2019) or an OF (Mescheder et al., 2019;
Chibane et al., 2020; Peng et al., 2020), such deep learning
based methods estimate the implicit representation of an object
directly. In addition, such methods have the ability to recon-
struct the shape of objects from a single image (Xu et al., 2019)
and to represent various topologies (Chen et al., 2022) as well
as large-scale scenes (Peng et al., 2020) at arbitrary resolutions.
However, the representation complexity and the level of detail
of the models depend on the representative power of the em-
ployed neural network and thus on its size, which often charac-
terises these approaches as computationally heavy. Also, impli-
cit representations only carry information about the surface of
an object, but lack semantic keypoint or edge locations, which
increases the difficulty of model fitting. Lastly, the complexity
of such approaches increases the risk for overfitting and for the
occurrence of artifacts when reconstructing objects that differ
from those seen during training. Consequently, such methods
often deliver good results on synthetic data, but perform poorly
on sparse and noisy real-world data, which is particularly true
for the reconstruction of shapes from a single image. Duggal
et al. (2022) tried to overcome these limitations by learning to
embed more robust shape priors into a neural network via a dis-
criminator function. While this approach improves the perform-
ance under real-world conditions, it requires a complex training
strategy together with an optimisation at test time.

Active shape models (ASMs) (Cootes and Taylor, 1992) have
the advantage of being a less complex method to represent the
geometry of an object class that has great variability in shape,
size, and appearance. They consist of flexible sets of labelled
points representing an object, from which neighbouring point
statistics are evaluated using several training shapes to learn
a low-dimensional parameterisation (Cootes and Taylor, 1992;
Chen and Medioni, 1991). ASMs have been used in object pose
and shape estimation applications by extracting object features
from images or point clouds and using these observations to
predict the parameters of the ASM, e.g., Zhou et al. (2010);
Busch (2019). Combining deep learning methods and ASMs to
exploit both of their advantages is interesting, yet current work
commonly uses ASMs either to get a coarse estimate of the ob-
ject region (Nguyen et al., 2022) or as a refinement in a separate
step applied to get a coarse object shape and position (Shi et al.,
2021). Shi et al. (2021) use an ASM to determine the 3D shape
of the object on the basis of 3D keypoint detections, while a
CNN is applied to estimate the 2D object locations in the in-
put images. While the method shows encouraging results when
using images along with depth as input, when using monocu-
lar images only, its performance is very sensitive to the quality
of the detected keypoints. To the best of our knowledge, no
CNN based method has been proposed yet to directly estimate
the shape parameters of an object (specifically vehicles) repres-
ented as ASM using a single image. We believe that the use
of deep learning to estimate vehicle shapes following a model
based approach to keep the number of parameters describing
the shape small is an interesting path to investigate.
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3. METHODOLOGY

3.1 Overview

The goal of the method presented in this paper is to extract
vehicles from aerial near-nadir view images and at the same
time determine each vehicle’s pose and 3D shape. This goal
is achieved by extending the Faster R-CNN method (Ren et
al., 2017) so that it predicts rotated bounding boxes rather
than boxes aligned with the image coordinate system in a way
similar to (El Amrani Abouelassad and Rottensteiner, 2022).
Whereas the latter work is based on Mask R-CNN (He et al.,
2017) and thus includes a branch for instance segmentation, no
such branch is considered in this paper. However, the network
is extended so that it additionally predicts the vehicle type and
the parameters required to describe the 3D shape of the vehicle.
The resultant network architecture is shown in Figure 1.

Similarly to (El Amrani Abouelassad and Rottensteiner, 2022),
the network uses a ResNet50 backbone to extract features from
the image. This is followed by a rotated region proposal net-
work (RRPN), proposing a limited number of rotated regions
of interest (RoIs) that are to be considered candidate regions
for containing vehicles. Feature maps of a fixed size are ex-
tracted within these rotated RoIs, and they are presented to
four network branches. Two of them were already considered
in (El Amrani Abouelassad and Rottensteiner, 2022), namely
a classification branch, predicting whether a RoI contains a
vehicle or not, and a bounding box regression branch that pre-
dicts improved parameters of the bounding boxes enclosing the
detected vehicle instances. The other two branches, which also
take the feature maps extracted in the RoIs, correspond to the
major modification to the architecture proposed in this paper.
The first of these new branches, referred to as the type predic-
tion branch, predicts the vehicle type, where we differentiate
a set of nT = 6 vehicle types T ∈ {Estate Car, Compact

