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ABSTRACT: 

This study investigates the application of deep learning techniques, specifically ResNet architectures, to automate crop type 

identification using remotely sensed data collected by a DJI Mavic Air drone. The imagery was captured at an altitude of 30 

meters, maintaining an average airspeed of 5 m/s, and ensuring a front and side overlap of 75% and 65%, respectively. The 

pre-flight planning and image acquisition was facilitated through the Drone Deploy platform, yielding a dataset consisting of 

1488 aerial photographs covering the study area. These images possess an average ground sampling distance (GSD) of 22.2 

millimetres. The dataset was meticulously labelled with "maize" and employed to train three distinct ResNet architectures, 

namely ResNet-50, ResNet-101, and ResNet-152. The evaluation of these models was based on accuracy and processing 

time. Notably, ResNet-50 emerged as the most proficient, achieving an accuracy rate of 82% with a precision score of 0.5 

after just two hours of initial training, while ResNet-101 and ResNet-152 architectures achieved 27% and 24% accuracy, 

respectively. These outcomes underscore the potential of ResNet-50 architecture, even with a limited dataset, as a valuable 

tool for precise crop-type classification within the precision agriculture domain. 

 

1. INTRODUCTION 

The world's population is projected to surge to nine 

billion by 2050, leading to a substantial 70% 

consequential surge in the demand for agricultural 

production (Radoglou-Grammatikis et al., 2020). This 

unprecedented global population growth, coupled with 

evolving agricultural practices, exerts substantial 

pressure on the agricultural sector to enhance 

productivity in order to meet escalating food 

requirements. Nevertheless, challenges such as 

diminishing cultivable land, climate fluctuations, and 

water scarcity have significantly complicated the pursuit 

of this objective. Consequently, there is a growing 

imperative to explore alternative approaches to 

conventional agricultural practices, with precision 

agriculture (PA) emerging as a promising solution. 

Precision agriculture (PA) involves the use of computer-

based technologies, data acquisition, analysis, and 

storage systems to collect and analyse data that can be 

used to inform site-specific input applications (Ajayi et 

al., 2023). It is a crop and soil management system that 

uses computers to collect and analyse data. One 

important aspect of precision agriculture is crop 

identification which involves classifying and mapping 

vegetation. 

 

___________________________________ 
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In recent times, there has been a burgeoning interest in 

the application of deep learning (DL) techniques, 

specifically Convolutional Neural Networks (CNNs), in 

the domain of crop identification.  

CNNs stand out as a subset of artificial neural networks 

renowned for their exceptional prowess in image 

recognition tasks. They have been used successfully in a 

variety of domains, including agriculture, to classify crop 

types using remotely sensed data (Schmedtmann and 

Campagnolo, 2015). 

The goal of crop identification is to develop a 

classification model that can take remotely sensed 

images as input and output the crop class for each 

instance. This can help to improve the accuracy of crop 

type identification. 

This study aims to address the limitations of traditional 

methods for crop identification and explore the potential 

of using drone-based technologies, specifically CNNs, 

for this task. Traditional methods, such as visual 

observation of fields, can be time-consuming and 

inaccurate, especially for large-scale or remote areas. 

Drone-based technologies can provide a more efficient 

and accurate way to collect data for crop identification. A 

more accurate and efficient approach to crop type 

mapping can be developed by leveraging UAV images 

and deep learning algorithms which could have a 

significant impact on the agricultural sector, helping 

farmers to improve their yields and profits. 
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The primary objective of this study is to evaluate the 

performance of selected DL algorithms, focusing on 

RESNET architectures, for automatic crop classification. 

One particular aspect of interest is to examine the 

viability of training these models with limited image 

datasets, as obtaining large labelled datasets for every 

crop type can be challenging and time-consuming. We 

seek to determine which model architecture exhibits 

optimal performance in crop type identification tasks by 

evaluating the performance of these DL models with 

limited data. 

The results of this study will have practical implications 

for agricultural monitoring and decision-making 

processes. Our study will provide reliable information 

regarding the types of crops being cultivated. This 

information serves as a valuable input parameter for 

systems designed to evaluate crop health and monitor 

agricultural practices. In turn, these insights can guide 

farmers and stakeholders in making informed decisions 

related to resource allocation, crop management, and 

yield optimization. 

