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ABSTRACT:

While most research in automatic semantic segmentation of 3D geospatial point clouds is concerned with enhancing respective
Machine Learning (ML) models, we aim to shift the focus to be more of a data-centric nature. This means, we consider the
creation of respective data sets that ML models learn from as key component, since even the most sophisticated model performs
poorly when learning from suboptimal data. In this regard, the straightforward approach of providing labeled data abundantly
is prohibitively expensive and just not scalable in times of high-frequency data acquistion cycles, where a dedicated training set
should be available for each new epoch, as ML models often lack generalizability. As a remedy, we rely on Active Learning (AL),
which is a cost-efficient and quick method to generate required training data at scale. Although AL has been (scarcely) applied in
the geospatial domain before, a comprehensive evaluation of its capabilities, including benchmarking of achievable accuracies is
lacking. Therefore, we apply the AL concept to both ISPRS’ current point cloud benchmark data sets as well as to a third large
scale National Mapping Agency point cloud. Respective experiments are conducted with both a feature-driven Random Forest
classifcation approach and a data-driven Submanifold Sparse Convolutional Neural Network classifier. Our experiments verify that
by labeling only a fraction of available training points (typically ≪ 1%), we can still reach accuracies that are at maximum only
about 5 percentage points worse compared to leading benchmark contributions.

1. INTRODUCTION

Being capable to automatically interpret (geo)spatial 3D data
enables a plethora of different applications, such as safe
autonomous vehicle navigation through surrounding awareness,
derivation of digital terrain models (Hui et al., 2019) or detec-
tion of significant changes in monitoring applications (Haala
et al., 2020). To this end, supervised Machine Learning (ML)
methods are often employed and have drawn considerable at-
tention in research over the last decade. While conventional
feature-driven classification approaches have achieved a rather
mature state, the branch of data-driven Convolutional Neural
Network (CNN) approaches, triggered by the introduction of
PointNet (Qi et al., 2017), is a hot research topic currently.
However, the main focus of ML, especially in the geospatial
domain, has always been on the classification model rather than
the careful generation of the training data set the model is sup-
posed to learn from. For the latter, the long-held standard is that
providing a sufficient training data set is an expert’s burden and
has to be completed before any model can be employed (Wald-
hauser et al., 2014). But only recently, Ng (2021) stressed that
more emphasis should be given to the creation of training data
sets, and recommended that ML system development should be
more data-centric rather than model-centric.

One scheme following this mindset is Active Learning (AL)
(Settles, 2009). In this iterative supervised ML approach, data
annotation and training a respective model are no longer seen
as two self-contained steps, but the machine represented by the
ML model is actively involved in constructing the training set
and is allowed to request labels for specific instances from one
or more human labelers, known as the oracle. The basic idea
behind determining such points is that predictive uncertainty of
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the model is directly correlated with informativeness and that
by adding such points, the model improves, i.e., we seek to
minimize epistemic uncertainty. With AL, the labeling effort
can be focused only on those points that actually justify hu-
man involvement. Therefore, when realizing an AL framework,
we build what we call hybrid intelligence systems (Vaughan,
2018), in which humans or human processing units work to-
gether with electronic processing units, so that both parties per-
form the tasks they are best at, i.e., human interpretation capab-
ilities for data annotation and machine-based scanning through
data highlighting potentially valuable instances.

Despite the great potential to perform cost-efficient data inter-
pretation, for 3D point clouds, especially Airborne Laser Scan-
ning (ALS) point clouds, respective AL-based approaches are
scarce. One of the first methods to this end was proposed by
Luo et al. (2018), who perform semantic segmentation of mo-
bile laser scanning point clouds by means of a pair-wise con-
ditional random field built upon an Random Forest (RF) classi-
fier (Breiman, 2001) integrated into an AL loop. Also for the
classification of terrestrial point clouds, AL-based solutions are
presented by Wu et al. (2021), Shi et al. (2021) and Shao et al.
(2022), each relying on superpoint regions as AL primitives (in-
stead of single points) but differing in the sampling procedure.

