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ABSTRACT:

The pixel-wise classification of land cover, i.e. the task of identifying the physical material of the Earth’s surface in an image, is 
one of the basic applications of satellite image time series (SITS) processing. With the availability of large amounts of SITS it 
is possible to use supervised deep learning techniques such as Transformer models to analyse the Earth’s surface at global scale 
and with high spatial and temporal resolution. While most approaches for land cover classification focus on the generation of a 
mono-temporal output map, we extend established deep learning models to multi-temporal input and output: using images acquired 
at different epochs we generate one output map for each input timestep. This has the advantage that the temporal change of land 
cover can be monitored. In addition, features conflicting over time are not averaged. We extend the Swin Transformer for SITS and 
introduce a new spatio-temporal transformer block (ST-TB) that extracts spatial and temporal features. We combine the ST-TB with 
the swin transformer block (STB) that is used in parallel for the individual input timesteps to extract spatial features. Furthermore, 
we investigate the usage of a temporal position encoding and different patch sizes. The latter is used to merge neighbouring pixels 
in the input embedding. Using SITS from Sentinel-2, the classification of land cover is improved by +1.8% in the mean F1-Score 
when using the ST-TB in the first stage of the Swin Transformer compared to a Swin Transformer without the ST-TB layer and 
by +1,6% compared to fully convolutional approaches. This demonstrates the advantage of the introduced ST-TB layer for the 
classification of SITS.

1. INTRODUCTION

Pixel-wise classification, referred to as semantic segmentation
in Computer Vision, is the task of assigning a class label to each
pixel in an image. For land cover classification, a common ap-
plication for remote sensing images, these classes correspond
to different physical materials on the Earth’s surface like Water
or Forest. New satellite missions, such as Sentinel-2 from the
Copernicus program of the European Union, provide satellite
image time series (SITS) with high spatial and temporal reso-
lution at global scale. These SITS enable the use of supervised
deep learning methods such as Fully Convolutional Neural Net-
works (FCNs) or Transformer models, which are able to achieve
excellent results on big datasets.

The main goal of this paper is the extension of deep learning
models for multi-temporal land cover (LC) classification based
on SITS. We will refer to the produced pixel-wise classification
outputs as maps in the remainder of this paper. Whereas exis-
ting work mostly focuses on the generation of a mono-temporal
output map even if multi-temporal input images are employed,
our goal is the generation of a LC map for each input image
timestep. This has the advantage that the class of a pixel can
change over time, opening the possibility to model LC change,
and that conflicting input features are not averaged. For training
we use labels from a topographic database that is updated every
three months. This inherently leads to some label noise, i.e. er-
rors in the reference labels, as it takes some time until a change
of LC is included into this database. On the other hand, this
strategy provides a large amount of labelled data with respect
to both, the area covered and the number of timesteps.
∗ Corresponding author

There are two promising deep learning models that have already
been successfully adapted for semantic segmentation of remote
sensing images: FCNs and Transformer networks. FCNs are a
standard model for vision tasks which are used in remote sens-
ing, e.g. for change detection, crop and LC classification. Sev-
eral approaches have adapted these models for SITS, e.g. by
using parallel encoders for different timesteps (Caye Daudt et
al., 2019) or by computing temporal features using convolutions
(Pelletier et al., 2019). Transformer models, initially proposed
for machine translation by Vaswani et al. (2017), have also been
adopted for image classification (Chen et al., 2022; Dosovitskiy
et al., 2021) and segmentation (Strudel et al., 2021), achiev-
ing state-of-the-art performance. Transformers are based on at-
tention modules considering all input tokens (e.g. words) of a
sequence, and consider global dependencies directly. When it
comes to semantic segmentation of images, the computational
complexity of these attention modules increases quadratically
with the image size, which results in a trade-off between com-
putation time and classification performance. Therefore, most
approaches merge several pixels into a patch to decrease the
number of input tokens at the cost of losing spatial resolution,
e.g. (Dosovitskiy et al., 2021). Approaches such as the Swin
Transformer (Liu et al., 2021) mitigate this effect by computing
the attentions only in local windows, resulting in a drastically
reduced computational complexity.

Several approaches combine a Transformer backbone with a
FCN decoder to obtain pixel-wise predictions and achieve
promising results with mono-temporal remote sensing images,
e.g. (Gao et al., 2021; Zhang et al., 2022). We extend these
models for multi-temporal LC classification and investigate dif-
ferent adaptations of our baseline model that is composed of
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a Swin Transformer backbone and a FCN decoder with multi-
temporal output. For the multi-temporal Swin encoder we com-
bine the original Swin transformer block, which is run in par-
allel for all timesteps, with a new spatio-temporal transformer
block (ST-TB) to extract spatio-temporal features between the
input patches of all timesteps. In our experiments we investiga-
te the effectiveness of this ST-TB layer, the usage of a temporal
position encoding based on the day-of-year of the image acquis-
ition and the influence of the patch size that is used to reduce
the spatial resolution. We show that it is possible to train such a
model from scratch without enormous GPU resources if enough
varying training data with sufficient variability is available, and
we compare the performance of our Transformer-FCN model
with a purely convolutional model that is based on a U-Net ar-
chitecture. In this context, we also investigate different variants
of the U-Net structure, e.g. parallel encoders for the different
timesteps, to ensure a fair comparison of all methods. Our sci-
entific contribution can be summarized as follows:

• Adaptation of transformer-based and convolution-based
deep neural networks for generating multi-temporal out-
put maps in LC classification,

• Investigation of different variants of the transformer-based
model, including temporal position embedding, parallel
blocks for the timesteps in the encoder and the used patch
size for merging neighbouring pixels,

• Comparison with a FCN solution, also including adaptati-
ons such as parallel encoder blocks for the images of dif-
ferent timesteps.

2. RELATED WORK

In this section, first, we discuss related work that exploits fully
convolutional neural networks for pixel-wise classification (se-
mantic segmentation) with a focus on remote sensing images.
Afterwards, we introduce transformer models and the way in
which they are adapted for semantic segmentation before dis-
cussing several approaches that use transformer adaptations for
remote sensing images with a focus on SITS.