Car, Sports Car, Sedan, SUV, Van}. The second new
branch, referred to as the shape prediction branch, regresses
the parameters describing the 3D shape of the car. In this con-
text, and in order to be able to reconstruct the 3D shape from
a single image, we use a strong object model; we represent
cars by an ASM, learning the parametrisation of vehicle mod-
els from CAD models of cars (Zia et al., 2013) so that only a
very small set of shape parameters needs to be predicted by the
network. Our method predicts the pose of the vehicle in image
space. However, if a Digital Terrain Model (DTM) is available,
it can be used to deliver the height component if the pose of the
vehicle is to be determined in 3D object space. In the follow-
ing subsections, we describe the main parts of our methodology
and the training procedure in more detail.

3.2 Vehicle Representation

In this work, every instance of a vehicle is represented by a
rotated bounding box b indicating its pose and extents in image
space, its type according to the class structure given earlier, and
a vector of parameters s describing its shape. The bounding box
of a vehicle is represented by 5 parameters, namely the image
coordinates of the vehicle centre (r, c), the angle θ ∈ (0, 2π]
representing the orientation of the main vehicle axis relative to
the x axis of the image coordinate system, and the lengths l1
and l2 of the longer and the shorter semi-axes of the oriented
rectangular box, respectively. Thus, b = (r, c, l1, l2, θ).

Learning the ASM requires vehicle models consisting of trian-
gulated irregular networks (TIN), so that the structure of the

TIN is identical for each 3D model, i.e. the models essentially
have the same number and structure of keypoints as well as the
same definition of meshes based on these keypoints. These key-
points being given in a car-specific coordinate system with its
origin in the car centre, a vertical z-axis and an x-axis point-
ing into the driving direction, one can collect all keypoint co-
ordinates in one vector and determine the mean vehicle model
m as the mean of all of these vectors. A principal compon-
ent analysis (PCA) of the matrix of second central moments of
these vectors delivers Eigenvalues σ2

s and corresponding Eigen-
vectors es, which form the basis of the ASM. Using the mean
model, the Eigenvalues and Eigenvectors, the shape of a car can
be represented by a set of parameters γ(s), computing the vector
M(γ) of keypoint coordinates according to

M(γ) = m+

ns∑
s=1

γ(s)σses. (1)

It is sufficient to restrict the sum in Eq. 1 to the Eigenvectors
corresponding to the first ns largest Eigenvalues; we use ns = 3
in our experiments, i.e. the 3D shape of a car is represented by
a vector s = (γ(1), γ(2), γ(3)). The model M(γ) is given in
the local coordinate system defined above; in order to get the
keypoint coordinates in object space, the bounding box has to
be projected to the object space and the model has to be shifted
and rotated so that it is situated in the bounding box and aligned
with the driving direction of the car.

3.3 Region Extraction

The purpose of the RRPN is to obtain region proposals that are
likely to contain an object. This part of the network uses the
architecture proposed in (El Amrani Abouelassad and Rotten-
steiner, 2022). First, a 3 × 3 convolutional layer is used to
process the feature map produced by the ResNet50 backbone,
resulting in a 256-dimensional feature vector for every pixel.
Each pixel is considered to be a potential centre of a region that
is represented by an anchor, i.e. a rectangular window with a
given rotation angle, size, and aspect ratio. The RRPN contains
a classification branch that predicts a score for every pixel and
every anchor on the basis of the feature vectors just determ-
ined, indicating whether a window corresponding to the anchor
and centered at that pixel is likely to correspond to an object
or not. A regression branch determines improved values for
the parameters of the rotated bounding box. After non-maxima
suppression, all remaining windows are ordered by the confid-
ence scores of the classification branch of the RRPN, and the
Nprop (set to Nprop = 1000 in our experiments) windows hav-
ing the highest confidence values are selected to be the region
proposals used for further processing. To do so, feature maps
of a fixed size nx × ny (we use nx = 10 and ny = 20 in our
experiments, which is consistent with the default aspect ratio of
the anchors) aligned with the rotated region proposal windows
are extracted from the output of the ResNet50 backbone, which
is done by the rotated RoI pooling (RRoI) layer (cf. Figure 1).

As described earlier, the anchors used by RRPN have different
sizes and orientations. As we are only interested in vehicles,
the used anchors only have one aspect ratio (l1 : l2 = 2 : 1)
and two scales, but 12 rotation angles in order to be able to
predict orientations. Differently from (El Amrani Abouelassad
and Rottensteiner, 2022), we first apply bi-linear interpolation
to generate a grid at the resolution of the original feature map
that is aligned with the main direction of the rotated bounding
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Figure 1. The architecture of the proposed method.

box; after that, maximum pooling is applied, considering all in-
terpolated feature vectors inside one mesh of the output feature
map (Ding et al., 2019).