An AL approach actually developed for ALS point clouds is
presented by Hui et al. (2019), who formulate the genera-
tion of a Digital Terrain Model (DTM) as a binary classifica-
tion problem where points are to be assigned to class ground
or non-ground, but utilize an automated oracle based on both
the current prediction and the distance to the approximated
DTM level. To predict a more extensive class catalog, Li and
Pfeifer (2019) combine AL built around an RF classifier with a
semi-supervised learning scheme in which labels of an initially
provided coarse training set are each propagated to the point
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in an optimal neighborhood that exhibits the highest sampling
score. A more typical AL scheme for semantic segmentation
of ALS points clouds is pursued by Lin et al. (2020a,b). In
this approach, AL operates on a regularily tiled point cloud
and is designed to identify most-informative tiles, with tile
scores obtained by averaging either point-based or segment-
based sampling scores derived from a PointNet++ classifier
(the segments are obtained by a preceding unsupervised seg-
mentation). Although this approach greatly minimizes labeling
effort to most-informative tiles, costly full annotations of those
are still expected. Kölle et al. (2020) and Kölle et al. (2021b)
mitigate this issue by only requesting labels of single most-
informative points, which are identified based on both RF and
Submanifold Sparse Convolutional Neural Network (SCN) pre-
diction scores. Furthermore, the assumption of an error-free
Ground Truth (GT) oracle is lifted, as labels are provided dir-
ectly by crowdworkers, thus completely excluding experts from
the annotation process and actually forming a hybrid intelli-
gence system.

While the aforementioned approaches have demonstrated great
potential for cost-efficiently building ML models for a given
data set as alternative to the conventional Passive Learning (PL)
approach, they lack a comprehensive ranking of results com-
pared to the current state of the art in semantic point cloud seg-
mentation that allows for a fair ranking of AL. In this work,
we aim to address this limitation and hope to thereby foster
a wider dissemination of AL in the geospatial domain in the
spirit of data-centric ML (Ng, 2021). Our contribution can thus
be summarized as follows: i) We give a brief overview of AL,
but particularly illustrate its working principle for ALS point
clouds, followed by ii) a discussion of versatile add-ons for the
key component of AL, namely the definition of a query function
to identify most-informative samples, suitable for both data-
driven and feature-driven classification approaches, and iii) we
benchmark AL results for both an RF and SCN classifier by ap-
plying the respective methods to both ISPRS’ semantic labeling
challenges for 3D point clouds as well as to a typical National
Mapping Agency (NMA) ALS cloud.

2. METHODOLOGY

Our system to efficiently train ML models consists of three
main components, namely the query function for sampling
most-informative samples in context of the AL loop (Sec-
tion 2.1), an appropriate ML model (Section 2.2), and our oracle
capable of returning labels for selected instances (Section 2.3).

2.1 Setting-up the AL Loop

To initialize our pipeline (cf. Algorithm 1), we present a given
unlabeled point cloud U to our oracle O, which can either be a
simulated machine oracle or, more realistically, can be repres-
ented by human operators. The first task of the oracle is then
to generate an initial (coarse) training set with nj samples for
each of our nΩ classes. When humans are asked to perform this
task, they will naturally select samples that are fairly easy to
label well away from respective class borders in object space.
Using Linit (cf. Algorithm 1), we can then train a respective
ML model M capable to perform semantic segmentation of 3D
point clouds, and rely on it to derive predictions on the remain-
ing unlabeled data set U , so that the loop can theoretically be
terminated already at this point. However, if we aim at high-
accuracy results, the loop/iteration is to be continued and thus
the second and even more important task of the classifier is to

Algorithm 1 AL loop for 3D point cloud classification
Input

• unlabeled point cloud U = {xu}np

u=1

• numb. of samples n+ to be labeled in each iteration step i
• definition of desired class catalog containing nΩ classes
• access to oracle O

1: initialize labeled training set L = {}
2: query O to generate initialization data set Linit =

