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ABSTRACT:

Deforestation is an environmental problem that significantly impacts biodiversity and climate change. Deforestation detection is
usually performed using optical remote sensing images, limiting the detection capability to the dry season in which images are not
comprised of clouds. In this work, we proposed Transformer-based models to fuse bitemporal Sentinel-1 and Sentinel-2 images
to identify new deforestation areas in the Brazilian Amazon area under diverse cloud conditions. The models were evaluated
considering clear and cloud-covered pixel conditions. The results confirmed previous works in which the fusion of optical and SAR
images improved deforestation detection capabilities. We also concluded that the better Transformer-based network reached the
F1-Score of 0.92, considering all pixels, outperforming the better Convolution-based which reached the F1-Score of 0.86, without

increasing the training and prediction times.

1. INTRODUCTION

The Brazilian Amazon forest is the largest rainforest on the
Earth, with a significant role in regulating the Earth’s climate,
providing habitat for millions of species (Strand et al., 2018).
However, deforestation severely threatens the forest, contrib-
uting to climate change, biodiversity loss, and social conflicts
(Baccini et al., 2017). In 2021, for example, 13,235 km? of the
Brazilian Amazon forest were lost (INPE, 2022).

To monitor deforestation, the Brazilian Institute for Space Re-
search (INPE) developed the Program for the Estimation of De-
forestation in the Brazilian Amazon (PRODES) in the 1980s.
This program uses satellite images to monitor clear-cutting de-
forestation in the Brazilian Amazon. PRODES relies on optical
satellite imagery to track changes in forest cover, providing ac-
curate and reliable data on deforestation rates and trends. How-
ever, it still requires a significant amount of visual interpreta-
tion, resulting in undesirable implications in terms of time and
cost. As a solution, semi-automatic approaches have been ex-
plored to minimize accuracy loss to a minimum (INPE, 2022).

Deep Learning (DL) algorithms have become a valuable tool
in detecting deforestation from satellite images and analyz-
ing changes in the forest cover by comparing multitemporal
satellite images. Usually, the approach involves convolutional
neural networks (CNN). Fully convolutional networks (FCNs)
have achieved state-of-the-art results in various remote sens-
ing tasks (Ma et al., 2019), including deforestation detection
(Adarme et al., 2020). A typical FCN architecture consists of
an encoder module for feature extraction and a decoder mod-
ule that delivers a prediction at the input image resolution.
Many FCN variants have been applied for deforestation detec-
tion from optical images (Zhang et al., 2018; Torres et al., 2021;
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de Bem et al., 2020) and combined optical and SAR data (Or-
tega et al., 2021; Ferrari et al., 2023).

Recently, an alternative approach called vision transformers
(ViT), or simply transformers, emerged as a substitute for FCNs
in image-dense prediction tasks (Dosovitskiy et al., 2020). The
primary drawback of FCNs is related to their core operation,
convolution, which confines the computation of a new pixel rep-
resentation to a narrow spatial context. Conversely, ViT bypass
convolution and can capture the global context of the input. In
fact, over the last years, many transformer architectures have
outperformed FCNs in dense prediction tasks like semantic seg-
mentation (Liu et al., 2021; Cao et al., 2021).

The primary data sources for monitoring deforestation in trop-
ical areas are images acquired by optical sensors. These images
allow for the easy recognition of changes in forest cover res-
ulting from clear-cutting through visual interpretation elements
such as tone, form, color, and texture. Many Earth observation
satellites also carry optical systems, improving data availability
(Belward and Skgien, 2015). However, a significant limitation
of optical images is the lack of information in areas covered by
clouds, which is very common in tropical environments (Asner,
2001).

When cloud-free optical images are unavailable, synthetic aper-
ture radar (SAR) emerges as an alternative (Silva et al., 2022;
Doblas et al., 2020; Bouvet et al., 2018). SAR is sensitive to sur-
face structural properties such as roughness and moisture con-
tent, which may aid deforestation monitoring. However, classi-
fication results obtained from cloud-free optical images usually
outperform those achieved solely with SAR data (e.g., Ortega
et al. (2021)).