3.4 Classification and Bounding Box Regression

The feature map generated by the RRoI pooling layer is pro-
cessed by a classification head and the rotated bounding box
regression head. The architectures of these heads are largely
identical to those proposed in (Ren et al., 2017), consistng of
a sequence of fully connected layers. Whereas the classifica-
tion head predicts the class label of the object inside the region
proposal (Vehicle vs. Non-vehicle), the regression branch pre-
dicts five real-valued numbers for improving the bounding box
parameters (r, c, l1, l2, θ) (El Amrani Abouelassad and Rotten-
steiner, 2022). The only difference compared to (Ren et al.,
2017) is the number of output nodes in the regression branch,
because the rotation angle also has to be predicted.

3.5 Prediction of the Vehicle Type and Regression of the
Shape Parameters

These new branches take a feature map generated by RRoI
pooling, having a size of nx × ny , as input. To predict the
vehicle type, the feature map is processed by four convolutional
layers with ReLU activations, followed by max pooling opera-
tions. The size of the filter matrices is 3 × 3 in these layers, the
number of filters is 256, and max pooling is based on windows
of size 2 × 2 and stride 2. Afterwards, two fully connected lay-
ers are applied, the first one delivering another 256-dimensional
output and the other one producing class scores for the vehicle
types (cf. Section 3.1) using the softmax function.

The shape prediction branch also processes the feature map
generated by the RRoI pooling layer. Its architecture is identical
to the one of the type prediction branch, with the exception of
the output layer. Here, the number of nodes in the output layer
is identical to the number of parameters ns used to represent
the vehicle shape (cf. Section 3.2), and each of them predicts a
real-valued number encoding one of the shape parameters γ(s).

3.6 Training

The training data consist of images with known orientation
parameters and rotated bounding boxes enclosing vehicles,

vehicle type, and vehicle shape parameters. The rotated bound-
ing boxes should be given in both, the image and the object co-
ordinate system; however, if a DTM is available, it is easy to de-
termine one from the other. In principle, we can follow a strat-
ified training method that is also used in (Ren et al., 2017), but
using a modified loss function. Using this strategy, one com-
ponent is trained after the other before performing a joint train-
ing step at the end. In the experiments reported in this paper, we
initialise the parameters of the network components that were
also used in (El Amrani Abouelassad and Rottensteiner, 2022)
by pre-trained values that were used in that publication, having
been determined using the strategy just described. The para-
meters of the new type and the shape prediction branches are
initialised by random numbers, which is followed by a series
of training iterations for determining the parameters of these
branches on the basis of the results of the RRPN, freezing the
parameters of the other components of the network and minim-
ising the sum of two loss functions Lt+Lsh (one for the output
of each branch; see below). Having thus obtained good initial
values for all parameters, a final end-to-end training step is ap-
plied in which all parameters are fine-tuned using a combined
loss function considering all intermediate and final outputs. The
overall loss Ltotal to be minimised in training consist of three
terms:

Ltotal = Lb + Lt + Lsh, (2)

where the loss Lb already has three components:

Lb = LRRPN + Lcls + Lreg. (3)

The loss terms in Eqs. 2 and 3 will be explained in the sub-
sequent subsections.

3.6.1 Loss Lb: This loss consist of three terms, namely the
RRPN loss LRRPN , the classification loss Lcls, and the rotated
bounding box head regression loss Lreg; they were already
defined in (El Amrani Abouelassad and Rottensteiner, 2022).
The classification loss Lcls is a standard softmax cross entropy
loss, whereas for the loss Lreg , a regression loss based on the
Huber loss function, applied to the difference of the predicted
and the given parameters, is used (Ren et al., 2017). The RRPN
loss is the sum of a classification and a bounding box regression
loss of the two branches inside the RRPN that are modelled in
a way similar to Lcls and Lreg , respectively. For a detailed de-
scription of the loss terms constituting Lb, the reader is referred
to (El Amrani Abouelassad and Rottensteiner, 2022).
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3.6.2 Vehicle Type Loss Lt: The vehicle type loss is com-
puted from the softmax output of the type prediction head. We
use a standard cross-entropy loss function for this task:

Lcls = − 1

N

N∑
i=1

nT∑
j=1

cij · log(pij), (4)

where i is the index of a reference vehicle, N is the number
of reference vehicles, j is the index of a vehicle type, and nT

is the number of vehicle types (nT = 6; cf. Section 3.2). cij
is an indicator showing whether the ith sample corresponds to
vehicle type Cj (cij=1) or not (cij=0). Finally, pij is the softmax
output for vehicle i to correspond to the vehicle type Cj . This
loss will push the parameters of the network towards producing
softmax outputs close to 1 for the correct vehicle type.