{(xr, cr)}
nj ·nΩ

r=1 containing nj samples per class
3: set L = L ∪ Linit and U = U \ Linit

4: initialize queried label set Li = {}
5: while stopping criterion not met or labeling budget not ex-

hausted do
6: train the ML model M using L
7: predict on U to get p(c|xu) ∀ xu ∈ U
8: derive a sampling score s ∀ xu ∈ U
9: select the n+ samples with highest score and ask O for

labels thus generating Li =
{(

x+
i , c

+
i

)}n+

i=1

10: set L = L ∪ Li and U = U \ Li

11: set Li = {}
12: end while

Output
• final training set L
• trained model M
• full annotation of originally provided point cloud U with

points being either manually annotated by O or automat-
ically labeled by M

estimate the model’s confidence by means of the predicted pos-
terior probabilities p(c|x) for each point x ∈ U . To actually
select most-informative points from this unlabeled pool, we rely
on entropy sampling defined as:

x+
E = argmax

x∈U

(
−

nΩ∑
i=1

p(ci|x) · log2 p(ci|x)

)
(1)

Generally speaking, this measure is designed to sample points
in the vicinity of the current (perhaps suboptimal) class borders
(cf. Figure 1(a)), i.e., we score aleatoric uncertainty, but es-
pecially in early iteration steps, epistemic uncertainty will also
have a significant impact. This can be interpreted as mimick-
ing the core idea of Support Vector Machines (SVMs), that is
building separation hypotheses solely based on samples situated
near class borders, essentially. However, when only uncertainty
is scored, for ALS points clouds where we are typically con-
fronted with heavily class-imbalanced data sets (e.g., consider
the relative frequency of class Car vs. Impervious Surface), it
is likely that classes that are underrepresented in the underlying
data set are all the more underrepresented in our sampled train-
ing set. This is because (most likely) regions of class borders
are populated by proportionally fewer representatives of such
smaller classes. Thus, refinement of class borders with respect
to these classes is likely to be neglected, eventually resulting in
suboptimal separability. As a remedy, in each iteration step i of
our loop (cf. algorithm 1), we compute dynamic class weights
wc based on the relative frequency of the number of samples of
a specific class nc in our current training set L with nL points.

wc(i) =
nL(i)

nc(i)
(2)

Those weight values are then multiplied by the predicted pos-
terior probabilities, normalized, and inserted into the entropy
formula in Equation 1. However, such AL sampling strategies
are designed to add only one instance at a time, but re-training
an ML model each time only one sample is added is both ineffi-

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-1/W1-2023 
ISPRS Geospatial Week 2023, 2–7 September 2023, Cairo, Egypt

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-1-W1-2023-945-2023 | © Author(s) 2023. CC BY 4.0 License.

 
946



(a) Entropy sampling - emphasizing aleatoric
uncertainty, but also epistemic uncertainty (es-
pecially in early iteration steps)

(b) Batch-mode AL with batch size 3 in com-
bination with entropy sampling. Except for the
point closest to the decision border, 2 quasi-
duplicates get selected

(c) Batch-mode AL with batch size 3 in com-
bination with entropy sampling and applied di-
versity criterion. Dotted lines represent formed
k-means clusters

Figure 1. Comparison of different sampling strategies to select most informative points. Transparent points represent the current
training data defining the decision boundary. Yellow border lines indicate samples with highest scores.

cient and statistically questionable (especially in case of a CNN
model). Thus, AL is usually applied in batch-mode, where mul-
tiple n+ samples are selected and presented to the oracle O for
labeling. But in this case, it is likely that queried points are
too similar to each other with respect to their representation in
feature space (cf. Figure 1(b)). Thus, sampling such quasi-
duplicates essentially wastes labeling resource. To get the most
out of a fixed labeling budget, we therefore follow the recom-
mendation of Zhdanov (2019) and compute a weighted k-means
clustering with n+ clusters according to:

∑
xi∈U

n+∑
j=1

si
∥∥xi − µj

∥∥→ min

where µ are cluster centers

(3)

By explicitly considering the (weighted) entropy scores s in
clustering, we can guarantee that in this Diversity in Feature
Space (DiFS) method, we sample a batch of points that is both
as informative and as diverse as possible in order to boost the
convergence of the loop (cf. Figure 1(c)). After determining
the points to be added to the training set, the oracle O is asked
to annotate these points, so that the ML model can be re-trained
based on this expanded training set to complete the first train-
ing cycle. This iteration continues until a certain stopping cri-
terion is reached (e.g., a fixed labeling budget, a certain number
of iteration steps, or a more sophisticated stopping criterion as
discussed by Bloodgood and Vijay-Shanker (2009)) and even-
tually results in an optimal training set tailored to the specific
ML model M .

