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Abstract

Hidden faults in power lines pose significant safety hazards, severely threatening the safety of human life and property, necessitating
rigorous inspection. Current methods for detecting hidden faults face two primary challenges: firstly, the inability to accurately locate
power line components in thermal infrared images, and secondly, the reliance on empirical thresholds for fault determination, which
results in low detection accuracy. To address these issues, this paper proposes a method for detecting hidden faults in power lines by
combining visible and thermal infrared images. The method initially leverages the high discernibility of visible images to precisely
identify the locations of power line components using a deep learning-based object detection model. Subsequently, a matching
algorithm based on regional features is employed to register visible and thermal infrared images, thereby obtaining the precise
locations of components in thermal infrared images. Finally, thermal infrared images are used to measure the temperature of
components. By comparing these measured temperatures with the surface temperatures of components under normal operating
conditions, hidden faults are effectively identified. Experiments were conducted on transmission lines in Jiashan County, Jiaxing City,
Zhejiang Province. Out of 1526 power line components, 14 faults were detected, with manual verification confirming 13 as genuine
faults. Compared to manual inspection results, the proposed method exhibited no missed detections and only one false positive,

achieving a detection accuracy of 0.93.
1. Introduction

In recent years, with the rapid development of China's industrial
sector, a substantial number of power lines have been put into
operation. By the end of 2024, China's cumulative installed
power generation capacity reached approximately 3.35 billion
kilowatts, with the length of transmission lines at 220 kV and
above exceeding 920,000 kilometers, ranking first globally in
both total length and capacity. Transmission lines deliver
electricity to end-users, and any faults can lead to significant
inconveniences. Among these, hidden faults pose significant
safety hazards, such as disruptions to industrial and household
power supply, paralysis of transportation and other
infrastructure, fires caused by short circuits, and safety hazards
from broken conductors, resulting in substantial losses.
Therefore, to ensure the safe and stable operation of power lines,
rigorous inspection and maintenance are essential (Wen et al.,
2019).

To mitigate the safety risks posed by hidden faults, the primary
objective is to accurately locate components. Currently,
numerous studies have focused on component localization using
visible light images (Liu et al., 2018; Chen et al., 2019; Wan et
al., 2020; Liang et al., 2020; Xie et al., 2023; Souza et al., 2023;
Stefenon et al., 2023). Leveraging deep learning-based object
detection models, these methods can achieve high-precision
localization of various components, which are applicable to the
detection of surface faults such as missing top caps, insulator
breakage, missing insulators, missing pins, foreign matters on
towers, and conductor breakage. However, hidden faults are
primarily caused by internal aging or loose connections,
manifesting as temperature anomalies. These anomalies cannot
be detected by visible images but can be captured by thermal
infrared images. Unfortunately, due to the low contrast and poor
detail resolution of thermal infrared images, existing methods
struggle to achieve high-precision component localization in
complex backgrounds. A promising approach is to combine
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visible and thermal infrared images (Jalil et al., 2019), but this
method faces two challenges: precise localization of
components in visible images and reliable registration between
visible and thermal infrared images. The first challenge can be
addressed using state-of-the-art object detection models. As for
the second challenge, although some research has been
conducted on the registration of visible and infrared images,
including region-based methods (Yang et al., 2009; Zhuang et
al., 2016; Yu et al., 2019), feature-based methods (Wang et al.,
2010; Aguilera et al., 2012; Yi et al., 2013; Zeng et al., 2020;
Chen et al., 2020; Jiang et al., 2020), and deep learning-based
methods (Zhao et al., 2017; Wang et al., 2018; Zhang et al.,
2021; Mao and He, 2021), these methods remain immature.
Given the complexity of power line inspection scenarios,
existing methods cannot achieve fast and reliable registration,
making them difficult to directly apply to this study.