FCNs (Long et al., 2015) have been used in various remote sen-
sing applications e.g. for the classification of LC (Pelletier et
al., 2019; Voelsen et al., 2022), change detection (Caye Daudt
et al., 2019), or agricultural crop classification (Ji et al., 2018).
The main component of a FCN is the convolution, in which a
kernel with learnable weights is shifted across the input to ex-
tract features, thus integrating local context in the feature com-
putation. By combining layers with convolutions and down-
sampling, more context is integrated and the computed features
become more complex. While in most applications these fea-
tures are computed in the spatial dimensions (Ronneberger et
al., 2015; Caye Daudt et al., 2019), they can also be determined
in other ones, e.g. across different time steps (Pelletier et al.,
2019), spectral bands, or combinations thereof (Ji et al., 2018).
Most FCN variants are based on an encoder-decoder structure,
e.g. U-Net (Ronneberger et al., 2015), which also uses skip
connections to combine feature maps from the encoder and the
decoder in order to preserve fine spatial structures.

In contrast to convolutional layers, transformer models include
global context directly by using self-attention layers. The trans-
former model, introduced for machine translation (Vaswani et

al., 2017), is used for many vision tasks today. The self-
attention mechanism is computed between all tokens (parts of
the input, e.g. words) of the input sequence, and therefore
the features are independent from the distance in the input se-
quence. Since their success in natural language processing,
transformer models have been adapted to the field of computer
vision for tasks such as image classification (Dosovitskiy et al.,
2021), object detection (Chen et al., 2022) or semantic seg-
mentation (Strudel et al., 2021). Dosovitskiy et al. (2021) in-
troduced the Vision Transformer (ViT), which directly uses the
transformer model from Vaswani et al. (2017) for image classi-
fication. In this work, the input image is divided into patches of
a fixed size that are flattened and mapped to a latent vector of
constant size using a linear projection before they are provided
to the transformer. Strudel et al. (2021) adapt the Vision Trans-
former for semantic segmentation by adding a decoder after the
ViT. The output embeddings for the individual patches serve as
input to this decoder, which predicts patch-level class scores;
pixel-wise predictions are obtained by upsampling. The per-
formance of this model directly depends on the patch size, as
the results show that an increasing patch size results in a coarser
representation of the image but also in a faster training process
as the computational complexity decreases. This drawback is
solved by the Swin (shifted window) Transformer (Liu et al.,
2021). Here, the attentions are computed in a local window that
combines a fixed number of patches (e.g. 7× 7), which drastic-
ally decreases the computational complexity. To include global
context, these windows are shifted between subsequent lay-
ers to allow an information flow between them. Furthermore,
Swin computes hierarchical representations by gradually mer-
ging neighbouring patches in deeper layers, similar to down-
sampling steps in a FCN. Thanks to these adaptations the Swin
transformer can be used as a backbone for different vision tasks,
including semantic segmentation.

Several works combine the Swin-backbone with a FCN-
decoder for semantic segmentation of remote sensing images
(Zhang et al., 2022; Gao et al., 2021; He et al., 2022) and
achieve promising results. Different modifications can further
improve the results. For instance, He et al. (2022) use a feature
compression module based on convolutions instead of merging
neighbouring patches for downsampling. Zhang et al. (2022)
add a boundary detection head as an additional output to fur-
ther improve the results at class boundaries. Wang et al. (2022)
use a convolutional path for detailed structures in parallel to a
Transformer path that extracts global features for building de-
tection and achieve better results than with pure transformer or
convolutional approaches. Tarasiou et al. (2023) use an adap-
tations of the Vision Transformer for crop classification based
on SITS. After computing attentions between all timesteps of
the same patch, they reshape the outputs and the attentions are
computed between all patches of the same timestep. This model
is shown to achieve better accuracies than other state-of-the-art
techniques. Garnot and Landrieu (2021) do not use the Swin
transformer directly, instead they integrate temporal attention
into the skip connection modules of their multitemporal U-Net
adaptation for panoptic segmentation of crop parcels.

Very few approaches focus on the generation of multi-temporal
output maps with SITS. Zhu et al. (2021) extend a U-Net model
with LSTM layers in the decoder and are able to predict out-
put maps for each input timestep. The hybrid Conv-LSTM ap-
proach outperforms purely convolutional or recurrent models
in their experiments. Relatively close to our approach is the
one from (Yuan et al., 2022): The authors propose the so called
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SITS-former, which serves as a pre-trained model for Sentinel-2
time series classification. Training is done in a self-supervised
way and can be fine tuned afterwards for downstream tasks.
In their model the authors first use 3D convolutions to extract
spatio-spectral features in parallel for each timestep and use the
results as patch embeddings for the transformer encoder. In
contrast to our approach, the input patches have a spatial size of
5 × 5 pixels, which reduces the spatial context to a small local
neighbourhood. Whereas the output of the pre-trained model
is multi-temporal, for the test application of crop classification,
the outputs for all epochs are combined by pooling in the tem-
poral dimension, so that the downstream task only provides a
monotemporal output. A remaining challenge is the availabili-
ty of training datasets with multitemporal labels for the classi-
fication of SITS. There are several datasets generated for spe-
cific tasks, e.g. for building extraction (Van Etten et al., 2021;
Caye Daudt et al., 2019) or crop classification (Rußwurm et al.,
2020). For the task of LC classification, Toker et al. (2022) give
an overview about some existing satellite datasets and conclude
that most have single time labels or long revisiting times (e.g.
yearly) for the label data. They propose a new dataset with
monthly labels for LC classification at pixel level for a period
of two years and 75 selected areas all over the world, which can
serve as a new benchmark for LC change detection.