3.6.3 Vehicle Shape Loss Lsh: This loss is computed on
the basis of the real-valued output of the shape estimation
branch. We propose two variants for that loss function, lead-
ing to two variants (VL1 and VL2) of the method presented in
this paper.

The first variant, VL1, uses an L2 loss for the regression task:

L1
sh =

1

N

N∑
i=1

ns∑
s=1

(γ̂
(s)
i − γ

(s)
i )2, (5)

where i and N are as defined in Eq. 4 and s and ns as in Eq. 1.
The parameters predicted by the network are denoted by γ̂

(s)
i ,

whereas γ(s)
i represents the corresponding reference value.

The second variant, VL2, uses a loss that compares the distance
between the shape M(γ̂

(s)
i ) obtained from the estimated shape

parameters γ̂(s)
i and the shape M(γ

(s)
i ) derived from the refer-

ence parameters γ(s)
i :

L2
sh =

1

N ·NK

N∑
i=1

NK∑
k=1

||M(γ̂
(s)
i )k −M(γ

(s)
i )k||2, (6)

where i and N are as defined in Eq. 4, k is the index of a key-
point in the ASM, NK is the number of such keypoints, and
|| · ||2 denotes the L2 norm of a vector. M(γ̂

(s)
i )k and M(γ

(s)
i )k

are the three-vectors corresponding to the kth keypoint of the
predicted and the reference shapes, respectively.

The loss L1
sh directly compares the parameters determined by

the shape prediction branch to the reference, but these differ-
ences are abstract quantities having unclear units. The loss L2

sh

is easier to interpret (it is the average metric distance of key-
points of the predicted model and the reference). The results
achieved by the network variants based on the two loss func-
tions will be compared in the experiments.

4. DATASETS

The datasets required to train our framework consist of UAV
images and a reference consisting of a rotated bounding box,
a vehicle type, and shape parameters for vehicles depicted in
these images. As the interpretation of the vehicle shape para-
meters depends on the ASM, the latter has to be generated even
before the determination of the reference for training (and test-
ing) in the way described in Section 3.2. For that purpose, a set

of 36 different CAD models representative for the differenti-
ated vehicle types was collected from Google’s 3D Warhouse2.
A total of 144 3D keypoints were manually labelled in these
CAD models (Coenen and Rottensteiner, 2021), and the corres-
ponding 3D coordinates were the basis for the ASM. In our ex-
periments, two datasets are used for training and evaluating the
proposed method. The first one was acquired by us in a dedic-
ated measurement campaign involving image acquisition using
a UAV; it is referred to as the UAV dataset (Section 4.1). The
second one is an augmented version of the Hessigheim dataset
(Kölle et al., 2021) (Section 4.2).

4.1 UAV Dataset

The UAV dataset is the product of a dedicated measurement
campaign. In that campaign UAV equipped with a camera
hovered over a street intersection and acquired images having a
ground sampling distance (GSD) of about 3 cm at a frequency
of 10 Hz. This corresponds to a scenario relevant for autonom-
ous driving in which the UAV, considered to be infrastructure,
supports the localisation of the cars in its field of view at critical
points. The dataset consists of 1400 images of 2592 × 2048
pixels each, showing both parked and moving cars in the in-
tersecting roads, and the task to be solved is the precise local-
isation and shape reconstruction of all visible cars. In addition
to the images, their orientation parameters and a DTM of the
street surface are known, though these data are not necessarily
required for the evaluation. More importantly, the required ref-
erence data were generated by manual annotation. The dataset
contains the required data for 2156 vehicle instances.

To generate a reference for the rotated bounding boxes, the out-
lines of all visible cars were digitised in all UAV images, and
the 2D rotated bounding boxes were derived by calculating a
minimum bounding rectangle for each of these outlines. A hu-
man operator inspected the resultant orientations and correc-
ted them manually so that they always point into the driving
direction. Furthermore, each car instance was annotated with
a vehicle type according to the class structure defined in Sec-
tion 3.1. Using the available DTM and the orientation paramet-
ers, the bounding boxes could be transformed into object space.