Hence, this study delves into the application of CNNs for 

crop identification, leveraging remotely sensed data from 

a small farmland affiliated with the Federal University of 

Technology, Minna, Nigeria. Specifically, we conducted 

a comprehensive comparison of the performance of 

various ResNet architectures, namely ResNet-50, 

ResNet-101, and ResNet-152, to assess their 

effectiveness in accurately identifying maize crops. Our 

objective is to evaluate the performance of these deep 

learning models when tested with limited datasets, 

shedding light on their capabilities in scenarios with 

restricted data availability. 

 

2. LITERATURE REVIEW 

Remote sensing (RS) has been extensively utilized as a 

potent tool for various agriculture applications due to its 

capacity for rapid, precise, and dynamic data collection 

without physical contact and at a low cost (Chipman et 

al., 2015; Mulla, 2013; Eskandari et al., 2020). 

Unmanned Aerial Vehicles (UAVs) have rapidly 

emerged as the preferred technology for numerous 

precision agriculture (PA) applications, including crop 

state mapping (Laursen et al., 2017; Popescu et al., 

2020), crop yield prediction (Zhou et al., 2017; Yang et 

al., 2019), and disease detection (Su et al., 2018). 

Deep Learning (DL) methods, characterized by their 

deep neural networks with multiple layers of abstraction, 

have significantly advanced the state-of-the-art in various 

domains, including computer vision and natural language 

processing (Liu et al., 2019). In the context of precision 

agriculture and UAV data, DL has proven to be a 

powerful and reliable technique for applications such as 

weed identification (Canals et al., 2018), crop and plant 

counting (Geus et al., 2019), and land cover and crop 

type classification (Ferrari et al., 2021). 

DL has demonstrated remarkable accuracy in precision 

agriculture, outperforming traditional Machine Learning 

(ML) methods. For instance, Bah et al. (2018) reported a 

performance gain of over 20% in weed detection using a 

DL model compared to ML methods. These successes 

have motivated the increased adoption of DL in various 

PA applications. 

Deep Learning (DL) is a subset of Artificial Neural 

Network (ANN) methods, characterized by its deep and 

complex neural network architectures (Hinton et al., 

2006). Advances in hardware capabilities and the 

availability of large labelled datasets have enabled 

efficient DL training and inference, surpassing ML 

methods in numerous applications. In agricultural 

contexts, DL models are often based on Recurrent Neural 

Networks (RNNs), Generative Adversarial Networks 

(GANs), and Convolutional Neural Networks (CNNs). 

CNNs represent a specialized category within the realm 

of deep, feed-forward artificial neural networks, 

specifically tailored for computer vision applications in 

the field of machine learning (Schmidhuber, 2015; 

LeCun & Bengio, 1995). CNNs are ingeniously 

engineered to efficiently process grid-like data, such as 

images, rendering them particularly adept for supervised 

image processing and computer vision tasks. Their 

architectural composition typically encompasses three 

distinct hierarchical components: convolutional layers, 

pooling layers, and fully connected layers (Canziani et 

al., 2016). The convolutional layers serve the pivotal role 

of extracting essential features from input images. These 

features are then subjected to dimensionality reduction 

through the pooling layers, ultimately culminating in the 

fully connected layers, which act as classifiers, making 

decisions based on the learned features (Schmidhuber, 

2015). Well-established CNN architectures include 

AlexNet (Hinton et al., 2012), GoogleNet (Liu et al., 

2015), and ResNet (Ren et al., 2016). 

One of the notable strengths of CNNs lies in their 

versatility regarding the types of input data they can 

accommodate. While they are renowned for their 

proficiency in image processing, CNNs are not 

constrained solely to visual data. They possess the 

capacity to process a wide spectrum of data types, 

including audio, video, speech, natural language, and 

more (Karpathy et al., 2014; Kim, 2014; Abdel-Hamid et 

al., 2014). This adaptability underscores their relevance 

in a broad array of applications beyond traditional 

computer vision tasks. 

Crucially, CNNs distinguish themselves from traditional 

Artificial Neural Networks (ANNs) through their ability 

to tackle complex problems with remarkable speed, 

largely attributable to key architectural features such as 

weight sharing and the utilization of intricate models. 