There are three primary categories of Optical-SAR fusion
strategies. The first category, early fusion, involves stacking
multispectral and SAR images together into a single tensor to
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Figure 1. Base Architectures: Transformer-based (a) and Convolution-based (e) architectures organized into Encoder, Decoder, and
Classifier blocks, which are limited by the dashed boxes.

feed the network. The second category, joint fusion, com-
bines the feature maps produced by two encoders, one for
optical images and the other for SAR images. Lastly, the
late fusion strategy concatenates the decoder outputs from
encoder-decoder networks trained with optical and SAR images
(Stahlschmidt et al., 2022).

Earlier studies have demonstrated the effectiveness of optical-
SAR fusion with FCNs, utilizing cloud-free images obtained
under the same atmospheric conditions (e.g., Rosa et al. (2021);
Ebel et al. (2021); Benedetti et al. (2018); Li et al. (2022)). The
emphasis of this study is on a scenario where the optical images
can be partly covered by clouds. The three strategies to fuse
optical and SAR images to identify new deforestation areas in
diverse cloud conditions were already evaluated, reaching the
best f1-score result of 0.69 for the late fusion strategy (Ferrari
et al., 2023).

In this work, we propose and assess techniques for fusing
Sentinel-1 and Sentinel-2 images, whether impacted by cloud
cover or not, to identify instances of clear-cut deforestation in
the Brazilian Amazon using Transformer-based networks. The
remainder of this paper is organized as follows. Section 2
presents the material and methods, describing the dataset, the
proposed fusion strategies, and the experimental protocol. Sec-

tion 3 shows and discusses the results. Finally, Section 4 sum-
marizes the study’s findings.

2. PROPOSED APPROACHES

All proposed Transformer-based models are variants of
the SwinUnet (Cao et al., 2021) architecture, while the
Convolution-based models are variants of the ResUnet (Zhang
etal., 2018). Both architectures were organized in Encoder, De-
coder, and Classifier blocks, similar to Ferrari et al. (2023) and
described in Figure 1.

Henceforth, we used the term “Data” to refer to the pair of co-
registered images from the same modality sensor taken in two
consecutive years concatenated in the third dimension with the
Previous Deforestation Map (refer to section 3.2).

2.1 Single-modality models

Single-modality models use only one type of data (either optical
or SAR) for model training and prediction. These models are
organized as shown in Table 1 and were used to assess the mod-
els’ performance without the fusion strategy using convolution
and Transformer-based architectures.
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Model Name | Data Source | Base Architecture
CNN-OPT Optical Convolution
CNN-SAR SAR Convolution
TRA-OPT Optical Transformer
TRA-SAR SAR Transformer

Table 1. Single-modality models.

Figure 2 presents how the Encoder, Decoder, and Classifier
blocks are organized for all single-modality optical (Figure 2a)
and SAR (Figure 2b) models.

Encoder Decoder Encoder Decoder

Optical Data
Classifier
Optical Prediction
SAR Data
Classifier
SAR Prediction

a) b)
Figure 2. Single-modality models: a) (*)-OPT and b) (*)-SAR.
2.2 Multi-modality models

We considered three strategies for optical and SAR data fusion:
early fusion, joint fusion, and late fusion, described by Table 2.

Model Name | Base Architecture | Fusion Strategy
CNN-EF Convolution Early Fusion
CNN-JF Convolution Joint Fusion
CNN-LF Convolution Late Fusion
TRA-EF Transformer Early Fusion
TRA-JF Transformer Joint Fusion
TRA-LF Transformer Late Fusion

Table 2. Single-modality models.

Figure 3 presents how the Encoder, Decoder, and Classifier
blocks are organized for all multi-modality models. In the early
fusion strategy (Figure 3a), the optical and SAR data are con-
catenated in the third dimension before the encoder. The en-
coder, decoder, and classifier setup is the same as in the single-
modality models. Just one previous deforestation map was
maintained because its information is independent of optical or
SAR images. In the joint fusion strategy (Figure 3b), the model
architecture has two independent encoder blocks. The encoder
outputs (including the skip connections) are concatenated be-
fore entering the encoder. Each modal has an independent en-
coder and decoder in the late fusion strategy (Figure 3c). The
decoder outputs are concatenated before entering the classifier
block.