Transformers use a positional encoding to allow the model to
make use of the order of the input sequence (Vaswani et al.,
2017). This encoding can be fixed or include learnable para-
meters and is normally added to the input embeddings. Most
approaches for image classification adapt this encoding, e.g.
(Dosovitskiy et al., 2021; Liu et al., 2021; Strudel et al., 2021),
and all of them agree that the usage of a positional encoding
increases the performance, while the type of encoding is less
critical. When it comes to SITS not only the spatial order of the
patches needs to be encoded, but also the temporal one. For this
purpose, Garnot et al. (2020) adapt the position encoding from
(Vaswani et al., 2017) to temporal positions based on the num-
ber of days since the first used observation and integrate this in
their temporal auto-encoder module to classify crop types with
SITS. Similar, Tarasiou et al. (2023) use an acquisition-time-
specific temporal encoding to also accommodate for irregular
distributions of the images in time that is learned during training
and improves the mean Intersection over Union (mIoU) metric
by 2%. Yuan et al. (2022) use a fixed positional encoding vec-
tor that is assigned to the day of the year of the input image. In
their experiments the performance slightly decreases when the
temporal encoding is used. This motivates the investigation of a
temporal encoding for our application, because the acquisition
dates of the images may be at irregular intervals and may vary
between different years.

To the best of our knowledge none of the existing approaches
investigates the use of transformer-based models for multi-
temporal semantic segmentation for LC classification. There
are several approaches that combine the Transformer models
with FCN, especially the Swin-Transformer with a FCN de-
coder, and achieve promising results with mono-temporal re-
mote sensing images. We extend this architecture to provide
multi-temporal output, investigate different model adaptations
and compare the results to purely convolutional architectures.

3. METHODOLOGY

In this section, we describe the models for multi-temporal clas-
sification that are compared in our experiments. In all cases,

the input consists of a time series of co-registered remote sen-
sing images. For each of the T timesteps, an image of size
B × H × W is given, with H , W and B indicating the image
height, width and the number of spectral bands, respectively.
The output consists of a LC map for each of the timesteps ac-
cording to a pre-defined class structure. In section 3.1 we de-
scribe FCN variants used as baselines. Afterwards, the new
transformer-based model is introduced (section 3.2).

3.1 Models based on FCN

The FCN used in this paper is an adaptation of U-Net (Ron-
neberger et al., 2015), which we already used in (Voelsen et
al., 2022) for the comparison of mono- and multitemporal input
timeseries. The main extension is the adaptation to a multi-
temporal input and output. The encoder is composed of four
convolutional blocks (CB), each consisting of two convolu-
tional layers with a kernel size of k = 3, followed by batch nor-
malization (Ioffe and Szegedy, 2015) and a rectified linear unit
(ReLu) activation. To reduce the spatial dimension by a factor
of two, a max-pooling layer is added at the end of the first three
CBs, with a window size of 2 x 2 and stride 2. The number of
output feature channels is set to a fixed size DFCN for the first
encoder block and doubled every time the spatial resolution is
reduced. The decoder consists of three upsampling layers using
bilinear interpolation, each followed by another CB. Finally, a
1x1 convolution maps the feature vectors to raw class scores,
which are normalized by a softmax layer. Between the encoder
and decoder blocks with identical spatial resolution there are
skip connections, which concatenate the corresponding feature
maps before they are processed in the next decoder block.

For a part of the network, the images corresponding to the in-
dividual timesteps can be processed in parallel. These parallel
blocks have shared weights and are used to extract spatial fea-
tures first; their number is adaptable, e.g. parallel processing
could just occur in the first CB. Subsequently, the feature maps
of all timesteps are concatenated, increasing the number of in-
put feature maps for the next convolution by a factor of T . To
avoid losing spatial or temporal features in the first joined block,
we do not change the number of feature maps in the first fused
CB. For the later layers in the decoder the feature maps for all
timesteps are separated again. In order to be able to use the
skip connections from the encoder, this is done at the block
having the resolution at which the feature maps were fused in
the encoder; for instance, if parallel processing only occurred
in the first encoder block, the feature maps would be split just
before the last CB in the decoder. To do so, the number of
output feature maps is increased by a factor of T for the con-
volution before the separation into T parallel decoder branches,
which leads to a number of trainable parameters that increases
with T (cf. Section 4.3). The resultant feature maps are then
separated to T stacks of feature maps, which are concatenated
with the corresponding feature maps from the end of the parallel
encoder blocks (skip connections). Afterwards, the remaining
CBs are executed in parallel, resulting in T output maps of size
C ×H ×W , with C as the number of classes.

3.1.1 FCN variants: The parallel encoder and decoder
blocks constrain the model to first extract spatial features be-
fore both, spatial and temporal features can be extracted. To
investigate the effectiveness of the parallel blocks we fuse the
timesteps at different stages of the model. In variant FCNB2,
the first two CBs in the encoder and, consequently, the last two
CBs in the decoder are executed in parallel. This is the model
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with the smallest number of blocks of joint feature extraction
from all timesteps. In variant FCNB1, the features are fused
after the first CB and the separation is done before the last CB
in the decoder. Finally, in variant FCNB0, there is no paral-
lel processing of the individual timesteps at all. The fusion is
performed by stacking all spectral channels from all timesteps,
resulting in a input image of size (T · B) ×H ×W . The sep-
aration is done just before the final 1x1 convolution to obtain a
classification map for each timestep.

3.2 Model based on Swin Transformer

For the hybrid Transformer-FCN model we combine the Swin
Transformer (Liu et al., 2021) with the UPerNet (Xiao et al.,
2018) as decoder and adapt this model to multi-temporal im-
ages. We start with a summary of the basic Swin encoder
for mono-temporal images before describing our adaptations of
that model for multi-temporal input and output images.

For the Swin backbone we use the original architecture of Liu
et al. (2021). Like previous Transformer models it splits the in-
put image into non-overlapping patches of size P × P that are
flattened and linearly projected to vectors of dimension DSwin.
Several Swin-Transformer blocks (STB) are applied; the patch-
based feature vectors serve as the input to the first STB. After
applying several STB, a patch merging layer is applied to the
feature maps to reduce the number of patches and produce a
hierarchical representation, similar to convolutional backbones.
In a patch merging layer the features from 2 × 2 patches are
concatenated and a fully connected layer is applied to reduce
the number of feature maps again. All STB that share the
same number of patches are referred to as a Stage i in com-
bination with the preceding patch merging layer to obtain this
number of patches. Patch merging is applied three times, res-
ulting in a total number of four Stages (i ∈ [1, ..., 4]). In each
Stage a total number of Li STB are applied consecutively, with
li ∈ [0, ..., Li] as the l-th block in Stage i. Each time the number
of patches is reduced, the number of feature maps is doubled,
i.e. in Stage i the number of layers is Di = DSwin · 2i−1,
with DSwin being the number of feature maps in the first Stage
(D1 = DSwin). For a more detailed description of this back-
bone model we refer to (Liu et al., 2021).