Following component localization, the next challenge is hidden
fault identification. Several studies have explored fault detection
in power lines using thermal infrared images (He et al., 2015;
Wronkowicz, 2016; Liu et al., 2017; Jalil et al., 2019; Wang et
al., 2020). These methods typically calculate the surface
temperatures of components from thermal infrared images and
compare them with empirical thresholds, identifying
components with temperatures exceeding the threshold as
potential hidden faults. However, temperature measurements
from thermal infrared images are influenced by environmental
factors such as solar radiation, leading to deviations between
measured and actual temperatures. Additionally, temperatures
of components vary under different environmental conditions,
including ambient temperature, solar irradiance, and power
transmission energy, making it difficult to determine a
temperature threshold. Therefore, accurate identification of
hidden faults requires a robust model. However, most existing
methods rely on empirical models, resulting in low detection
accuracy and poor generalizability.
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To address these issues, this paper a novel approach to detecting
hidden faults in power lines by combining visible and thermal
infrared images. The method involves locating components
using both visible and thermal infrared images, followed by
temperature measurement of these components via thermal
infrared images and estimation of their surface temperatures
under normal operating conditions to identify hidden faults. For
component localization, based on existing frameworks, a
network model is designed to detect and locate components in
visible images. Subsequently, image registration is performed to
map these locations onto thermal infrared images. For hidden
fault identification, a hybrid radiative temperature rise model is
proposed, which fits temperature data from thermal infrared
images and estimates the surface temperatures of components
under normal conditions by considering environmental factors
and transmission energy. By comparing measured and estimated
temperatures, hidden faults can be identified.

The contributions of this paper are as follows:

(1) A region-based image registration method for visible and
thermal infrared images is proposed, improving the success rate
of image matching.

(2) A hybrid radiative temperature rise model that integrates
environmental temperature, solar irradiance, and power line
metadata is developed, enhancing the accuracy of hidden fault
detection.

(3) A comprehensive hidden fault identification technique
combining object detection and image registration is introduced.

2. Methodology

To address the issues of existing methods in component
localization and hidden fault identification, this paper proposes
a method for detecting hidden faults in power lines by
combining visible and thermal infrared images. The method
initially leverages the high discernibility of visible images to
precisely identify the locations of power line components using
a deep learning-based object detection model. Subsequently, a
matching algorithm based on regional features is employed to
register visible and thermal infrared images, thereby obtaining
the precise locations of components in thermal infrared images.
Finally, thermal infrared images are used to measure the
temperature of components. By comparing these measured
temperatures with the surface temperatures of components
under normal operating conditions, hidden faults are effectively
identified. The technical framework of the proposed method is
shown in Figure 1.

( Deep Learning-based Component
Detection Model

Hidden Fault Detection

@
0
A1ang)

Temperature
Fitting

Matching
—

Regional Feature

Feature
Detection Description

e &\ Y,
Figure 1. The technical framework of the proposed method

2.1 Component Localization Based on Visible and Thermal
Infrared Images

Existing methods face substantial challenges in identifying and
precisely locating components in thermal infrared images,
particularly in complex scenarios. To address this issue, this
paper proposes a high-precision localization method for
components that combines visible and thermal infrared images.
The proposed method initially leverages the high discernibility
of visible images to identify and locate components such as
insulators and joints using a deep learning-based object
detection model. Then, regional features are extracted from both
visible and thermal infrared images, followed by the
construction of scale- and rotation-invariant feature descriptors.
Through feature matching between the two image modalities,
the precise locations of components in thermal infrared images
can be accurately determined.

2.1.1 Component Detection Model Based on RT-DETR

The primary objective of component detection is to identify and
locate specific components, effectively distinguishing them
from the background, which can be achieved through object
detection. In this study, the detection of hidden faults in power
lines necessitates the precise localization of components,
thereby requiring object detection models with high detection
accuracy, while simultaneously optimizing inference speed.
Prominent algorithms in the field of object detection include the
RCNN series, YOLO series, SSD series, and DETR series. In
this paper, the RT-DETR model (Lv et al., 2023) was selected
for component detection. This model represents the first real-
time, end-to-end object detection model capable of maintaining
high accuracy while achieving real-time detection speeds.