To get an intuition of the working principle of AL, it is worth-
while to examine samples that have been identified as inform-
ative within the loop. As humans, we tend to utilize the object
space to this end. However, AL queries are based on the repres-
entation of instances in a high-dimensional feature space, which
should then be the focus of such an analysis. But since such a
representation is hard for humans to interpret, we should apply
a re-mapping of high-dimensional spaces to 2D for visualiza-
tion. For this, we rely on the non-linear t-SNE mapping (van der
Maaten and Hinton, 2008) that aims to keep relative distances
between samples based on their similarity. This is exemplar-
ily applied to the feature description of the ISPRS Vaihingen
3D (V3D) data set (used features and the data set is briefly in-
troduced in Sections 2.2 and 3, respectively) and yields the 2D

feature space visualization in Figure 2. For exemplary points
selected within an AL loop launched for this data set, we trace
back respective point in feature space to object space. In this re-
gard, Figure 2 corresponds well to our expectation that human-
selected points in the initialization phase are typically easy for
the machine to interpret, as they are situated well away from
class borders in feature space and populate centers of rather
homogeneous regions (cf. Figure 2(a) & (f)). Points sampled
within the loop, on the other hand, naturally stem from inhomo-
geneous regions in feature space that correspond to spots near
class borders in object space (cf. Figure 2(b)-(e)). Thus, as
previously mentioned, AL can in fact be interpreted as emu-
lating the working principle of SVMs, but focusing not only
on selecting most-informative points but also on avoiding to
sample quasi-duplicates. This typically minimizes labeling ef-
fort to only a really small fraction of available training points
(Mackowiak et al., 2018; Kellenberger et al., 2019).

2.2 The ML Model

Although the basic assumption is that even the simplest classi-
fier can perform well just by tailoring an appropriate training
set to it (Ho and Baird, 1997; Stork, 1999), still the achievable
performance will be partly determined by the suitability of the
employed model. To demonstrate generalizability of results, we
thus rely on both a representative of the feature-driven domain,
an RF classifier, and a representative of the data-driven domain,
a 3D-convolution-approximating, voxel-based SCN classifier,
which is based on the work of Schmohl and Sörgel (2019).
For an ML model to be successfully incorporated into AL, it
i) needs to be capable to learn from sparsely labeled data, ii)
must be suitable reliably assessing its uncertainty - especially,
its epistemic uncertainty, which we seek to minimize, and iii)
has to be provided with/needs to be capable of inferring, ex-
plicit point-wise feature vectors to guarantee diversity within
sampled batches.

For the RF classifier, the latter requirement is met by design,
as we utilize hand-crafted features. Precisely, we use a set of
both geometric (structural tensor features, orientation of fitted
plane, roughness, height above ground etc.) and radiometric
features (LiDAR inherent features and color information) eval-
uated for multi-scale spherical neighborhoods, as described in
the work of Haala et al. (2020). Also, learning from sparsely
labeled data (challenge i)) can be straightforwardly implemen-
ted for the RF, as we simply reduce the list of samples provided
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Figure 2. t-SNE embedding of feature vectors of the V3D data into 2D space. Exemplary regions where AL points originate from are
indicated by blue circles. For each region, a representative is traced back to object space and colored blue. While points (a) and (f)

were selected by human operators in the initialization step, the remaining examples were actively queried in the course of the AL loop.

for training. Furthermore, we argue that the predicted (pseudo)
posterior probability of the RF is well suited to assess epistemic
uncertainty, as it is the result of averaging over multiple bagging
ensemble members and thus satisfies condition ii).