Each of the swin-transformer blocks consists of a window based
multi-head self-attention (W-MSA) module, which is followed
by a Multilayer Perceptron (MLP) with two layers, dMLP =
4 ·Di dimensions and GELU non-linearity between them (one
green rectangle in figure 1). Layer Normalization (LN) is ap-
plied before each W-MSA and MLP module, and a residual
connection is applied after each module. In a W-MSA mod-
ule the attentions are computed in local windows of size M , i.e.
considering M × M patches, each of size P × P . To connect
patches of neighbouring windows in the attention computation,
the windows are shifted by M

2
, for the following block, result-

ing in the following computations for two consecutive STB (for
simplicity we omit the Stage index i) (Liu et al., 2021):

ẑl = W -MSA(LN(zl−1)) + zl−1

zl = MLP (LN(ẑl)) + ẑli

ẑl+1 = SW -MSA(LN(zl)) + zl

zl+1 = MLP (LN(ẑl+1)) + ẑl+1. (1)

In equation 1, ẑl refers to the output of the (S)W-MSA module
and zl refers to the output of the MLP for block l. SW-MSA

refers to a W-MSA block that is applied to a window partition-
ing that is shifted compared to the windows in block l − 1. For
more details of the shifted window approach we refer the reader
to (Liu et al., 2021).

Similar to (Vaswani et al., 2017) the attentions in a W-MSA
layer are computed in a number of parallel heads that differ
for each Stage i and are denoted by hi. In each head the self-
attention is computed based on equation 2:

Attention(Q,K, V ) = SoftMax(QKT /
√
d+R)V, (2)

with R ∈ RM2×M2

as a relative position bias, d = Di/hi as
the query/key dimension and Q,K, V ∈ RM2×d as query, key
and value matrices. Q,K and V originate from the input matrix
(LN(zl−1)) that is transformed by three linear transformations.
The outputs of all heads are concatenated in the end to form the
output ẑl ∈ RM2×Di .

Similar to Liu et al. (2021) we combine the Swin backbone with
a FCN decoder to obtain per-pixel class labels. This decoder
is based on UPerNet (Xiao et al., 2018), because in previous
experiments we found this combination to slightly outperform
the combination of Swin encoder with our FCN decoder intro-
duced in section 3.1. Basically, UPerNet is a U-Net architecture
with a Pyramid Pooling Module before the first decoder layer
to extract features at different scales. Due to the dimensions of
the Swin encoder the features maps with identical spatial res-
olutions can again be fused via skip-connections. We refer the
reader to (Xiao et al., 2018) for more details on UPerNet.

3.2.1 Swin-encoder for multi-temporal images: The ori-
ginal Swin encoder is used for images of size B ×H ×W and
produces an output map of size C × H × W . We extend this
to be able to process an input of size T × B × H × W and
produce an output of size T × C ×H ×W and apply parallel
feature extraction for all timesteps for a certain (configurable)
numbers of Stages in the transformer. To do so we introduce
spatio-temporal transformer blocks (ST-TB). After describing
these ST-TB and the temporal encoding, we introduce different
variants of our method that use the ST-TB module in different
Stages of the model.

Spatio-temporal transformer block: We introduce a new
spatio-temporal transformer block (ST-TB) that extends the
STB to multi-temporal images and is used in combination with
the normal STB that can be run in parallel for the individual
timesteps, as shown in figure 1. Similar to STB, the ST-TB
consists of an adapted window based multi-head self-attention
block (W -MSATime), followed by a MLP and GELU non-
linearity as described in section 3.2. In W -MSATime the at-
tentions are computed in local windows of size M × M × T ,
which means that M × M patches of the local neighbourhood
for all timesteps are included. This also increases the compu-
tational complexity by a factor of T . Again, the attentions are
computed in hi parallel heads, by computing the self-attention
in each head using equation 3:

AttentionTime(Q,K, V ) = SoftMax(QKT /
√
d)V, (3)

with Q,K, V ∈ RTM2×d as query, key and value matrices and
d = Di/hi as the query and key dimension. As the ST-TB
extracts spatio-temporal features, we use it in combination with
T STB that are executed in parallel to extract spatial features
for each timestep t ∈ [1, ..., T ]:

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume X-1/W1-2023 
ISPRS Geospatial Week 2023, 2–7 September 2023, Cairo, Egypt

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-X-1-W1-2023-981-2023 | © Author(s) 2023. CC BY 4.0 License.

 
984



Figure 1. Parallel Swin transformer blocks (STB, green
rectangles) for all timesteps followed by the spatio-temporal

transformer block (ST-TB, red rectangle).

ẑlt = W -MSA(LN(Zl−1
t )) + Zl−1

t

zlt = MLP (LN(ẑlt)) + ẑlt

Ẑl = W -MSATime(LN(zl)) + zl

Zl = MLP (LN(Ẑl)) + Ẑl. (4)

In equation 4, ẑlt and zlt refer to the outputs of the W -MSA
and MLP modules, respectively of the parallel STB t in block
l. Afterwards the outputs of all timesteps are fused to obtain
zl with an additional dimension of size T , which serves as in-
put to the ST-TB. The ST-TB consists of the W -MSATime to
obtain the intermediate output Ẑl and the MLP to obtain the
final output Zl. Figure 1 shows how the STB and ST-TB are
combined to form one block l. In this way the parallel STB
compute attentions only in the spatial dimension, whereas the
ST-TB extracts spatio-temporal features. Note that in contrast
to the STB computations in eq. 1 we use the same windows in
W -MSATime as in W -MSA and shift these windows by M

2

for the next block (l + 1).