The network architecture of RT-DETR comprises a backbone
network, an efficient hybrid encoder, and a Transformer
decoder with auxiliary prediction heads, as shown in Figure 2.
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Figure 2. Network architecture of RT-DETR

Initially, the model employs the backbone network to extract
features, retaining the output features from the last three stages
{S3, S4, S5} as inputs to the hybrid encoder. Subsequently, the
hybrid encoder transforms multi-scale features into a sequence
of image features through intra-scale interaction (AIFI) and
cross-scale feature-fusion module (CCFM), facilitating
subsequent object query tasks. To enhance detection accuracy
by providing more precise -classification and localization
encoder features for object queries, an IoU (Intersection over
Union) aware query selection module is employed to select a
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fixed number of image features from the encoder output
sequence as initial object queries for the decoder. Finally, the
decoder with auxiliary prediction heads iteratively optimizes the
object queries, generating prediction boxes and confidence
scores. For detailed structures and functionalities of each
module, refer to the original literature (Lv et al., 2023), which
will not be reiterated here.

2.1.2 Region-based Image Registration Method for Visible
and Thermal Infrared Images

To address the challenge of registering visible and thermal
infrared images, inspired by the SIFT algorithm (Lowe, 2004),
this paper proposes a region-based image registration algorithm.
The algorithm begins by extracting regional features from both
visible and thermal infrared images. It then calculates the
principal direction and the normalized distances from the
boundary to the centroid for each regional feature, thereby
constructing scale- and rotation-invariant feature descriptors.
Finally, the Euclidean distance is used as a similarity criterion
to match corresponding regions. The specific process is as
follows:

(1) Regional Feature Detection

Feature detection aims to extract features with specific semantic
structures from images, such as point features, line features, and
regional features. The registration algorithm proposed in this
paper is based on regional features. The objective of regional
feature detection in this paper is to extract stable regions from
images that preserve the boundaries of the original targets while
also ensuring an adequate quantity. However, traditional
regional segmentation algorithms, such as region growing,
watershed algorithm, and saliency detection algorithms, fall
short in terms of both the quality and quantity of regional
feature extraction required for this research. Therefore, this
paper turns to deep learning-based regional segmentation
algorithms. Recently, Meta introduced a new image
segmentation model, SAM (Segment Anything Model) (Kirillov
et al., 2023), which is trained on extensive segmentation
datasets and exhibits strong generalization capabilities. It can
generate masks for targets in any image or video, even on
entirely new datasets without additional training. Experiments
confirm that the SAM model can effectively extract regional
features from both visible and thermal infrared images. Thus,
the SAM model is transferred to the regional feature detection
task in this paper.

(2) Regional Feature Description

After extracting image features, it is not feasible to directly
match these features. Instead, the regions must be mapped into
discriminant vectors to facilitate fast and convenient matching.
The process of calculating feature vectors is known as feature
description. The regional feature description process in this
paper is similar to the SIFT algorithm. After extracting regional
features using the SAM model, for each regional feature, the
centroid is first determined. Principal Component Analysis
(PCA) is then employed to calculate the principal direction.
Finally, the normalized distances from the boundary to the
centroid are computed to yield a feature vector that is invariant
to rotation and scaling.

Considering the differences in recorded information between
visible and thermal infrared images, the pixel center of the
region is used as the centroid to avoid the impact of image

grayscale on algorithm stability. The centroid is calculated as
follows:

1 , (@)

where = the set of points in the region
, = the pixel coordinates of the centroid
, = the pixel coordinates of the current point

= the number of points in the region

Determining the principal direction of the regional feature
ensures the descriptor's rotational invariance. Unlike the SIFT
algorithm, which uses pixel gradients from differential images
to calculate the principal direction, this paper employs PCA to
compute the principal direction to mitigate deviations caused by
differences in recorded information between visible and thermal
infrared images and to simplify calculations. In the actual
calculation process, the covariance matrix of the coordinate
matrix of the region is first calculated as follows:

¢ OF @

= covariance matrix

, =two coordinate vectors of the coordinate matrix
= covariance between two variables, it is

calculated as follows:

where

Tl =1 ( - )( - )a (3)
= two vectors

= the length of the two vectors

, = i-th elements of the two vectors

, = sample means of the two vectors

where ,

After obtaining the covariance matrix of the region, it is
decomposed to yield eigenvalues and eigenvectors. The
eigenvector corresponding to the largest eigenvalue is identified
as the principal direction of the regional feature. Once the
principal direction is determined, rays are drawn from the
centroid at 10-degree intervals, covering a 0 to 360-degree
range, resulting in 36 rays. These rays intersect the regional
boundary at 36 points, and the Euclidean distances from these
boundary points to the centroid are calculated, as shown in
Figure 3. The computed 36 distance values are filtered by
removing the top 5% of maximum and minimum values and
then normalized to yield the feature vector. Normalization
ensures the descriptor's scale invariance.
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Figure 3. Calculation of boundary-to-centroid distances and
normalized feature vector
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(3) Regional Feature Matching