These elements enable extensive parallelization of 

computational tasks (Pan & Yang, 2010). This 

characteristic empowers CNNs to expedite the learning 

process, making them particularly suited for large-scale 

issues where time-efficient solutions are paramount. 

However, it is important to note that CNNs' effectiveness 

and accuracy are contingent on the availability of 

appropriately extensive datasets. The size of these 

datasets can vary significantly depending on the 

complexity of the problem under investigation. In 

scenarios where the subject matter is intricate and 

multifaceted, a larger dataset becomes indispensable to 

adequately characterize the nuances of the problem, 
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thereby enhancing the chances of successful 

classifications. 

In recent years, the adoption of Deep Learning (DL) 

models in precision agriculture has gained substantial 

traction due to their potential to enhance both accuracy 

and speed within automated systems. DL techniques have 

found application across various facets of precision 

agriculture, encompassing tasks such as the detection and 

classification of plant diseases and pests, crop type 

classification, weed identification, plant growth 

monitoring, and plant health estimation. Several studies 

exemplify the versatility and effectiveness of DL models 

in these contexts. 

For instance, Li et al. (2022) tackled the critical issue of 

identifying rice pests, which profoundly impacts rice 

crop yields, highlighting the limitations of existing rice 

pest datasets, such as small sample sizes and data 

imbalances. They created a substantial dataset, 

IP_RicePests, comprising 8,248 images across 14 

categories, using web crawling and manual screening 

techniques. This dataset is further expanded to 14,000 

images through ARGAN data augmentation. The authors 

employed transfer learning with pretrained VGGNet, 

ResNet, and MobileNet parameters from the ImageNet 

dataset for rice pest image classification. Experimental 

results revealed strong recognition accuracy across all 

three models, with VGG16 fine-tuning yielding the 

highest accuracy. Importantly, ARGAN data 

augmentation consistently improved the performance of 

the model. The study demonstrates the efficacy of CNNs 

combined with transfer learning and ARGAN data 

augmentation in mitigating sample size challenges, 

enhancing rice pest identification efficiency, and 

providing valuable support for the field. 

In a similar vein, Yalcin et al. (2016) proposed a 

Convolutional Neural Network (CNN) architecture 

designed for the classification of diverse plant types 

based on image sequences. Their work entailed a 

rigorous comparison of the CNN approach against 

alternative methods, including Support Vector Machine 

(SVM) classifiers with various kernels and feature 

descriptors like Local Binary Patterns (LBP) and GIST. 

Impressively, the CNN model outperformed its 

counterparts, achieving an outstanding accuracy rate of 

97.47%, notably surpassing the accuracy range of 

74.92% to 89.94% exhibited by the alternative methods. 

Furthermore, Ajayi et al. (2022) delved into the 

applicability of Artificial Neural Networks (ANN) for 

automatic crop type classification. Leveraging a 

straightforward feed-forward ANN for classification, 

they worked with diverse UAV datasets encompassing 

crops such as maize, groundnuts, soya, rice, beans, yam, 

and other non-crop features. Their results showcased the 

ANN's strong performance, boasting an overall training 

accuracy of 87.7%. Subsequent analysis, including the 

computation of the confusion matrix, substantiated an 

impressive overall accuracy of 0.9393. 

In another innovative approach, Ajayi & Ashi (2023) 

explored automatic weed identification and classification. 

Their study centered on the effects of varying training 

epochs on the accuracy of a Faster Region Convolutional 

Neural Network (RCNN) model. Over the course of five 

different training epochs, with no predefined intervals 

(10,000, 20,000, 100,000, 200,000, and 242,000), they 

observed a notable trend. The model's performance 

consistently improved with each increment in epoch 

count, though it eventually reached a saturation point at 

the 242,000 epoch mark. 

These studies collectively underscore the robust 

applicability of DL models in precision agriculture, 

exemplifying their capacity to excel in diverse 

applications, from crop type classification to disease 

detection and weed identification.  

