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Abstract

Collaborative perception technology improves perception performance by enabling agents to exchange complementary perceptual
data through the sharing and fusion of multi-viewpoint information. However, existing collaborative perception methods in V2X
scenarios face two main challenges. On one hand, they overly rely on sensor observation data for global perception, resulting
in an exponential increase in communication bandwidth demands as the scene complexity grows. On the other hand, existing
methods treat the trajectory and location information of traffic participants separately from sensor data, neglecting the fact that
vehicles, as intelligent agents, serve both as sources and targets of perception. This limitation constrains the further improvement
of collaborative perception performance. To address these issues, this paper proposes a novel position-prior-enhanced collaborative
perception network, PosiFusion. In terms of communication, PosiFusion introduces a position-prior-based communication selection
mechanism that uses prior location information to generate a confidence map of the global perception space. By selecting critical
perceptual areas, it significantly reduces the communication bandwidth requirement. Regarding perception performance, PosiFusion
incorporates a critical-area perception guidance module, which generates a guidance map of the global perception space using prior
information. This guides the network to focus on the perception data from critical areas, thereby enhancing overall perception
accuracy. To evaluate the effectiveness of PosiFusion, we conducted tests on two large-scale vehicular collaborative perception
datasets, OPV2V and V2XSet. Experimental results demonstrate that PosiFusion outperforms existing state-of-the-art collaborative
perception methods while ensuring minimal communication transmission costs.

1. Introduction

Collaborative perception technology improves perception per-
formance by enabling different agents to exchange comple-
mentary perceptual data through the sharing and fusion of
multi-viewpoint information. This technology is essential in
fields such as autonomous driving(Wang et al., 2020, Huang
et al., 2023), mobile mapping systems(Guo et al., 2025, Xiao
et al., 2024), and multi-robot systems(Zaccaria et al., 2021),
where it holds significant promise. To achieve collaborative
perception, recent works have contributed several high-quality
datasets(Xu et al., 2022c, Xu et al., 2022b, Yu et al., 2022,
Huang et al., 2024, Li et al., 2022, Yu et al., 2023) and collab-
orative perception algorithms(Chen et al., 2019b, Chen et al.,
2019a, Liu et al., 2020, Hu et al., 2022, Xu et al., 2022b, Zhao
et al., 2023), greatly advancing the field. In the field of intelli-
gent connected vehicles, multiple intelligent vehicles collabor-
ate by sharing sensor data, as well as dynamic information such
as their pose, speed, and other related data, in conjunction with
perception information from other intelligent agents, such as
infrastructure, to jointly build a global perception system. The
goal is to achieve more precise environmental perception. How-
ever, current collaborative perception methods face two main
issues: On one hand, these methods overly rely on sensor ob-
servation data to achieve global perception, leading to an expo-
nential increase in communication bandwidth demands as scene
complexity grows. On the other hand, existing methods typic-
ally overlook the integration of trajectory and location inform-

ation of traffic participants with sensor data, failing to fully
consider the dual role of vehicles in an intelligent perception
system—as both perception sources and targets. This fragmen-
ted approach limits the performance improvement of collabor-
ative perception systems. Particularly in intelligent connected
environments, in addition to intelligent vehicles equipped with
high-precision perception sensors, some connected vehicles can
also share their real-time location information. This real-time
location data efficiently reflects the perception distribution in
the local space and provides precise spatial guidance for in-
telligent vehicles in selecting communication regions and en-
hancing perception features. However, current collaborative
perception methods often fail to fully leverage the vehicles’
location-prior information, and the lack of this spatially cor-
related information restricts further performance improvement
of the system.

To address this gap, we propose a collaborative perception
strategy based on real-time positioning information embed-
ding. The core idea is to use the real-time positioning inform-
ation from connected vehicles to guide the communication re-
gion selection and perception feature enhancement for intelli-
gent vehicles, thereby improving the communication efficiency
and perception accuracy of the collaborative perception system.
With the real-time positioning information shared by connec-
ted vehicles, intelligent agents can more accurately determine
which spatial regions to transmit and enhance the perception
data for those areas. Since vehicle movement is often gov-
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Figure 1. Overall framework of PosiFusion.

erned by road topology and traffic rules, vehicle position in-
formation explicitly reflects the driving conditions of surround-
ing vehicles. For example, vehicles are typically denser near
stop lines and more sparse on straight roads.

Based on this idea, we propose a novel position-prior-enhanced
collaborative perception network, PosiFusion. Its innovation
lies in the dual optimization mechanism for communication
efficiency and perception accuracy. In terms of communica-
tion, PosiFusion introduces a position-prior-based communic-
ation selection mechanism, which uses prior location inform-
ation to generate a confidence map of the global perception
space. By selecting critical perceptual areas, it significantly re-
duces the communication bandwidth requirement. Regarding
perception performance, PosiFusion introduces a critical-area
perception guidance module, which generates a guidance map
of the global perception space using prior information. This
guides the network to focus on the perception data from crit-
ical areas, thereby enhancing overall perception accuracy. To
evaluate the effectiveness of PosiFusion, we conducted tests
on two large-scale vehicular collaborative perception datasets,
OPV2V and V2XSet. Experimental results show that, com-
pared to the most advanced collaborative perception methods,
PosiFusion achieves superior perception performance while en-
suring minimal communication transmission costs. Posifusion
saves 28.6% bandwidth compared to the previous method with
the lowest communication cost, and averages 5.0% higher per-
formance than the method with the best previous perception res-
ults.