Feature matching aims to correspond features extracted from
two images. The descriptors constructed in this paper are
presented in vector form, facilitating straightforward
computation. Therefore, the Euclidean distance is chosen as the
similarity criterion for feature matching. For two regions, if
their distance is below a specified threshold, they are identified
as corresponding regions. This process yields a set of matching
points. Considering that similar regions on an image may
produce similar regional features, leading to incorrect matches,
the RANSAC algorithm (Fischler and Bolles, 1981) is
employed to eliminate mismatched points.

2.2 Hybrid Radiative Temperature Rise Model

Existing methods for hidden fault identification often rely on
empirical thresholds, resulting in low detection accuracy. To
address this issue, this paper proposes a hybrid radiative
temperature rise model that integrates multiple factors,
including ambient temperature, humidity, solar irradiance,
electric current, voltage, and resistance. The model first fits the
surface temperatures of components using thermal infrared
images, then establishes the relationship between temperature
and component radiation through various influencing factors to
estimate the surface temperatures of components under normal
conditions, and finally compares the fitted and estimated
temperatures to identify hidden faults.

2.2.1 Temperature Fitting Model Based on Thermal
Infrared Images

Conventional temperature fitting methods often use linear or
piecewise function models. However, these models do not
account for the attenuation of radiant energy due to factors such
as camera-object distance and humidity during the imaging
process, leading to deviations between fitted and actual
temperatures. Considering the effects of distance, humidity, and
component emissivity, the radiant energy received by the
thermal infrared camera at the entrance pupil per unit time is
given by:

1
== , @
where = radiant energy at the entrance pupil
= radiant energy per unit area of the component

per unit time

= surface temperature of the component

= energy proportion in the thermal infrared band

= distance from the camera to the component

= atmospheric relative humidity

o, B, Y= constants

The radiant energy at the entrance pupil can be calculated from
the grayscale values of the thermal infrared image, and the
relationship between the component's radiant intensity and
surface temperature is given by the Stefan-Boltzmann law:

= - 4 %

where = emissivity of the component
= Stefan-Boltzmann constant

Through the above process, a relationship between the grayscale
values of thermal infrared images and component temperatures

is established. In practical applications, since camera calibration
parameters are often unknown, radiance cannot be accurately
calculated. Therefore, Equations (4) and (5) are combined and
simplified, with all parameters except image grayscale values,

distance, humidity, and temperature being calculated
collectively, resulting in Equation (6):
4~

= o++—, Q)

where = image grayscale values

0 1, 2 = constants

2.2.2 Temperature Estimation Model Integrating Remote
Sensing Information

After calculating the temperature of components, conventional
methods typically use empirical thresholds to identify hidden
faults. However, in different environments, temperature
thresholds are often not fixed, making empirical models
unreliable. To address this issue, the following processes are
considered in temperature analysis: First, according to Joule's
law, the resistance at connections is nearly zero under normal
conditions, resulting in low thermal power; when components
age or connections loosen, resistance increases significantly,
leading to high thermal power and hidden faults. Second, for a
component, factors contributing to temperature rise include not
only its own thermal power but also absorbed radiation from
surrounding objects and solar radiation. Therefore, under solar
radiation, measured temperatures are higher than normal.
Accordingly, this paper analyzes the radiant energy
transmission process of components in the thermal infrared
band, as shown in Figure 4.
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Figure 4. Radiant energy transmission process of components in
the thermal infrared band

When ignoring the component's thermal power, solar radiation,
and atmospheric radiation are not considered, the component's
temperature equals the ambient temperature, and its radiant
intensity is:

6= 0 )

where , = radiant intensity

o = ambient temperature
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Under solar radiation, the internal energy of components
primarily comes from the following sources: radiation from
surrounding objects, the component's thermal power, absorbed
solar radiation and atmospheric downwelling radiation. At
thermal equilibrium, this energy is emitted as heat transfer or
longwave radiation. Neglecting heat transfer, the radiant
intensity  due to the component's thermal power is:

=/, ®)

where = thermal power

= surface area of the component

The thermal power is calculated as follows:
=2 =2 ©)

= electric current
= resistance
= resistivity
= length
= cross-sectional area

where

The radiant intensity
radiation is:

due to absorbed solar and atmospheric

=(C 1+ ) 1, (10)
where = solar horizontal radiation
' = atmospheric downwelling radiation
1, 2 = absorption rates
= surface area of the component exposed to solar
radiation

Thus, the total radiant intensity ~ of the component is:

= + + 11
In practical applications, due to numerous unknown variables,
the above equations are simplified, and a multiple linear
regression model is used to describe the relationship between
component's temperature and ambient temperature, component's
thermal power, solar radiation, and atmospheric downwelling
radiation, as follows:

b= 0+ 1+ + 5! (12)

where o 1. 2, 3= constants

Additionally, when a component experiences a hidden fault, its
resistance cannot be measured. Thus, this paper uses Equation
(12) to estimate the normal surface temperatures of components
and compares them with the fitted temperatures obtained from
Equation (6) to identify hidden faults.

3. Experiments and Discussion

Experiments were conducted on transmission lines in Jiashan
County, Jiaxing City, Zhejiang Province. The experimental
arrangement of this paper is as follows: First, a dataset of power
line components was constructed, and a deep learning-based
object detection model was trained. Subsequently, visible and
thermal infrared images were registered. The component
detection results and registration outcomes were then combined
to obtain the precise locations of components in thermal

infrared images. Finally, hidden faults were identified using the
hybrid radiative temperature rise model.

3.1 Dataset Description

The images used in the experiments were captured by UAVs
during different periods, including April, September, and
December. The dataset comprises 817 visible images and 245
thermal infrared images, with some examples shown in Figure 5.
As depicted, the captured images feature complex backgrounds
and contain multiple components of varying types, posing a
challenge for object detection tasks.

Figure 5. Sample images from the experimental dataset

3.2 Component Detection

Using the Labellmg tool, a total of 5,197 samples were
annotated from the 817 visible images, encompassing 11
categories, including 6 types of joints and 5 types of insulators.
The dataset was split into training and testing sets in a 7:3 ratio
for training and evaluating the RT-DETR model.

The model was trained on a single GPU with a learning rate of
0.01 and a weight decay of 0.0005. The best training results
were achieved after 247 epochs. The model was tested on the
testing set, and precision-recall (PR) curves for each type of
component were plotted, as shown in Figure 6. The average
precision (AP) for each component was calculated by measuring
the area under the curve, with higher AP indicating better model
performance. As depicted, most components achieved high AP
values. To evaluate the overall model performance, mAP@0.5
(the mean average precision when IoU (Intersection over Union)
was equal to 0.5) was computed, yielding a value of 0.943.
Overall, the model demonstrated high detection accuracy,
meeting the requirements of this paper.
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Figure 6. PR curves for each type of component
3.3 Registration of Visible and Thermal Infrared Images

The proposed registration method was applied to 245 pairs of
visible and thermal infrared images from the dataset, with some
results shown in Figure 7. As depicted, the matched keypoints
align well with the actual scenarios. Additionally, the average
registration precision (proportion of correctly matched points)
was calculated, resulting in a value of 0.863. These results
validate the effectiveness of the proposed method.

Figure 7. Sample registration results

The proposed registration algorithm was compared with several
classical methods, including the SIFT algorithm, SURF
algorithm (Bay et al., 2006), deep learning-based method
SuperGlue (Sarlin et al., 2020), multimodal image registration
methods OS-SIFT (Xiang et al., 2018) and RIFT (Li et al.,
2019). The average registration precision of each method was
statistically analyzed, and the results are presented in Table 1.
As shown in the table, the proposed method demonstrates
superior registration precision compared to traditional
approaches SIFT and SURF while achieving comparable
performance to SuperGlue, OS-SIFT, and RIFT. The

experimental results validate the feasibility and reliability of the
proposed method.