Temporal position encoding: Similar to (Garnot et al., 2020)
we adapt the positional encoding from (Vaswani et al., 2017) to
a temporal position encoding based on the acquisition date of
the used satellite images:

teDOY,f = sin

(
DOY

10000
2f

DSwin

+
π

2
mod(f, 2)

)
,

(5)

with DOY ∈ [1, ..., 365] as the day of the year and f ∈
[1, ..., DSwin] as the feature index. The temporal position en-
coding TE(DOY ) = [te1, ..., teDSwin ] is computed for each
input timestep and added to the input embedding just before the
first STB is applied.

3.2.2 Swin-FCN variants: We want to investigate the ef-
fectiveness of the spatio-temporal transformer block (ST-TB).
To do so, we experiment with different Swin-FCN models, that
use the ST-TB in different Stages of the model. In variant
SwinS2 the fusion of all timesteps is done after Stage 2 and
the parallel STB and combined ST-TB layers are used in Stages
1 and 2. In variant SwinS1 the parallel STB and ST-TB are
used in Stage 1. In variant SwinS0 there is no parallel pro-
cessing of the timesteps at all. Similar to FCNB0 the fusion is

done by stacking the images of all timesteps, resulting in a input
image of size T · B × H × W . To obtain a classification map
for each timestep the feature maps are separated before the final
1 × 1 convolution in the UPer-Net. If not specified differently,
all variants use the same number of blocks L = [2, 2, 6, 2] and
heads h = [3, 6, 12, 24] for Stages 1 - 4, an input feature dimen-
sion of DSwin = 96, a window size of M = 7 and a patch size
of P = 4, which corresponds to SWIN-T in (Liu et al., 2021).

3.3 Training

During the training process, the parameters of the network are
iteratively updated using the ADAM optimizer (Kingma and
Ba, 2015), which minimizes a loss function that measures the
discrepancy between the reference and the predictions of the
network using the current parameters. To counteract any imbal-
ance of the class distribution of the training samples, we mini-
mize the weighted cross entropy loss, considering class weights
based on the degree of difficulty of the current classifier to pre-
dict the class labels correctly (Wittich and Rottensteiner, 2021).
The weighted cross-entropy loss LCrEn is based on the softmax
predictions yc

n for a sample n to belong to class c:

LCrEn = − 1

N

∑
n

∑
c

Cc
n · ln(yc

n) · cwc. (6)

In equation 6, Cc
n = 1 if the nth sample (i.e., the nth pixel

in a minibatch) belongs to class c, otherwise Cc
n = 0. N is

the total number of pixels in the minibatch for which the loss is
computed. The class weights cwc are set to 1 for all classes dur-
ing the first epoch, which corresponds to using an unweighted
loss. After the first training epoch, the last training minibatch
is classified using the current network parameters and the result
is used to compute the intersection over union (IoUc) for every
class c, which is then used to adjust the class weights:

IoUc =
TPc

TPc + FPc + FNc
. (7)

In equation 7, TPc, FPc and FNc refer to the number of pixels
that are true positives, false positives and false negatives, re-
spectively, with respect to class c. As these results highly de-
pend on the minibatch used for the calculation (it may even
happen that a class is not present in that minibatch), we aver-
age the IoUs from the last 10 epochs (or from all available ones
before epoch 11). Following (Wittich and Rottensteiner, 2021),
these IoU scores are then used to determine the class weights
cwc for the next epoch:

cwc = (1−∆IoUc)
κ = [1− (IoUc −

1

Nc

Nc∑
h=0

IoUh)]
κ, (8)

where ∆IoUc is the difference between the mean IoU of all
classes and the IoU of class c, Nc denotes the number of
classes, and the hyperparameter κ is used to scale the influence
of classes with a lower IoU on the results. These class weights
are used in the loss (equation 6) during the following epoch.

4. EXPERIMENTS

4.1 Dataset

Our test site covers the whole area of the German federal
state of Lower Saxony (47600 km2). The dataset comprises
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Sentinel-2 images acquired between January 2019 and Decem-
ber 2022. We use Sentinel-2 Level-2A data, which con-
tain georeferenced bottom-of-atmosphere reflectance and cloud
masks from the top-of-atmosphere reflectance of every pixel
(Bertini et al., 2012). We use the four spectral bands with a
ground sampling distance (GSD) of 10 m (red, green, blue, near
infrared). All bands are normalized to zero-mean and unit stan-
dard deviation by using v′i,b = (vi,b − µb)/σb, where v′i,b and
vi,b correspond to the corrected and the original grey value of
pixel i in band b of an image, respectively, and µb and σb de-
note the mean and standard deviation of band b, respectively;
σb and µb are computed based on a part of the dataset that cov-
ers the whole area and images acquired from 2019 and 2020.
The provided cloud mask is used to exclude parts of the images
that contain more than 5% cloud coverage. This results in a dif-
ferent number of available images for different regions, varying
between 7 and 50 for a time period of one year.

To obtain the class labels to be used in training, informa-
tion from the official German landscape model ATKIS is used
(AdV, 2008). This database contains information about 113
different land use classes, which is too detailed for automatic
classification. To define a suitable class structure for LC, se-
veral land use classes from the database are merged, so that in
the end, nine classes are differentiated: Settlement (stl.), Sealed
area (sld.), Agriculture (agr.), Greenland (grl.), Forest (for.),
Flowing water (fwt.), Standing water (swt.), Sea (sea) and Bar-
ren land (bar.). In addition, the class others is used for areas
without label information that occur due to errors in the data-
base or in areas outside the state borders. This information is
used to disregard samples of this class in training and evalua-
tion. The database is continuously updated, based on in-situ
surveys and aerial flights that take place every three years for
the same region. The updates are provided every three month
(ends of March, June, September and December), resulting in
four label maps per year. For the experiments in this paper,
these reference label images are rasterized at the GSD of the
satellite imagery, and each Sentinel-2 image is combined with
the label image closest in time to its acquisition date. This pro-
cedure leads to some label noise, as some more recent changes
visible in the images are not yet contained in the database.