ResNet stands as a pivotal milestone in the evolutionary 

race of CNN architectures. Its transformative impact lies 

in its ground breaking concept of residual learning within 

CNNs and its efficient methodology for training 

exceptionally deep networks. The ResNet family 

comprises several variants, with ResNet 50, ResNet 101, 

and ResNet 152 differing primarily in the number of 

layers they encompass. To be precise, ResNet 50 boasts 

50 layers, ResNet 101 extends to 101 layers, while 

ResNet 152 reaches a substantial depth of 152 layers. 

The empirical findings of He et al. (2016) underscore the 

superiority of ResNet architectures over their 

predecessors. Through rigorous experimentation, they 

demonstrated that ResNet models with 50, 101, or 152 

layers exhibit significantly lower errors in image 

classification tasks compared to plain networks with 34 

layers. ResNet also achieved a notable milestone by 

outperforming the widely recognized COCO image 

recognition benchmark dataset by a substantial margin of 

28%, as reported by Lin et al. (2014). This achievement 

underscored the critical importance of representational 

depth in numerous visual recognition tasks, solidifying 

ResNet's reputation as a game-changer in the field. 

At the core of ResNet's innovation lies the concept of 

bypass pathways, also known as skip connections, which 

draws inspiration from Highway Networks. These 

pathways address challenges encountered during the 

training of deep networks, particularly the issue of 

vanishing gradients. In contrast to Highway Network 

gates, ResNet's skip connections are data-independent 

and parameter-free. They play a pivotal role in 

preserving the flow of residual information throughout 

the layers, ensuring that identity shortcuts remain open. 

This design choice is in stark contrast to Highway 

Networks, where gated shortcuts can be closed, rendering 

the layers to represent non-residual functions. The 

inclusion of residual links, or shortcut connections, in 

ResNet architectures significantly accelerates the 

convergence of deep networks. By facilitating the smooth 

passage of gradient information, ResNet effectively 

mitigates the problem of gradient diminishing, a common 

challenge in training deep neural networks. 

3. MATERIALS AND METHODS 

Figure 1 illustrates the architectural workflow employed 

in designing the crop identification system utilizing 

ResNet models. The key stages of this workflow are 

succinctly delineated as follows: 

a) Data Collection: The process initiates with the 

acquisition of a dataset, accomplished through the 
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deployment of a well-equipped Unmanned Aerial 

Vehicle (UAV) over a designated small farmland. 

b) Data Preparation: Subsequently, the acquired UAV 

data undergoes pre-processing and processing steps to 

refine and optimize its quality and usability. 

c) ResNet Model Development: In this phase, a 

dedicated ResNet algorithm is designed and developed, 

tailored specifically for the task of crop identification. 

d) Data Training and Testing: The dataset is then 

subjected to data processing, involving the training and 

testing of images utilizing ResNet-50, ResNet-101, and 

ResNet-152 models, a crucial step in the workflow. 

e) Performance Evaluation: Finally, an assessment of 

the performance of each ResNet architecture is 

conducted, allowing for a comprehensive understanding 

of their effectiveness in the context of crop identification. 

 
Figure 1. Flow diagram of the development and 

implementation of the ResNet architectures 

3.1 Study Site 

A portion of the Federal University of Technology 

Minna’s commercial farmland was used for this study. 

The farm is located at Gidan-Kwano near Garatu in  

Minna, Niger State and it covers about 21 hectares. It is 

located between 9º32’3.7968” N and 6º25’22.411” E, as 

well as 9º 27’52.506” N and 6º27’13.957” E (see figure 

2). This small farmland predominantly contained maize 

crops (Zea mays). 

 

Figure 2. The study area 

3.2 Data Acquisition 

Approximately 1488 images of the designated study area 

were obtained using a DJI Mavic Air drone. The drone 

was operated at an elevation of 30 meters and maintained 

an average airspeed of 5 meters per second, while 

ensuring a front overlap of 75% and a side overlap of 

65%. 

3.3 Image pre-processing 

The preprocessing procedures executed on the obtained 

images are elaborated upon below and are also visually 

depicted in Figure 3; 

a) Resizing: Resizing is a crucial step that 

standardizes the size of all images to a fixed size. 