To obtain a reference for the shape parameters of vehicles, 24
keypoints of the ASM were used. These keypoints were identi-
fied manually in several images in which they were visible. For
that purpose we could also use stereo image pairs acquired from
moving cars at street level with a base line of 1 m for which ori-
entation parameters were known. Thus, for static cars, the 3D
coordinates of keypoints in object space could be determined
by forward intersection from multiple images (one stereo pair
and one UAV image), and these points could be transformed to
a local vehicle coordinate system using the 3D bounding boxes.
For moving cars, we used the corners of the 3D bounding boxes
as tie points to relate the local car coordinate systems to each
other; then, the poses of the UAV images from which the bound-
ing boxes were determined were transformed into the local car
coordinate system. Even though there was only a small baseline
between different UAV images, the fact that the car had moved
between different acquisition meant that there was a somewhat
larger baseline between the projection centres in this local car
coordinate system, which also allowed the determination of the
3D coordinates in the local car coordinate system by forward
intersection. Finally, the parameters γ(s) of the reference car
models were determined by fitting the ASM according to Eq. 1

2 https://3dwarehouse.sketchup.com
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to the available subset of 3D keypoints. The resultant reference
consists of 2156 vehicle instances for which the shape and pose
parameters are given.

4.2 Hessingheim Dataset

The Hessingheim dataset (Kölle et al., 2021) provides four
epochs of UAV-based LiDAR measurements and stereo images,
together with a reference for several tasks, though not for 3D
car reconstruction. In this paper, we use an unpublished data-
set, referred to as H3D, from a measurement campaign for a
fifth epoch in the same area provided to us by the benchmark
organizers on request. The H3D dataset was acquired using a
UAV equipped with a LiDAR system and cameras. We were
provided with images of 14204 x 10652 pixels each and a GSD
of 2-3 cm. We also received the laser points, the orientaion
parameters of the images, and a DTM.

Here, the generation of the reference was based on the LiDAR
points. First, car instances were identified in the point cloud, us-
ing the images as auxiliary information. Afterwards, a human
operator annotated the instance with a car type and selected one
of the 36 CAD models used to learn the ASM (the one most
similar to the car instance); that CAD model was manually shif-
ted and rotated until it fitted well to the point cloud, using the
software CloudCompare3. The pose of the CAD model along
with its extent could be used to define the 2D bounding box and
the orientation of the car in the object coordinate system, us-
ing the height of the lowest points of the CAD model (wheels)
as the Z component. The parameters γ(s) of the reference car
models were determined by fitting the ASM according to Eq. 1
to the keypoints that had been annotated in the CAD models
(see above). In this case, the 2D poses in image space are de-
termined by backprojecting the 3D vehicle model to the image
and computing the minimum bounding rectangle, considering
the correct driving direction for the orientation. In total, the ref-
erence consists of 220 distinct vehicle instances in this dataset.

5. EXPERIMENTS AND RESULTS

5.1 Test Setup

For the evaluation, we use the two datasets described in Sec-
tion 4. In both cases, the available images are split into tiles of
1024 × 1024 pixels each. The images of the UAV dataset show
an intersection of two roads. We first divide the image tiles
and their respective reference data into two subsets. The first
one contains the first road with the intersection area; this sub-
set is used for training and validation according to a 80%:20%
split. The second subset contains the second road without the
intersection area, and it corresponds to the test set. After aug-
mentation, we get 6536, 2176, and 2178 vehicle instances in the
UAV dataset for training, validation and test, respectively. The
H3D dataset is also split into disjunct training, validation and
test sets with shares of 60%, 20%, and 20%, respectively. After
augmentation, we get 1260, 420, and 420 vehicle instances for
training, validation and testing, respectively.

For both datasets, we train two variants of our method (VL1

and VL2), differing by the loss function used for learning the
prediction of the shape parameters (cf. Section 3.6.1). In both
cases, we use 24 anchors with one aspect ratio (2:1), two scales
(64 and 128 for l1, respectively), and 12 rotation angles (0◦,

3 https://www.danielgm.net/cc/

30◦, 60◦, 90◦, 120◦, 150◦, 180◦, 210◦, 240◦, 270◦, 300◦,
330◦). The training of our method is based on stochastic gradi-
ent descent with a learning rate of 0.1, momentum of 0.9 and
weight decay of 0.0001 for optimisation. We also apply data
augmentation by applying random crops, scales, and rotations.
We follow the training strategy described in Section 3.6, ini-
tialising the parameters of the backbone, the RRPN, and the
classification and rotated bounding box regression heads using
the pre-trained weights from (El Amrani Abouelassad and Rot-
tensteiner, 2022), initialising and improving the new branches,
and finally fine-tuning the entire network in an end-to-end man-
ner by optimising the joint loss in Eq. 2. The final end-to-end
training requires 80 epochs, where for each epoch, one image
tile is used during each iteration.