As for the representative of the data-driven domain, the afore-
mentioned challenges are more complex to overcome. Usu-
ally, ML models compute the loss over all labeled instances
(or voxels in our case). However, dealing with sparse annota-
tions, not every voxel carries a label, but should still be presen-
ted to the network to enable it to derive meaningful geometric
descriptors (at least if it lies within the receptive field of one
of the few labeled voxels, i.e., if it describes the neighborhood
of labeled cells). Thus, to address i), we modify the loss func-
tion so that unlabeled ”background” voxels are ignored in loss
calculation, but still contribute in training due to their passive
presence. To address ii), we employ a so-called deep ensemble,
where each ensemble member is trained on the same training
set but they differ in the randomly initialized weight values. In
inference, we then compute the average over all ensemble-wise
posterior probabilities to reliably estimate epistemic uncertainty
(Jospin et al., 2022).

Although the network implicitly utilizes self-taught features,
for iii), we need to find a way to explicitly output point-wise
feature vectors. To do so, we concatenate filter responses of
the different levels of our 3-level U-Net like architecture from
both the encoding and decoding branch to obtain a multi-scale
description of our input points. However, at deeper levels, the
original input voxel cloud is represented in a more abstract man-
ner at a lower resolution than the input. As a remedy, we assign
respective features of deeper levels to all voxels at the original
resolution that have been aggregated into this specific cell. As
can be seen from Figure 3, this often leads to a voxelated rep-
resentation where upsampled filter responses from deeper en-

coding levels are smoother than their counterparts from decod-
ing levels (although stemming from the same lower resolution).
This is due to retrieving features in the decoding branch dir-
ectly at the deconvolutional layer, essentially incorporating the
resolution of the previous deeper level, which is contrary to the
encoding branch where features are retrieved after a series of
3D convolutions at the last layer of an encoding level.

Obtained filter responses of the encoding branch in Figure 3
often resemble typical features utilized by feature-driven clas-
sifiers. For instance, Figure 3(a) is reminiscent of a verticality
measure and Figure 3(c) seems to score flatness. However, both
responses also appear to be impacted by radiometric features,
as convolutions are performed over all available input channels.
Also, the model tries to gradually enhance its context awareness
with Figure 3(e) resembling height above ground, which can
only be inferred from a wider spatial context. Contrary to the
encoding branch, where the data is solely described by deriving
descriptive features, in the decoding branch the model progress-
ively develops its ability to recognize individual classes. In this
regard, Figure 3(f) attempts to accentuate buildings, but also
lower parts of high vegetation that are often geometrically sim-
ilar (both are vertically oriented and noisy, either due to façade
furniture or detailed branch structures), but are already far less
emphasized in Figure 3(d). Eventually, Figure 3(b) is clearly
suited to extract points of a specific class, in this case class Car.

2.3 The AL Oracle

Another key component of AL is the formulation of an oracle
capable of providing labels for selected points. In literature, an
omniscient GT oracle OO is often assumed, but this is unreal-
istic in real world scenarios where humans are tasked with point
annotation. Thus, labeling errors should also be taken into ac-
count when simulating oracles. Respective errors can be either
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Low High

(a) Encoding branch level 1 (b) Decoding branch level 1

(c) Encoding branch level 2 (d) Decoding branch level 2

(e) Encoding branch level 3 (f) Decoding branch level 3

Figure 3. Filter responses from selected filters at each level of our SCN, arranged in an order to match the SCN’s U shape.

purely random or systematic in nature (Lockhart et al., 2020).
A noisy oracle ON will always assign a fraction of points to
any class, except the correct one. But more severely, a con-
fused oracle will follow some distinct mapping function (e.g.,
always labeling façades as class Roof ), which can be particu-
larly harmful for classification approaches (Kölle et al., 2021b).
Especially in AL, this becomes problematic since we sample
points from class borders (both in feature and object space,
cf. Figure 2), where selected points are often ambiguous and
thus systematic errors can be the result of different class un-

derstanding. To avoid such errors, as recommended by Kölle
et al. (2021b), we modify our sampling strategy slightly and
consider the point originally queried by the machine (cf. Sec-
tion 2.1) as seed point only, but instead select the neighbor-
ing point in a spherical neighborhood of radius dRIU with the
lowest sampling score. This strategy, referred to as Reducing
Interpretation Uncertainty (RIU), assumes that the distance to
the class border correlates directly with annotation complexity
and has proven an efficient means of minimizing systematic la-
beling errors (Kölle et al., 2021b).
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3. DATA SETS