This operation helps to reduce the computational 

load and enables faster training. Hence, the images 

were resized to 224x224. 

b) Normalization: The process of image 

normalization entails adjusting the pixel values to a 

range that aligns with the requirements of the 

ResNet architecture. Typically, this entails 

rescaling the pixel values to fall within the range of 

either 0 to 1 or -1 to 1. Normalization mitigates the 

influence of lighting variations and enhances the 

overall accuracy of the model. In this particular 

case, the images were normalized to span the range 

from 0 to 1. 

c) Image cropping: This process submaps a smaller 

region of interest from a larger image. It helps to 

focus the model on the most important parts of the 

image and improves model accuracy. 

d) Splitting data: The entire dataset which consists of 

1488 images was split into two subsets for training 

and validation which was 70% and 30% 

respectively. 

 

3.4 Training Process and Performance Evaluation 

The model training process was conducted utilizing 

Kaggle GPU 100, a cloud-based system made available 

through the collaborative efforts of NVIDIA and Kaggle. 

A Python 3 programming notebook was employed in 
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conjunction with Jupyter notebook, and it was uploaded 

to Kaggle to execute the Python-based code responsible 

for constructing the ResNet models. In the course of 

training the ResNet model, a range of packages and 

libraries were integrated into the Python environment (as 

depicted in Figure 3).  

Notably, for compatibility and various mathematical 

computation requirements, Numpy version 1.19.5 and 

TensorFlow version 1.15.2 were installed on the virtual 

machine. Keras was imported as a high-level API for 

building and training the ResNet architectures. 

Matplotlib was imported for visualizing the training and 

evaluation metrics of the three models while Pillow was 

imported for loading and preprocessing the image data 

before training the ResNet models. The dataset was 

imported into the Kaggle environment and an image path 

was created for storing the labeled images. The label 

name was written in a ‘config file’ defining the (maize 

field and crop field). Subsequently, the dataset underwent 

division into two subsets: a training set encompassing 

70% of the data and a validation set comprising 30%. 

The images were uniformly resized to dimensions of 224 

x 224, and a batch size of 32 was adopted. Furthermore, 

the images were transformed into boolean arrays across 

all indexes. To monitor the training's performance, a 

TensorBoard was installed and initialized. The training 

procedure was then initiated for the ResNet-50 model, 

and this process was subsequently repeated with minor 

adjustments for the other two ResNet architectures. 

 
Figure 3. The process flowchart for model 

implementation 

 

The evaluation of the ResNet architecture's performance 

was carried out using a set of critical metrics, including 

accuracy, precision, validation accuracy, and validation 

loss. Accuracy serves as a pivotal metric, demonstrating 

how effectively the model consistently makes correct 

predictions. A high accuracy score indicates that the 

classifier makes minimal errors in its predictions, while a 

low accuracy score suggests a higher frequency of 

prediction mistakes. Precision, on the other hand, delves 

into the quality of positive predictions made by the 

classifier. It measures the proportion of the classifier's 

positive predictions that are indeed accurate. A high 

precision value signifies that the classifier produces 

relatively few false positives, indicating its proficiency in 

making correct positive predictions with confidence. 

Conversely, a low precision score implies a higher 

likelihood of generating false positive predictions. 

Validation accuracy plays a crucial role during the 

training process by serving as a monitoring tool. It helps 

in identifying the occurrence of overfitting, a 

phenomenon where a model excels on the training 

dataset but falters when presented with new, unseen data. 

Calculated after each training session, validation 

accuracy assists in selecting the best model among 

various architectures, hyper-parameters, or checkpoints. 

This metric provides valuable insights into the model's 

generalization performance, aiding in model selection 

decisions. Validation loss is another vital metric used in 

the evaluation process. It is computed by comparing the 

model's predictions to the actual values for each sample 

within the validation dataset. The validation loss is then 

determined by averaging the individual loss values across 

all samples in the validation dataset. This metric serves 

as an important indicator of how well the model is 

performing and aids in the fine-tuning of model 

parameters to achieve optimal results. The validation loss 

will be greater than the training loss when a model is 

overfitting, indicating that the model is not generalizing 

well to new data. Detailed information on these 

performance evaluation metrics including their 

mathematical formulation can be found in Ajayi and Ashi 

(2023). 

4. RESULTS AND DISCUSSION 

Table 1 presents the result of the performance evaluation 

obtained from the three ResNet architectures 

implemented in this study. The result shows that ResNet 

50 outperformed ResNet101 and ResNet152 with an 

overall accuracy of 82%, precision of 50%, and 

validation accuracy of 51%. 