To evaluate the quality of the detection results, we compare the
predicted oriented bounding boxes to the reference in image
space. If the IoU score of a predicted bounding box with a refer-
ence bounding box is above 50%, the predicted bounding box is
considered to be a true positive (TP); otherwise, it is a false pos-
itive (FP). A reference bounding box is considered to be a false
negative (FN) if there is no predicted bounding box such that
the IoU of the boxes is larger than 50%. Based on the numbers
of TP, FP and FN instances, we calculate the precision (percent-
age of detected boxes that correspond to a reference box), the
recall (percentage of reference boxes that were detected), and
the F1 score (the harmonic mean of precision and recall).

To evaluate the pose, we determine the Euclidean distance dit
of the predicted vehicle position from the reference for every
detected vehicle i. Similarly, the differences diθ of the predicted
vehicle orientations from the reference values are calculated.
We report the median ϵtmae of the absolute position errors and
the median of the absolute orientation error ϵθmae, as well as
the median absolute deviations of the position and orientation
errors, σt

MAD and σθ
MAD (Hampel et al., 2005):

ϵmmae = median(|dim|), (7)

σm
MAD = 1.4826 ·median(|dim − ϵmmae|), (8)

where m ∈ {t, θ}. We also present the cumulative histograms
of the absolute errors |diθ| of orientations for the UAV dataset.

For the evaluation of the vehicle type branch, we compare the
predicted vehicle types with the reference and analyse the over-
all accuracy (OA-1), i.e. the percentage of correct decisions. As
some of the classes related to vehicle type are not well defined
(because they have a very similar appearance in the data), we
additionally report another metric (OA-2), considering a predic-
tion to be correct if the reference class is among the two classes
with the highest class scores.

In order to evaluate the shape prediction, we use the predicted
vehicle shape parameters to determine keypoint positions and
compare them to the keypoint positions determined using the
ASM parameters from the reference. For every keypoint j and
every vehicle i, we compute the 2D distance D2D

ij of the pre-
dicted and the reference positions as well as the absolute value
of the height difference, ∆Hij . Using these values, we com-
pute the root mean square (RMS) errors ED2D and E∆H of the
distances and the height differences, respectively:

EM =

√√√√ 1

Kp ·Nv

Nv∑
i=1

Kp∑
j=1

M2
ij , (9)
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where Nv is the number of vehicles, Kp is the number of key-
points, and M ∈ {D2D,∆H}. Additionally, we compare the
dimensions of the reconstructed vehicle shapes with the refer-
ence. For this purpose, we calculate the minimum 3D bound-
ing boxes enclosing the estimated and the reference models, re-
spectively. We report the RMS errors of the length, width, and
height (l, w, h) differences of these 3D bounding boxes:

Ed =

√√√√ 1

Nv

Nv∑
i=1

∆d2i , (10)

where d ∈ {l, w, h}, ∆di is the difference of dimension d for
vehicle i, and Nv is the number of vehicles.

5.2 Results and Discussion

The results of the evaluation of the two variants of our method
are described separately for the aspects of detection, pose, type
and shape estimation in the subsequent sections.

5.2.1 Detection: Table 1 presents the quality metrics
achieved for the task of vehicle detection for both datasets and
both variants of our method. The results show that variant VL1

performs better than VL2 in detecting vehicles in both datasets
in all metrics. The table also shows that both models perform
better on the dataset UAV than on H3D. A reason for that beha-
viour could be that the UAV dataset contains many more train-
ing samples than the H3D training dataset. In general, the de-
tection performance is encouraging, but there is still room for
improvement. For instance, the recall of VL1 for the UAV data-
set indicates that about every fourth car in the test set is not
detected. The main reason for missing vehicles is truncation of
vehicles at the tile boundaries.

Data Model Precision [%] Recall [%] F1 [%]
UAV VL1 81.6 76.5 78.9

VL2 79.2 73.6 76.3
H3D VL1 75.1 68.9 71.8

VL2 72.3 66.4 69.2

Table 1. Precision, Recall, and F1 score for vehicle detection on
the two test datasets.