As our main goal is to benchmark AL in the domain of geospa-
tial ALS point cloud semantic segmentation, we rely on both IS-
PRS’ current benchmark data sets. These are the Vaihingen 3D
Semantic Labeling Contest (V3D) as a typical ALS point cloud
(Niemeyer et al., 2014) and the high-resolution Hessigheim 3D
Benchmark (H3D) captured from an UAV (Kölle et al., 2021a).
Although both data sets incorporate rich and challenging class
catalogs, they cover only limited spatial regions. Therefore, we
utilize as a third data set, an NMA ALS point cloud depicting
the city center of Stuttgart (S3D), that is about 30 times larger in
extent than the V3D data set, but contains a comparably small
class catalog, as can be seen from Table 3. Nevertheless, it is
well suited for evaluating the scalability of AL.

4. EXPERIMENTS

To assess the capabilities of AL for semantic point cloud clas-
sification, we derive a series of solutions for our three data sets
that incorporate the different strategies and classifiers described
in Section 2.1 & 2.2. We report results of pure weighted en-
tropy sampling (wE) as well as the adapted variant with the
DiFS sampling add-on. But to also give realistic estimates of
accuracies to be expected in an AL scenario where human pro-
cessing units are employed for labeling the queried points, we
i) augment sampling with RIU, to reduce chances for encoun-
tering an oracle following a systematic error behavior, and ii)
incorporate a noisy oracle ON where 10 % of labels are ran-
domly misclassified in each iteration step. In each of our AL
runs, the initial data sets consist of nj = 10 samples per class.
Unless stated otherwise, we report AL results after 30 iteration
steps with 300 points queried in each step, exclusively from the
dedicated training set, predicting on the respective test splits
(i.e., we adhere to the official data splits for the benchmark data
sets). As for the incorporated ML models, the RF is paramet-
rized by 100 binary decision trees with a maximum depth of
18 and a minimum number of samples at a node to justify a
new split of 7. Respective features are computed for spherical
neighborhoods of r ∈ {1, 2, 3, 5} m. For the SCN classifier,
we employ a deep ensemble of 5 networks, each operating on a
0.5 m voxelized input point cloud. To reduce computation time,
networks of each iteration step start their training cycle based on
the result of the previous iteration step and use the current de-
cayed learning rate. Apart from these AL runs, we rely on both
the PL results of our classifiers using the fully labeled training
set and the PL result of the respective benchmark leader (for
V3D & H3D) as baseline solutions.

As for the results for the V3D data set, we can firstly conclude
from Table 1 that both our classifiers are well suited for the
task at hand, as our PL results are on a level comparable to the
top-performing benchmark submission, and are only worse by
about 1 percentage point (pp) in Overall Accuracy (OA). How-
ever, we prefer comparing our AL-based runs to the PL res-
ult obtained with our classifiers, as these can be considered the
limit of achievable accuracy for the specific model. Regarding
the AL runs, it is evident that the DiFS sampling add-on con-
tributes significantly to the improvement of the classification
accuracy, so that the wE+DiFS strategy can be considered as
optimal result from the point of the machine, performing less
than 3 pp worse in OA compared to PL for both the RF and
SCN classifier. However, in a realistic scenario with imperfect
human operators as oracle, these accuracies are unlikely to be

Powerl.
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Façade

Shrub

Tree

Roof

L. Veg. I. Surf.

(a)

Powerl.

Fence

CarI. Surf.

Tree

Façade

L. Veg.
Shrub

Roof

(b)

Figure 4. Comparison between the class distributions in the
original V3D training data set (a) vs. the one obtained by AL

after 30 iteration steps (b).

achieved. Thus, we add the RIU technique with dRIU = 1.5m
to minimize chances of systematic errors and consequently sim-
ulate only the effect of a noisy oracle ON . Such more real-
istic AL runs perform only marginally worse with a final loss of
< 5 pp in OA compared to the best-performing PL benchmark
submissions, but are far more cost-efficient since only 1.15 %
of points from the training set require labeling.

With respect to the performance of individual classes, under-
represented categories such as Powerline or Car tend to per-
form better in AL than in their PL counterparts. This effect can
be traced back to the generation of a training set in AL, which,
thanks to the weighted sampling scheme (cf. Section 2.1), has
a distribution that is close to that of an equal distribution, as
clearly visible from Figure 4.