3. EXPERIMENTAL ANALYSIS

3.1 Study area and satellite images

We used Sentinel-1 and Sentinel-2 images acquired between
2018 and 2020 in an area of approximately 12, 500 km? loc-
ated in the southeastern portion of Amazonas State, Brazil (Fig-
ure 4). We chose this area because of the high deforestation
rates and the availability of optical images with diverse cloud
coverage conditions. We downloaded all data from the Google
Earth Engine (GEE). The GEE Sentinel-1 data includes Level-1
Ground Range Detected (GRD) images with VV and VH polar-
izations. The image is processed by GEE using the Sentinel-1
Toolbox following the steps: thermal noise removal, radiomet-
ric calibration, and terrain correction using SRTM 30. The GEE

ata
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Figure 3. Multi-modality models: a) (*)-EF, b) (*)-JF, and c)
(*)-LF.

also provides the Level-1C Sentinel-2 product, in which the im-
ages are radiometric and geometric corrected. All 13 bands
were resampled to a resolution of 10m when necessary Gorelick
et al. (2017).
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Figure 4. Study Area.
3.2 Data

As reference data, we used the deforestation polygons produced
by PRODES, which can be accessed through the TerraBrasilis
platform Assis et al. (2019). PRODES employs trained photo-
interpreters to manually identify the annual increment of the
deforested areas on optical satellite images. Only deforestation
areas larger than 6.25 ha where the primary forest was entirely
removed are outlined. For visual interpretation, the specialists
select images with a reduced cloud cover (usually cloud-free)
and acquired within the dry season (July to September) INPE
(2022).

We derived the pixel-wise labels for the whole study area for
each pair of years (Yp-Y7) from PRODES deforestation poly-
gons. We labeled the image pixels as No Deforestation, Defor-
estation, and Background. The pixels in which no deforestation
was detected by PRODES until Y; were classified as No De-
forestation. The pixels in which new deforestation areas were
identified in Y7 were classified as Deforestation. The pixels in
which new deforestation areas were identified before Yo were
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classified as Background. Pixels that are classified as “Hydro-
graphy” and ”’No Forest” (or other classes in which deforesta-
tion is impossible to occur) by PRODES were also classified
as Background. Due to differences in the spatial resolution
between the images used to generate the PRODES polygons,
Landsat images with 30 m spatial resolution, and this work,
Sentinel with 10 m spatial resolution, a buffer with 3 pixels was
applied to Deforestation polygons.

PRODES usually employs one Landsat image per year to de-
tect the deforestation increment areas. Henceforth, the date this
image was taken will be called the PRODES reference date.
In a £15 days window from each PRODES reference date, we
selected three optical images with diverse cloud conditions and
three SAR images. Figure 5 shows how we chose the images for
this work, where R;, and [ ZJ means the PRODES reference date
of the year i, and j-th optical-SAR image pair from Sentinel-
2 and Sentinel-1, respectively. The images from the first two
years (Yo = 2018 and Y, = 2019) were used for training pur-
poses, while those from the last two years (Y, = 2019 and
Y1 = 2020) were used for testing.

Testing

Training
L

SAR

Figure 5. Reference dates and the selected images.

We are already aware of past deforestation through PRODES,
and this knowledge can aid in identifying future deforestation
areas. One way to represent this previous deforestation inform-
ation is through a temporal distance map called previous de-
forestation map, in which the pixels’ values vary from O to 1.
If no previous deforestation occurred in a pixel, its value is 0.
However, if a pixel represents a previously deforested area, its
value will be based on the year of the deforestation identifica-
tion. For example, if deforestation occurred in the year Yo, the
pixel value in the deforestation map is 1. This value decreases
linearly as the year of deforestation moves away from Yy to-
wards the past.