5.2.2 Vehicle Pose: Table 2 shows the quality metrics for
both the position and orientation estimates as defined in Sec-
tion 5.1. The error metrics for position were converted to [m]
by using the average GSD of the corresponding dataset. Again,
the results for variant VL1 are better than those achieved using
VL2, and both variants perform better for the UAV dataset than
for H3D. In general, these results are quite encouraging. The
median error ϵtmae for position achieved by VL1 on the UAV
dataset is only 5 cm (2-3 pixels), which would be considered
to be sufficient for applications such as autonomous driving. In
H3D, it is slightly worse, but still below 10 cm. Something
similar can be said about median error ϵθmae for orientation; an
error of 2.8◦ in orientation corresponds to a mis-alignment of
12 cm at a distance of 2.5 m (half the length of a car). It would
seem that the pose estimates are quite good for the best variant.

Figure 2 shows the cumulative histogram of the absolute differ-
ences between the predicted and the reference angles for VL1

and VL2 on the UAV test data. The figure show that both vari-
ants can predict the majority of the angles correctly, but yet
again that VL1 is to be preferred over VL2. VL1 predicts the

Data Model ϵtmae σt
MAD ϵθmae σθ

MAD

[m] [◦]
UAV VL1 0.05 0.07 2.8 2.7

VL2 0.10 0.09 3.1 2.9
H3D VL1 0.09 0.08 3.6 3.5

VL2 0.11 0.10 4.9 4.3

Table 2. Quantitative position and orientation error metrics for
the two test datasets.

Figure 2. Cumulative histogram of absolute differences between
estimated and reference angles for VL1 and VL2 for the UAV

dataset. The abscissa gives the absolute value of the angle
difference in [◦].

orientations with an error smaller than 10◦ in about 85% of the
cases, whereas using VL2 the corresponding number is about
75%. However, the figure also shows that there is a consid-
erable percentage of outliers: whereas errors between 20◦ and
160◦ are very rare, in about 5% of the cases the orientation er-
ror is close to 180◦, indicating that the orientation of the car was
predicted to correspond to the opposite of the driving direction.
This may be due to the difficulty of both variants to differenti-
ate between the front and the rear of some vehicles. It has to
be noted that in a near-nadir view, some vehicle types, e.g., Se-
dans, do indeed have an almost symmetrical appearance, which
makes the prediction of the correct orientation difficult.

5.2.3 Vehicle Type: Table 3 shows the class-specific F1
scores achieved by vehicle type prediction in variants VL1 and
VL2, and Table 4 shows the overall accuracies. Again, VL1 out-
performs VL2 in both datasets, and again most of the quality
metrics are better for the UAV dataset than for H3D. The F1
scores in Table 3 show that there is a considerable variation
between the car types. One of the reasons for this is class im-
balance in the training data: the most frequent classes in the
training set are Estate Car, Compact Car, Sedan and Van. For
the first three of these classes, the F1 scores are larger than
64%, whereas for the others they are below 45%. Analysing
the overall accuracy OA-1 in Table 4, one can see that the best
variant (VL1) only predicts the correct car type in about 66%
of the cases in the UAV dataset and about 53% of the cases in
H3D. This relatively low performance of the type classification
can be explained by the difficulty of the task: some car types
look so similar that it is even difficult for a human annotator to
differentiate them in the images. Thus, there are many confu-
sions between certain pairs of car types that look very similar.
This can also be inferred from the error rates OA-2 in Table 4,
which correspond the percentages of cases in which the true la-
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bel is within the top-2 class scores. For instance for the best
performing variant, in about 13% of the cases, the correct class
achieves the second highest class score for the UAV dataset; for
H3D, where in general there is a much smaller number of train-
ing samples for all classes, this number is even larger (22%).
We take this as an indication that the model has difficulties in
differentiating the most similar car types.

Data Model EC CC SC Sed. SUV Van
UAV VL1 72.2 64.1 41.5 70.2 31.4 36.9

VL2 71.5 63.9 39.8 68.8 30.3 33.4
H3D VL1 69.7 67.7 32.6 65.3 36.7 30.7

VL2 68.7 64.8 32.4 64.4 36.4 29.8

Table 3. F1 scores [%] for the categories of the vehicle type
branch on both datasets by both models. EC, CC, SC, Sed.:

Estate Car, Compact Car, Sports Car, Sedan.

Data Model OA-1 [%] OA-2 [%]
UAV VL1 65.8 78.1

VL2 60.9 71.7
H3D VL1 52.6 74.6

VL2 48.3 69.9

Table 4. Overall accuracies of the vehicle type prediction on
both datasets by both variants.