For computational reasons, the available data are split into tiles
of 8×8 km2 (800 × 800 pixels, referred to as BE8 tiles in the
following), which leads to a total number of 885 tiles covering
Lower Saxony (cf. figure 2). For three tiles (shown in red in
figure 2), the corresponding reference label image was correc-
ted manually for different image acquisition dates, resulting in
13 corrected BE8 label images in total. This is done to obtain
a reference for the evaluation that is not affected by label noise.
In this process, about 18% of the pixels were changed, which
gives an indication for the amount of label noise to be expected
in the remaining data. Most of these changes occur between the
classes Greenland and Agriculture.

To generate one multi-temporal input patch for training or infe-
rence we decided to use a total time period of one year (first im-
age from January, last image from December) to be close to the
vegetation cycle, as many approaches show improvements es-
pecially for classes containing vegetation or crops when multi-
temporal data are used (Ji et al., 2018; Rußwurm and Körner,
2020). We split the year into T time intervals, e.g. for T = 4
there are four intervals, each covering three months. During
evaluation for each interval, the Sentinel-2 image acquired most
closely in time to the middle of the current interval is selec-
ted. In this way the time periods between the used images are

Figure 2. Overview of the available BE-8 tiles of 8×8 km2 each.
Grey / green: potential training / validation tiles. Red: test tiles
with manually corrected reference (dataset R1). Black: test tiles

without corrected reference (dataset R2).

as similar as possible and testing is done on the same images
for all experiments. For training, we found it to be beneficial
to choose one Sentinel-2 image that is acquired in the current
time interval randomly from all available images in that time
period. In that way, even if the same area is chosen multiple
times, the used images can vary, which increases the variability
of the whole training dataset.

4.2 Experimental protocol

4.2.1 Experimental setup: For all experiments, we split
our dataset into a set of 810 BE-8 tiles for training, 36 BE8-
tiles for validation (green tiles in figure 2) and 39 BE-8 tiles for
testing (black and red tiles in figure 2). Training is based on the
method described in section 3.3. To create the input patches, we
randomly crop windows of (H,W ) = (256, 256) pixels from
the available training tiles. We apply random data augment-
ation, including rotations by 90◦, 180◦, 270◦ and horizontal
and vertical flipping, which results in a large variety of avail-
able training patches. Training is carried out in epochs, where
one epoch consists of a series of iterations, each considering
a small minibatch of input patches. The number of iterations
per epoch is set so that in each epoch, 10.000 patches are used
to update the parameters. Training continues for a maximum
number of 100 epochs, but is stopped earlier if the validation
accuracy does not increase for 10 epochs. The minibatch size
is set to 4 and reduced to 2 for experiments with 12 timesteps.
During training the ADAM optimizer (Kingma and Ba, 2015)
is used with the parameters β1 = 0.9 and β2 = 0.999. The
learning rate is set to 0.001 for the FCN approaches and to 6e-5
for the Swin transformer. These values were found to perform
best on the validation dataset and are also those used by Liu et
al. (2021) for the Swin transformer. For both architectures the
learning rate is decreased by a factor of 0.7 every 10 epochs.
The parameter κ for weight computation is set to 1 for all ex-
periments, as this value resulted in a good trade-off between the
accuracies of the over- and underrepresented classes. For each
experiment, three models are trained, each time starting from
a different random initialization of the layers and using differ-
ent random batches for training to assess the influence of these
random components on the results.
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4.2.2 Evaluation protocol: For evaluation, the classifica-
tion results on the test tiles are compared to the reference. As
these tiles are larger than the input size of the models, the evalu-
ation is done with a sliding window approach using a horizontal
and vertical shift of 128 pixels. This results in four predictions
per pixels (except at the edges of a BE8 tile) and the result-
ing softmax scores for each class are averaged to obtain the
final predictions. Quality indicators are determined based on a
per-pixel comparison between the predicted labels and the refe-
rence. We report the overall accuracy (OA), i.e. the percentage
of pixels with correctly predicted class labels, the F1-Scores
per class and the mean F1-Score (mF1). The OA is somewhat
biased by the imbalanced class distribution (see table 1) of the
dataset. The F1-Score, which is the harmonic mean of precision
and recall that is computed based on the predictions for each
class separately, is not influenced by the class imbalance at all.
Consequently, the impact on the mF1 is equal for all classes, as
the number of pixels is not taken into account. These indicators
are determined based on the three manually corrected test tiles
(referred to as set R1) as well as on the 39 non-corrected test
tiles (referred to as R2). R1 is not affected by the errors in the
reference (label noise), but small changes in the classification
result have a larger impact on the evaluation metrics. R2 forms
a larger set of samples, but it is affected by label noise. The
distribution of the class labels in the training and test datasets is
shown in table 1.

Set Percentage of samples for each class [%]
stl. sld. agr. grl. for. fwt. swt. sea bar.

Tr. 9.2 0.7 38.3 23.1 21.5 1.5 0.7 3.5 1.4
R2 9.5 0.7 45.1 22.3 19.1 0.3 0.8 1.2 1.0
R1 8.1 2.3 54.7 12.0 9.5 1.1 1.2 10.6 0.6

Table 1. Class label distribution for the training and test datasets.

4.2.3 Test setup: The evaluation is split into two main parts.
In a first set of experiments, we investigate the FCN variants
described in section 3.1. The main goal of these experiments is
the investigation of the influence of the parallel convolutional
blocks for the different timesteps, resulting in purely convolu-
tional models that can be used for a comparison to the Swin-
FCN model. These experiments are shown and discussed in
section 4.3. In the second set of experiments (section 4.4), we
evaluate the hybrid Swin-FCN architecture described in section
3.2. Again, we compare different variants of the architecture,
but also the influence of the additional temporal encoding and a
varying patch size. In the end we compare the most promising
setups of both model variants and discuss the detection of LC
changes based on visual inspection.

4.3 Evaluation of FCN-variants

To evaluate and compare the FCN variants introduced in sec-
tion 3.1, we run experiments for the variants FCNB0, FCNB1

and FCNB2, each for T = 4 and T = 12 timesteps, respect-
ively. The number of filters DFCN used in the first convolu-
tional block is set to 64. As shown in table 2, this results in a
varying number of trainable parameters, depending on T . To
investigate the influence of the number of trainable parameters,
the experiment for variant FCNB0 with T = 4 is also trained
with DFCN = 128. The results are summarized in table 2.