We estimated the cloud coverage probability of each pixel in
every optical image by utilizing the Sen2Cor algorithm (Louis
et al., 2016). This method generated a cloud coverage prob-
ability map, which provided values ranging from 0 (no cloud)
to 1 (cloud). For each pair of optical images used for testing
(Yo = 2019 and Y7 = 2020), we determined the maximum
value between the respective cloud coverage probability maps,
resulting in the Maximum Cloud Probability (MCP), for each
pixel. MCP values will be employed to classify how each pixel
was affected by clouds.

3.3 Experimental protocol

All procedures of this work were conducted with an Intel Core
19-10900F processor, with 128 GB of RAM and a GeForce RTX

3090 GPU with 24 GB of dedicated memory and Python lan-
guage and PyTorch library.

The Transformer-based and Convolution-based architectures
have the C and D, respectively, arbitrary values, which affect
the number of trainable parameters. Our study set C' = 96 and
D = 32, following Cao et al. (2021) and Ferrari et al. (2023)
respectively.

3.3.1 Training protocol The entire study area was divided
into training and validation tiles, as shown in Figure 6. Sub-
sequently, we extracted patches of 128 x 128 pixels from these
tiles, with a 70% overlap.

Figure 6. Distribution of the training (blue) and validation
(green) tiles over the study area.

To reduce the imbalance inherent to the deforestation detection
task, we classified the generated patches based on the presence
of pixels belonging to the Deforestation class. The patches with
at least 2% of Deforestation pixels were regarded as Deforest-
ation Presence patches, while the rest were as Deforestation
Absence. To train and validate the models, we take the same
number of Deforestation Absence as the Deforestation Pres-
ence patches, randomly discarding the excess of Deforestation
Absence patches.

We trained five models from scratch for each architecture
described in Tables 1 and 2. The 9 possible combinations
between {IJ, I}, I3} and {I?, 11,17} were utilized to extract
the patches, increasing the diversity of the images saw by the
models during the training process. We chose the Adam op-
timizer with a learning rate 5 - 107°. The loss function was
the weighted cross entropy, with the weights shown in Table
3. Each model was trained until the validation loss stopped to
improve for 10 epochs.

Class Weight
No Deforestation 0.2
Deforestation 0.8
Background 0.0

Table 3. Classes’ weights.

We preformed the prediction from 9 possible combinations of
the Testing images: {17, I{, I} and {I3, I3, I3}. To minimize
the patch effect in the outcome, the prediction was generated
multiple times for each model, with different overlapping (0.15,
0.2, 0.25, 0.3) between the patches, and the 8 pixels border of
all sides were discarded. The final architecture’s probability
prediction was the average from all models and overlaps. We
adopted 0.5 as the probability threshold for assigning the pixel
to one of the two classes.

3.3.2 Evaluation protocol To evaluate each architecture in
diverse cloud presence conditions, the MCP was estimated from
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Figure 7. Models parameters (a) and the training (b) and prediction (c) times, with the respective metrics’ results (d).

the images {IY, I{, I} and {I9,I3,I3}. If the MCP of each
pixel was > 0.5, then it was classified as Cloudy Pixel because
its optical image should be affected by clouds in Y7 or Y. The
remaining pixels were classified as Cloud-Free Pixels.

We evaluated the precision, recall, and F1-Score considering
each architecture classified prediction, discarding all Deforest-
ation predictions with areas smaller than 6.25 hectares to be
compatible with labels criteria generated from the PRODES
data. All pixels belonging to the class Background were also
discarded in the accuracy computation.

3.4 Results and Discussion

Figures 7a, 7b, and 7c present the number of trainable para-
meters of each architecture, and the training and prediction
times, respectively. The Convolution-based networks have
fewer trainable parameters than the respective Transformer-
based. However, this difference didn’t manifest in greater train-
ing and prediction times.