Conversely, the ResNet-152 model displayed the least 

accuracy in classification, achieving an accuracy rate of 

only 24% and a precision of 30%, with a validation 

accuracy of 27%. For a visual representation of the 

training progress and performance of the three ResNet 

architectures, Figures 4-6 provide graphical depictions of 

validation accuracy and loss. 

In these graphical representations, the blue line 

corresponds to the training data, while the orange line 

represents the validation data. The vertical axis (x-axis) 

reflects the accuracy values, while the horizontal axis (y-

axis) indicates the number of training epochs. These 

graphs effectively illustrate the interplay between 

training and validation accuracy, as well as training and 

validation loss. The outcomes from these graphs 

underscore the ResNet-50 model's resilience in the 

context of automatic crop classification, even when 

dealing with limited datasets. 
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Table 1. Performance of the three ResNet architectures 

 

 
Figure 4. The accuracy and loss graphs for training for 

ResNet50 

 
Figure 5. The accuracy and loss graphs for training 

ResNet101 

 

Metric ResNet 

50 

ResNet101 ResNet152 

Accuracy  82% 27% 24% 

Precision 0.5 0.4 0.3 

Val 

accuracy  

51% 31% 27% 

Val loss 20% 25% 20% 
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Figure 6. The accuracy and loss graphs for training 

ResNet152 

Figure 4 which shows the accuracy and loss graphs for 

training ResNet50 depicts that the training accuracy of 

ResNet 50 is higher than its validation accuracy i.e. the 

level at which the ResNet 50 detects images is higher 

than the rate of how many images it can predict, 

However, the validation loss of ResNet50 is greater than 

the training loss which shows that the model is 

overfitting, indicating that the model is not generalizing 

well on the UAV dataset. On the other hand, the accuracy 

and loss graphs for training ResNet101 (Figure 5) show 

that the training accuracy of ResNet 101 is lower than the 

validation accuracy, however, the validation loss of 

ResNet 101 is lower than the training loss and this shows 

that the model is fitting well, indicating that it is 

generalizing well with UAV dataset. Finally, from Figure 

6, it was observed that the training accuracy of ResNet 

152 is interwoven with the validation accuracy which is 

the level at which the ResNet 152 detect image 

depending on the rate of how many images it can predict. 

However, ResNet 152 validation loss is interwoven with 

its training loss and this shows that the model is 

underfitting but also indicates that the model would 

generalize well with the UAV dataset if the volume of 

the dataset is increased significantly. 

5. CONCLUSION 

In conclusion, this research aimed to assess the suitability 

of ResNet architecture for maize crop classification using 

limited drone data. The classification results indicate 

that, despite the constraints of limited datasets, ResNet-

50 emerged as a more reliable choice for precision 

agriculture and crop identification compared to ResNet-

101 and ResNet-152, which demonstrated a higher 

dependency on larger datasets for accurate performance. 

Notably, this study highlights the feasibility of utilizing 

UAV data, which is cost-effective and widely accessible, 

for crop type detection on small agricultural farms. 

The achieved accuracy of 82% in crop type classification 

using the ResNet-50 model underscores the potential of 

deep learning models in accurately evaluating crop types. 

However, it is important to note that the performance of 

ResNet-101 and ResNet-152 could have been further 

improved with a substantially increased dataset, 

suggesting their potential for higher accuracy given more 

extensive training data. 

This study contributes valuable insights to the field of 

agricultural research by showcasing the applicability of 

deep learning models, specifically ResNet architectures, 

for crop identification tasks using limited drone data. By 

emphasizing the effectiveness of UAV data in achieving 

satisfactory results, this research highlights the potential 

for cost-effective and efficient monitoring of crop types 

on small-scale agricultural farms. 

In future studies, it is recommended to explore the 

performance of ResNet-101 and ResNet-152 with larger 

datasets to fully assess their capabilities in crop 

identification. Additionally, investigating the integration 

of additional processing steps, such as analyzing crop 

development stages and assessing crop health, could 

further enhance the practical applications of this research 

in improving agricultural practices and decision-making 

processes. 
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