The results show that an earlier merging of all timesteps leads
to an increase of the overall model performance. While most re-
sults for the mF1 on R1 and R2 with T = 4 are not statistically
significant with a confidence level of 0.05, for T = 12 vari-
ant FCNB0 is significant better than the others. These results

indicate that the extraction of temporal features in early layers
with high spatial resolution is more important than the temporal
features extracted in layers with coarser spatial resolution.

The results for variant FCNB0 with DFCN = 64 and
DFCN = 128 do not differ significantly. For the variant with
DFCN = 64 the results on R1 are slightly better, while the
opposite is true for R2, even if the model with DFCN = 128
has four times as many parameters. These results are consist-
ent with observations from previous experiments: for the FCN
model, a higher number of trainable parameters does not result
in an increase of the performance. Whereas the F1-Scores for
most classes are relatively stable for all variants, this is not the
case for the different classes of water (Standing Water, Flowing
Water and Sea). A possible explanation for this finding are the
tides, which lead to shapes similar to rivers or lakes when the
tide is out and can just be classified correctly if more timesteps
are combined. A larger number of input timesteps improves
the results on R2 by almost 2% in mF1 (variant FCNB0) and
slightly on R1; this improvement occurs consistently for the
F1-Scores of all classes.

In summary, the parallel extraction of spatial features does not
lead to a better performance of the FCN models, which is con-
sistent for different numbers of timesteps. For the comparison
to the Swin-FCN variants we use variant FCNB0 with DFCN

= 128 for T = 4 and DFCN = 64 for T = 12.

4.4 Evaluation of the Swin Transformer variants

Similar to the experiments with the FCN-variants we investigate
the influence of the spatio-temporal transformer block (ST-TB)
in combination with the Swin transformer block (STB) that se-
parates the images of different timesteps in Stage 1 (SwinS1)
or Stages 1 and 2 (SwinS2). In addition we investigate the ef-
fects of the temporal position encoding as introduced in section
3.2.1 and a smaller patch size of P = 2 using variant SwinS1,
because this variant turned out to be the most promising one.
We conduct the experiments for T = 4 and repeat the experi-
ments with T = 12 for the variants with the best performances.
The results are summarized in table 3.

It can be observed that the performance on the corrected data-
set R1 is quite similar for all variants, both in terms of mF1
and OA. This is different for R2: On this dataset SwinS1 sig-
nificantly outperforms SwinS0 (+1.8%) and SwinS2 (+1.6%)
considering the mF1 for T = 4 and a significance level of
0.05. Again, the results for the water classes improve most (e.g.
+5.9% in mF1 for Flowing Water compared to SwinS0), but
also those for Sealead area (+2.6%) or Barren land (+2.3%)
increase. These results show the advantage of the parallel STB
for all timesteps combined with the ST-TB to extract spatio-
temporal features. In our approach the second layer of paral-
lel STB already takes joint spatio-temporal features as input,
which could be the reason why adding another layer of paral-
lel STB in Stage 2 does not increase the performance anymore.
The temporal position encoding has no significant effect on the
performance, as it leads to a slight decrease in performance for
T = 4 and to a slight increase for T = 12. A reason for this
might be the consistent definition (per variant) of the time peri-
ods in which the images are sampled. Our assumption is that
the temporal position is more important if the acquisition times
differ much more within the same experiment.

The best results on R2 are obtained with a reduced patch size
of P = 2 (T = 4). In this case the mF1 increases by 1.6% and
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variant DFCN T f
F1-scores on R2 [%] R2 [%] R1 [%]

#pstl. sld. agr. grl. for. fwt. swt. sea bar. mF1 OA mF1 OA
FCNB0 64 4 0 86.5 41.7 90.7 76.2 94.2 69.4 82.3 95.7 34.8 74.6 ± 0.0 86.9 ± 0.1 70.6 ± 0.6 81.4 ± 0.3 4M
FCNB0 128 4 0 86.7 43.0 90.5 76.6 94.3 72.2 80.4 94.3 35.9 74.9 ± 0.2 87.0 ± 0.2 70.3 ± 1.3 80.9 ± 1.0 16M
FCNB1 64 4 1 86.9 43.9 90.8 75.7 92.6 54.7 77.4 86.8 34.3 71.5 ±3.2 86.1 ±0.6 68.7 ±1.3 80.5 ±0.5 10M
FCNB2 64 4 2 86.5 44.4 90.7 76.6 93.9 64.6 77.0 96.5 37.8 74.2 ±0.9 86.8 ±0.1 68.0 ±0.2 80.3 ± 0.4 17M
FCNB0 64 12 0 86.9 42.5 91.0 77.2 94.5 75.4 85.9 98.5 36.2 76.5 ±0.1 87.5 ±0.1 70.8 ±0.5 81.7 ±0.4 9M
FCNB1 64 12 1 86.9 43.8 90.5 74.7 91.6 71.2 74.8 93.0 35.4 73.5 ±1.6 85.8 ±0.0 69.3 ±0.1 81.2 ±0.4 31M
FCNB2 64 12 2 86.2 44.3 91.0 76.0 92.7 61.1 84.0 84.8 35.6 72.9 ±5.3 86.3 ±0.5 69.1 ±0.3 81.1 ±0.2 50M

Table 2. Results for LC classification with U-Net architectures. DFCN : number of filters in first convolutional block, T : number of
used timesteps, f : conv. block after which feature maps are fused. #p: Number of parameters. Best results for the same value of T

are indicated in bold.