The number of trainable parameters of the Convolution-based
architectures was lower than the Transformer-based. However,
this difference in the number of trainable parameters didn’t
manifest in the training and prediction times, which we ex-
pected to be much higher. This result indicates that, despite
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Figure 8. Error maps from the same area in diverse cloud conditions, in which white, black, red, and blue represent the true positive,
true negative, false positive, and false negative, respectively. The pixels classified as Cloudy Pixel are highlighted in yellow.

the higher number of parameters of the Transformer-based ar-
chitectures, these networks are more viable to be employed in
large areas like the Brazilian Amazon Forest than the respective
Convolution-based.

Figure 7d presents the accuracy metrics for each architecture.
The results are organized based on the cloud-coverage classific-
ation, which classified each pixel in Cloudy Pixel or Cloud-Free
Pixels, whether the pixel is affected by clouds or not, respect-
ively. The results of the set of all pixels were also presented as
All Pixels.

The Convolution-based models employing optical data (CNN-
OPT) presented an expected behavior, in which poor res-
ults were observed for Cloudy Pixels compared to Cloud-
Free Pixels, considering all evaluated metrics. However, the
Transformer-based optical model (TRA-OPT), which presen-
ted fewer positive predictions when affected by clouds, reached
slightly better precision results for the Cloudy Pixels, but the
recall results were highly affected.

All models using SAR data were almost unaffected by cloud
conditions. The Transformer-based SAR model (TRA-SAR)
outperformed the Convolution-based counterpart (CNN-SAR)
for all evaluated metrics.

The early fusion strategy did not improve the results for the
Convolution-based model (CNN-EF) in Cloud-Free Pixels, in
comparison to the respective optical (CNN-OPT). However, it
achieved better results in the Cloudy Pixels compared to the
respective SAR model (CNN-SAR). The Transformer-based
early fusion (TRA-EF) presented similar results to the re-
spective Convolution-based in Cloud-Free Pixels but presented

worse results than the respective SAR model (TRA-SAR) in
Cloudy Pixels.

The last two fusion strategies, joint fusion, and late fu-
sion, presented the best F1-Score results, with the respect-
ive Transformer-based models outperforming the Convolution-
based architecture. Considering diverse pixel cloud condi-
tions, TRA-JF presented better F1-Score results, while TRA-
LF presented slightly lower F1-Score. However, the low recall
of TRA-LF (0.86) indicates that this model failed in identifying
new deforestation areas.

Figure 8 presents examples of error maps from two regions
in the study area, where white, black, red, and blue represent
the true positive, true negative, false positive, and false neg-
ative, respectively. The pixels classified as Cloudy Pixel are
highlighted in yellow. For each region, the first row repres-
ents the Convolution-based models, while the second repres-
ents the Transformer-based models’ prediction errors. The first
two rows (first region) refer to images fully affected by clouds,
while the last two (second region) refer to a cloud-free region.

The error maps corroborate the metrics’ results, especially for
the models that presented low recall values but high precision
results, showing that these models predicted fewer deforestation
areas in the presence of clouds.

4. CONCLUSION

We investigated new fusion models, replacing the Convolution-
based with Transformer-based models in diverse cloud cover-
age conditions.
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In general, we expected that the cloud presence decreased the
quality of the optical models’ predictions. However, the TRA-
OPT precision result was greater in Cloudy Pixels than in
Cloud-Free Pixels. This behavior may be the result of a few
positive predictions generated by TRA-OPT in the locations af-
fected by clouds but may be investigated deeper in the future.

Despite the number of parameters increase, the Transformer-
based models did not consume more time to train or generate
the predictions than the Convolution-based ones. Very high
training times, especially prediction times, could hamper the
use of such models.

The results from this work indicates that using the transformer
operation, in substitution of the convolution, may improve the
deforestation detection capability of the models, independent of
the cloud coverage condition. Investigations using other archi-
tectures are required to validate these findings.

Further investigations into the role of the information source
(optical and SAR) in the fusion models may clarify its behavior
in diverse cloud conditions.

The Transformer-based joint fusion strategy presented the best
F1-score, raising as a suitable candidate for systems to detect
new deforestation areas using optical and SAR images, outside
the dry season, increasing its deforestation detection capability.
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