5.2.4 Vehicle Shape: Table 5 shows the RMS errors for the
car dimensions (El, Ew, Eh), as well as the RMS errors of
the differences between keypoints in planimetry (ED2D ) and
height (E∆H ). Again, VL1 achieves better results than VL2 and
the results obtained on UAV are better than those for H3D.

Analysing the results for the car dimensions (El, Ew, Eh), it
is obvious that the planimetric dimensions (length and width)
are predicted quite accurately, with RMS errors in the order of
±10 cm. Although the planimetric dimensions were derived
from keypoint coordinates (cf. Section 5.1), this is essentially
related to the capability of the model to predict the vehicle di-
mensions accurately. The planimetric RMS errors of the key-
points (ED2D ) are also quite good (±7 cm for VL1 on the UAV
dataset). This error metric is more susceptible to the actual
shape of the car than the metrics for length and width, because
24 key points of the ASM models are considered. Although no
keypoint locations are estimated in the images, the planimetric
positions of the keypoints are determined rather well, which in-
dicates the high potential of the method. The RMS errors of
vehicle (Eh) and keypoint height (E∆H ) are considerably lar-
ger (±21 cm and ±24 cm, respectively, for VL1 on the UAV
dataset). Even in the best variant, the method has difficulties in
predicting the third dimension accurately. However, one has to
note that this has to be expected, because only monocular and
near-nadir images are used for 3D reconstruction. For instance,
a method solely aiming at a reconstruction of keypoints in 3D
would not work at all given the available data; the only reason
why the vehicle models can be reconstructed in 3D is the fact
that we use a strong model, the ASM. Another aspect is that
the lowest parts of the vehicles are hardly visible in near-nadir
images, as shown in Figure 3, which might additionally hamper
a more accurate determination of the height components of the
keypoints.

Figure 3 shows some qualitative results obtained with variant
VL1 tested on the UAV dataset. The wireframe fits the vehicles
rather well. In these examples, the frontal parts of the vehicles
are rather different from their backs, so that in these cases, in
addition to the shape, the orientation can also be predicted well.

Data Model El Ew Eh ED2D E∆H

[m] [m] [m] [m] [m]
UAV VL1 0.11 0.08 0.21 0.07 0.24

VL2 0.12 0.10 0.26 0.08 0.26
H3D VL1 0.12 0.09 0.29 0.09 0.26

VL2 0.13 0.12 0.31 0.10 0.28

Table 5. Error metrics for shape estimation for both test datasets.

Figure 3. Qualitative results of VL1 on two UAV test images.
The backprojected shapes of the reconstructed vehicles are

represented by red wireframes.

6. CONCLUSION

In this paper, we have proposed a CNN-based method for the
detection of vehicles from monocular UAV images, simultan-
eously predicting the vehicle pose, type and shape. The method
is based on a final end-to-end training of all branches of the
CNN. Additionally, we have presented a new dataset for evalu-
ating vehicle detection and reconstruction methods. The main
limitation of detection is related to truncated vehicles, which
could not be detected well. The pose prediction results were
very encouraging, with median errors in the range of 5 cm for
the position and of less than 3◦ in orientation. However, in
some cases, errors of about 180◦ in orientation were observed,
mainly due to nearly symmetric vehicle shapes. The results of
type prediction were not very accurate, mainly because of the
similar appearance of some vehicle types. The evaluation of
shape estimation has shown that the dimensions and the shapes
of the vehicles can be determined very accurately in planimetry,
with 2D RMS errors of keypoints in the order of ±7 cm in im-
ages of about 3 cm GSD. The height component is less accurate
(RMS errors of about ±24 cm), which is to be expected when
using near-nadir monoscopic images. Comparing two different
variants of the loss minimised in training, our results show that
the variant using a loss based on shape parameters (VL1) is a
better choice than the alternative.

In future work, we want to use the results of our method to
build an approach for collaborative tracking of vehicles over
time, considering not only the UAV images, but also street level
images acquired from stereo cameras mounted on moving cars
(Coenen and Rottensteiner, 2021). In this context, beyond the
predicted poses, the shape parameters will be particularly use-
ful in order to combine information acquired from images with
such different viewing directions. Assuming the UAV and the
cars to be able to communicate with each other, this would
be the basis for collaborative positioning of the vehicles. This
could be useful for autonomous driving, in particular in GNSS-
denied areas.
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