Method SIFT SURF SuperGlue
Precision 0.079 0.052 0.847
Method OS-SIFT RIFT Ours
Precision 0.861 0.874 0.863

Table 1. Comparison of registration precision between the
proposed method and several classical methods

3.4 Localization of Components in Thermal Infrared
Images

Experiments were conducted using 245 pairs of visible and
thermal infrared images to locate power line components, with
partial results shown in Figure 8. The locations in visible
images represent the object detection results, while the locations
in thermal infrared images depict the components mapped onto
thermal infrared images after registration. Visually, the
localization results align well with the actual scenarios,
demonstrating high accuracy without any missed detections.

Figure 8. Sample localization results of components in thermal
infrared images

3.5 Hidden Fault Detection

In Section 2, a hybrid radiative temperature rise model was
proposed, including temperature fitting and normal temperature
estimation. For temperature fitting, during one process of
acquiring thermal infrared images, the temperatures of 21
objects were measured synchronously. Six measurements were
used to calculate the parameters, and the remaining 15
measurements were used to validate the model. The fitted
temperatures were compared with the measurements, as shown
in Table 2. The root mean square error (RMSE) of the fitting
results was 0.96 °C, with a goodness-of-fit (R?) of 0.939,
indicating excellent fitting performance. The fitting errors were
within 2 °C, satisfying practical application requirements.

Equation (12) was used for normal temperature estimation. A
total of 84 data points were measured to fit the regression model,
resulting in an RMSE of 1.19 °C and an R* of 0.926.

Furthermore, to quantitatively evaluate the influence of each
independent variable on the dependent variable, t-tests were
conducted. In statistical analysis, a significance threshold
(typically 0.05, 0.02, or 0.01) is established to evaluate the
linear relationship between variables. A P-value exceeding this
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threshold indicates an insignificant linear relationship. In our
experiments, all obtained P-values were below 0.01, confirming
statistically significant linear relationships between each
independent variable and the dependent variable. These results
validate the correctness of the proposed model.

Fitted temperatures (°C)  Measured temperatures (°C)

1 34.83 35.04
2 32.91 32.45
3 38.06 37.58
4 35.31 36.23
5 33.25 33.88
6 31.94 32.68
7 34.54 34.97
8 48.09 47.12
9 38.78 37.59
10 34.89 34.85
11 37.55 39.06
12 33.02 34.78
13 44.29 43.77
14 38.14 39.73
15 35.27 36.23

Table 2. Comparison of fitted and measured temperatures

For the 1,526 components in the 245 thermal infrared images,
Equation (6) was used to fit their temperatures. For each
component, its fitted temperature was compared to a
temperature threshold. If exceeded the threshold, the
component was identified as having a hidden fault. Following
the methodology of Wang et al. (2020), the temperature
threshold was set at 1.2 times normal temperature of the
component, where is calculated using Equation (12). Based
on this approach, 14 faults were detected, with some results
shown in Figure 9. Additionally, manual inspection of the
images revealed 13 hidden faults. Compared to the manual
inspection results, the proposed detection method achieved no
missed detections and only one false detection, yielding a
detection accuracy of 0.93. In contrast, the conventional
empirical threshold method identified 15 faults among the same
1526 components, but with lower performance: only 12 true
positives, 3 false positives, and 1 false negative (precision =
0.80). The proposed method demonstrates superior performance,
exhibiting both higher recall and improved detection accuracy
compared to the conventional approach.

Figure 9. Sample hidden fault detection results

4. Conclusion

To address the limitations of existing methods in hidden fault
detection, such as the inability to accurately locate power line
components and the low precision in identifying hidden faults,
this paper proposes a novel approach for detecting hidden faults
in power lines by combining visible and thermal infrared
images. Experimental results validate the effectiveness of the
proposed method, offering a solution to the constraints of
traditional methods. Compared to conventional approaches, the
proposed method offers several advantages. First, it ensures

high recall in detecting components in thermal infrared images
while simultaneously improving precision. Second, by
establishing the relationship between temperature and
component radiation through multiple influencing factors, it
enables high-accuracy identification of hidden faults within
power lines. This method has the potential to improve power
line inspection systems and contribute to the safety of people
and property. By accurately identifying hidden faults, we can
mitigate disasters caused by power line failures. Furthermore,
the proposed method holds significant implications for meeting
the demands of automated detection in large-scale transmission
systems and adapting to the rapid development of the economy
and society.
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