T f TE P
F1-scores on R2 [%] R2 [%] R1 [%]

#pstl. sld. agr. grl. for. fwt. swt. sea bar. mF1 OA mF1 OA
4 0 - 4 85.0 38.4 90.4 75.7 94.0 65.7 83.0 96.9 31.3 73.4 ±0.8 86.6 ±0.0 70.1 ±0.3 81.6 ±0.1 87M
4 1 - 4 85.6 41.0 90.6 76.3 94.3 71.6 84.7 98.9 33.6 75.2 ±0.0 87.0 ±0.1 70.0 ±0.4 81.7 ±0.2 60M
4 2 - 4 85.1 40.2 90.5 76.5 94.1 63.4 84.2 96.0 32.5 73.6 ±0.5 86.8 ±0.1 69.4 ±0.5 81.4 ±0.1 60M
4 1 yes 4 85.5 41.8 90.7 76.7 94.3 67.4 84.6 97.1 34.4 74.7 ±0.7 87.0 ±0.1 69.6 ±0.3 81.5 ±0.1 60M
4 1 - 2 87.1 45.6 91.1 77.9 94.9 72.1 86.5 97.4 36.2 76.5 ±1.1 87.8 ±0.0 70.3 ±0.2 81.6 ±0.1 60M

12 1 - 4 85.7 40.4 90.9 77.5 94.4 71.2 84.2 99.4 33.8 75.3 ±0.9 87.4 ±0.0 69.2 ±0.2 81.5 ±0.0 60M
12 1 yes 4 86.3 42.1 91.1 78.1 94.5 73.9 85.1 99.3 34.9 76.1 ±0.1 87.7 ±0.2 69.6 ±0.4 81.9 ±0.1 60M

Table 3. Results for LC classification with Swin Transformer. T : number of used timesteps, f : Stage after which the timesteps are
fused, TE: use of temporal encoding, P : patch size. Best results for the same value of T are indicated in bold.

the OA by 0.8% compared to variant SwinS1 with P = 4. The
F1-Scores of all classes (except Sea) are also best for this exper-
iment. These results are confirmed by visual inspection. In the
example shown in figure 3, many objects have clearer outlines,
e.g. the Sealed area inside the Settlement area, the river passing
through the smaller settlement area on the left or the water area
in the bottom right corner. These results clearly show the ad-
vantage of a smaller patch size and confirm the results achieved
by Swin Transformer in other applications. However, reducing
P = 4 to P = 2 increases the computational complexity and
thus training time by a factor of four. A comparison of the FCN-
variants with the swin-variants does not result in a clear conclu-
sion. Especially on the corrected dataset R1 the results do not
differ significantly. On R2, SwinS1 with P = 2 outperforms
FCNB0 for T = 4 by 1.6% in mF1 and 0.8% in OA.

(a) S2-RGB (b) Reference

(c) SwinS1, P = 4 (d) SwinS1, P = 2

Figure 3. Exemplary prediction results on a tile corresponding to
R2 for variant SwinS1 for P = 4 and P = 2. Colours: red -

bld., grey - sld., yellow - agr., light green - grl., dark green - for.,
dark blue - fwt., light blue - swt, turquoise - sea, brown - bar.

All Swin-variants were trained from scratch and early stopping
usually ended training between epochs 60 and 80. This is a big
advantage in contrast to the original Transformer models, which
were almost impossible to use without pre-trained models or
immense GPU resources and large datasets (Steiner et al., 2022;
Dosovitskiy et al., 2021).

(a) 20210223 (b) 20210509 (c) 20210812 (d) 20221006

(e) Ref. (f) 20210223 (g) 20210509 (h) 20210812 (i) 20221006

Figure 4. Exemplary prediction results on a tile corresponding to
R2 for variant SwinS1 with P = 2. (a) - (d) RGB composites
of the S-2 images corresponding to the predictions (f) - (i). (e)

shows the reference Note that the predictions (f) - (h) correspond
to the same input time series in 2021 while (i) is an example for

one of the predictions from the time series in 2022. Colours:
cf. figure 3

Visual analysis of the multi-temporal output: The motivation
for generating multi-temporal output maps is the hope to detect
LC changes very early by predicting these changes when they
appear in the satellite image. This includes the detection of
changes before they are updated to the database. An example
is shown in figure 3, where areas with wrong labels of the class
agr. in the bottom part of the figure are correctly classified as stl.
in both results. Another example is shown in figure 4. While
figures 4(f) to 4(h) correspond to the same input time series in
2021, figure 4(i) is an example of an output map from the time
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series in 2022. The results for timesteps from the same input
all look quite similar, even if there is a LC change, e.g. the
new building that is constructed in 2021 (figures 4(a) - 4(c)). In
this case the corresponding training labels are affected by label
noise (fig 4(e)) and the model is not able to predict the change
that occurs during the input time period. For the temporally
following time series for the next year (2022, see an example
map in figure 4(i)) the new building is detected correctly. This
observation leads to the conclusion that some adjustments of the
classifier are still necessary in order to detect changes already
within the input batch in which the change occurs.

5. CONCLUSION

In this paper, we investigated different extensions of Trans-
former models for LC classification with satellite image time
series by adapting the Swin Transformer model from (Liu et
al., 2021) to deal with multi-temporal input and output. We
introduced a new spatio-temporal transformer block (ST-TB)
for the extraction of spatio-temporal features which we use in
combination with the Swin transformer block (STB) to extract
spatial features for all timesteps in parallel, which outperforms
the Swin variant without the ST-TB when it is used in the first
Stage of the model. The comparison to the purely convolutional
models show quite similar results on the corrected test dataset
and only a small increase in performance on the test dataset
that was not corrected manually for the Swin transformer. The
largest impact on the model performance has the reduction of
the input patch size to P = 2, which is consistent with obser-
vations for other Swin- or Vision Transformer approaches.

Future research will investigate the modelling and prediction of
land cover changes within the time series that serves as input to
the model. In the obtained results, all predictions of the same
input time series were quite similar even if the actual land cover
was changing, which means that the exact date of a change is
not predicted correctly. One main reason for this may be the
lack of correct labels (often called label noise in literature), es-
pecially for the exact date of a change. Future research will
focus on this challenge by investigating approaches to mitigate
the effect of label noise and also by evaluating the models per-
formance on a cleaner dataset with multi-temporal training data,
e.g. from (Toker et al., 2022). Another aspect is the possibility
to use input time series with varying length, which could help
to exploit the full temporal resolution of the data. Lastly, as
the comparison between FCN and Swin was on a quite similar
level, future research will also investigate these two and other
hybrid variants regarding classification performance, runtime in
training and inference, and memory consumption.
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