As for the RF classifier vs. the SCN classifier, results are rather
similar, with the RF slightly outperforming the SCN. However,
the two models differ significantly in computational complex-
ity, which is due to their basic working principle. With the RF,
features of each point only need to be computed once and can be
kept throughout the iteration. But for the SCN, whenever new
labels become available, we need to recompute or at least refine
features of all points (voxels), which is inevitably computation-
ally more expensive. Precisely, an RF-based AL iteration step
can be completed in about 1 minute, whereas such a training
cycle for the SCN takes about 50 times as long. Therefore, for
AL, CNN-based approaches are a suboptimal choice - at least
from a purely economic point of view.

Hence, for the high-resolution H3D data set incorporating a
significantly larger voxel volume, we are compelled to ease
the computational load by reducing the number of training
cycles to 10 iteration steps, but then sampling 600 points in
each step. We also slightly adapt our RF classifier to H3D’s
resolution and compute features for neighborhoods of r ∈
{0.125, 0.25, 0.5, 0.75, 1, 2, 3, 5} m. Generally, results on H3D
confirm our observations on V3D with final classification ac-
curacies for wE + DiFS + RIU with an ON oracle that are less
than 3 pp worse compared to our classifier’s optimal PL results
and only require 0.12h (RF) and 0.08h (SCN) of available
training points. We would like to emphasize that in such an
ultra-high-resolution data set, due to spatial proximity of neigh-
boring points, we always face a significant number of quasi-
duplicates with respect to the representation of these points in
feature space. This underlines the significance of DiFS, which
is capable of improving OA values by > 4 pp and mF1 values
by > 5 pp for both classifiers.

Since our two classifiers lead to similar accuracy levels for V3D
and H3D, due to the aforementioned advantages in time com-
plexity, we restrict ourselves to reporting solely RF-based AL
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Method Sampl. Method Oracle F1-score
Powerl. L. Veg. I. Surf. Car Fence Roof Façade Shrub Tree mF1 OA

TP 61.99 88.83 91.22 66.72 40.66 93.61 42.62 55.87 82.57 69.34 85.24
RF
PL 48.39 83.16 91.93 72.68 14.94 95.17 64.30 40.60 80.73 65.76 84.25

AL
wE OO 49.98 80.50 89.99 70.68 14.49 94.50 52.45 43.55 77.11 63.69 81.00
wE+DiFS OO 61.90 80.53 90.24 73.12 28.58 94.14 57.08 43.55 78.99 67.57 82.43
wE+DiFS+RIU OO 67.35 79.37 89.50 70.32 28.53 92.77 60.45 39.62 79.24 67.46 81.59
wE+DiFS+RIU ON 68.85 79.44 90.16 69.43 27.44 92.64 58.06 36.66 77.00 66.63 81.17

SCN
PL 42.11 81.40 91.11 72.15 41.22 94.10 59.65 48.87 83.88 72.92 83.86

AL
wE OO 65.17 78.29 88.96 68.86 25.32 88.39 49.58 34.49 76.81 63.99 79.07
wE+DiFS OO 60.57 79.31 88.59 72.28 24.92 91.21 55.34 43.44 80.16 66.20 81.13
wE+DiFS+RIU OO 63.02 79.52 89.62 75.03 26.33 91.18 54.41 38.45 78.27 66.20 80.91
wE+DiFS+RIU ON 60.68 78.89 89.48 74.09 22.29 90.64 53.77 39.10 78.54 65.28 80.59

Table 1. Comparison of reachable accuracies [%] for different training approaches and oracles using RF and SCN for the V3D data set
after 30 iteration steps. TP represents the result of the top-performing model of the benchmark challenge.

Method Sampl. Method Oracle F1-score
L. Veg. I. Surf. Car U. Furn. Roof Façade Shrub Tree Gravel Vert. Surf. Chim. mF1 OA

TP 92.90 90.23 78.51 57.89 95.71 80.43 68.46 97.21 62.37 73.08 72.45 79.02 89.75
RF
PL 89.97 88.17 63.76 49.18 95.59 78.08 65.86 95.36 47.34 59.63 80.52 73.95 86.87

AL
wE OO 87.04 79.33 49.48 42.15 93.17 74.72 63.22 95.12 46.65 27.40 85.50 67.62 81.63
wE+DiFS OO 91.04 85.93 59.74 43.64 95.92 76.40 64.41 95.68 51.34 54.80 82.97 72.90 86.58
wE+DiFS+RIU OO 88.38 85.97 55.68 44.07 93.75 75.64 66.46 95.56 49.69 55.53 63.59 70.39 84.84
wE+DiFS+RIU ON 88.06 86.94 56.01 42.88 93.93 75.78 64.43 95.14 46.67 56.17 50.26 68.75 84.82

SCN
PL 90.69 87.82 55.17 52.52 96.74 81.61 63.25 96.60 50.55 70.97 63.24 73.56 87.40

AL
wE OO 84.91 79.04 51.37 38.98 92.45 75.10 51.51 92.01 43.77 60.90 63.65 66.70 80.25
wE+DiFS OO 88.28 82.06 68.27 40.25 95.01 77.68 56.81 95.66 49.91 70.09 74.64 72.61 84.35
wE+DiFS+RIU OO 89.58 85.45 68.36 45.50 95.55 75.78 49.87 95.76 54.18 70.87 48.96 70.90 85.44
wE+DiFS+RIU ON 89.29 83.03 63.64 39.06 94.78 73.93 51.50 95.24 54.59 67.10 54.31 69.68 84.43

Table 2. Comparison of reachable accuracies [%] for different training approaches and oracles using RF and SCN for the H3D data set
after 30 iteration steps (RF) and 10 iteration steps (SCN), respectively. Furthermore, we report the result of the (at the time of writing

this paper) top-performing TP model of the still ongoing benchmark challenge.

Method Sampl. Method Oracle F1-score
U. Furn. Ground Building Tree mF1 OA

PL 75.30 98.63 96.82 93.97 91.18 95.51

AL
wE OO 67.70 98.19 96.12 93.31 88.83 94.63
wE+DiFS OO 66.25 98.29 96.03 93.40 88.49 94.65
wE+DiFS+RIU OO 62.19 97.87 94.81 91.90 86.69 93.47
wE+DiFS+RIU ON 59.86 97.82 93.89 91.51 85.77 92.83

Table 3. Comparison of reachable accuracies [%] for different training approaches and oracles using RF for the S3D data set after
30 iteration steps.

runs for the large-scale S3D data set. As this data sets depicts
a significantly larger scene with a plethora of representatives
for each class, we are dealing with a much greater intra-class
variety, which is further amplified by generalization through
the rather coarse class catalog. Thus, the highest accuracies
are achieved for S3D in the PL run. Especially class Urban
Furniture suffers when learning from only limited training sets,
as those fail to truthfully characterize the large variety of this
quasi-class Other. Nevertheless, with the optimal configuration
from the machine’s point of view (wE + DiFS), we obtain a
result that is less than 1 pp worse in OA than in PL, but only
utilizing 0.23h of available training points (please note that
the effect of boosting convergence by DiFS is not visible at this
saturated state of the iteration after 30 iteration steps, but im-
proves OA by > 2 pp at iteration step 10, for instance).

5. CONCLUSION

This work represents a first attempt to benchmark AL in the
domain of ALS point cloud classification and underlines its
great potential to minimize labeling effort and thus make ML
methods broadly applicable. Although the accuracy of AL ap-
proaches is slightly worse compared to corresponding PL ap-
proaches, models can be flexibly set up for a given (new) data
set with minimal labeling overhead, which is an important prop-
erty in times of rapid data acquisition cycles. More signific-
antly, our AL-based results emphasize that the long-held un-
derstanding of ML models requiring vast annotated data sets is
not the key to success, but rather building a versatile (small)
training set with most-informative (actively queried) samples.
In this spirit, the geospatial community can benefit from the re-
commendation of Ng (2021) to focus more on the data-centric
branch of ML research to really enable its true capabilities. This
is especially the case, as the community lacks annotated data
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sets at a level comparable to that of the computer vision com-
munity.
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