2. Related work

2.1 V2X Feature-Level Communication

Feature-level communication strategies have emerged as a cru-
cial research direction in collaborative perception systems, fa-
cilitating efficient information sharing among multiple agents.
Prior studies have extensively investigated various techniques
for compressing and encoding high-dimensional perception
features to optimize bandwidth usage and maintain perceptual
accuracy. For example, Wang et al.(Wang et al., 2020) pro-
posed a neural encoding method specifically tailored to encode
and compress intermediate feature maps, significantly reducing
communication overhead while preserving crucial semantic in-
formation. Li et al.(Li et al., 2021) introduced convolutional-
based compression to extract informative channels from high-
dimensional representations, effectively mitigating redundancy.
Hu et al.(Hu et al., 2022) introduced a communication strategy

based on spatial confidence maps, which allows agents to fil-
ter and transmit only the most critical features from percep-
tually significant regions. Furthermore, recent methods(Yu et
al., 2024, Wang et al., 2023) employed attention and entropy-
guided frameworks to adaptively select or filter salient features,
thereby achieving efficient feature transmission. However, des-
pite these advancements, a challenge remains in achieving an
effective balance between feature fidelity and communication
efficiency. This issue becomes particularly pronounced when
dealing with dense, high-dimensional perception data contain-
ing rich spatial and semantic cues.

2.2 Collaborative Perception

Collaborative perception enhances the performance of
autonomous systems by facilitating the exchange of inform-
ation between vehicles and infrastructure, thereby improving
both accuracy and robustness. The effectiveness of these
systems is largely determined by the strategy employed for
message sharing, which can be classified into early, intermedi-
ate, and late fusion. Early fusion, involving the sharing of raw
sensor data, provides comprehensive information but requires
high bandwidth, making it less suitable for real-time applica-
tions (Chen et al., 2019b). In contrast, late fusion aggregates
detection results, such as bounding boxes or classifications,
which reduces communication costs but lacks the contextual
depth needed for complex scenarios (Rawashdeh and Wang,
2018). Intermediate fusion, which exchanges intermediate fea-
ture representations, offers a balance by preserving the richness
of perceptual information while minimizing bandwidth usage.
Recent works have predominantly focused on intermediate fu-
sion to optimize the trade-off between perception accuracy and
communication efficiency. Li et al. (Li et al., 2021) employed
knowledge distillation to align feature representations, while
Chen et al. (Chen et al., 2019a) introduced one of the earliest
feature-level collaboration methods. Wang et al. (Wang et al.,
2020) refined feature exchange with a spatially-aware message
passing mechanism, and Liu et al. (Liu et al., 2020) utilized an
attention-based approach to dynamically optimize bandwidth
usage. Hu et al. (Hu et al., 2022) leveraged the sparsity of fore-
ground information to prioritize the transmission of essential
features, thereby reducing communication load. Xu et al. (Xu
et al., 2022b) proposed a Transformer-based framework that
unifies the fusion process across diverse V2X systems, while
Xu et al. (Xu et al., 2022a) integrated multi-camera inputs
for BEV map predictions through feature-level collaboration.
Additionally, BM2CP (Zhao et al., 2023) and CodeFilling (Hu
et al., 2024) introduced multi-modal frameworks that enhance
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cooperative perception, particularly in LiDAR-camera fusion.

However, none of the aforementioned methods incorporate the
prior knowledge of vehicle positions in V2X environments,
which could further enhance the collaborative perception per-
formance.

3. Method

3.1 Position Prior Embedding Communication Strategy

Feature Extraction: To efficiently extract features from point
cloud data in V2X scenarios, we adopt the PointPillar network,
which transforms raw 3D points into structured 2D pseudo-
images via pillar-based voxelization. This design significantly
reduces memory consumption and computational complexity.

The process begins by organizing the raw point cloud collected
by agent i at timestamp k, denoted as P

(k)
i , which consists of

3D points {p1, p2, ..., pn}, where each pi contains spatial co-
ordinates (xi, yi, zi) along with attributes such as intensity or
reflectivity. The 3D space is discretized into vertical columns,
referred to as pillars, along the horizontal plane. Each pillar is
defined as:

Vx,y = {pi | pi ∈ Pillar(x, y)} (1)

where Pillar(x, y) denotes the spatial bin at grid cell (x, y). Fea-
tures from all points within a pillar are aggregated into a fixed-
length vector, typically using pooling operations such as mean
or max pooling, resulting in a feature tensor Tx,y . These tensors
are then stacked into a pseudo-image:

I
(k)
i ∈ RH×W×C (2)

where H , W , and C represent the height, width, and number
of channels, respectively. This 2D representation enables the
use of standard convolutional neural networks for feature ex-
traction.

A 2D CNN backbone, denoted as F(·), processes the pseudo-
image and outputs a high-level feature map:

F
(k)
i = F(I

(k)
i ) ∈ RH′×W ′×C′

(3)

where H ′, W ′, and C′ denote the height, width, and channel di-
mensions of the output feature. The resulting feature map F

(k)
i

is subsequently used in downstream V2X communication mod-
ules, including spatial confidence generation and target-driven
communication.

Spatial Confidence Generator: The spatial confidence gener-
ator plays a crucial role in creating target-oriented composite
confidence maps by fusing semantic confidence and positional
priors. It first estimates semantic criticality from the base fea-
ture map F

(k)
i to generate a base confidence map:

C
(k)
base = Φdet(F

(k)
i ) ∈ [0, 1]H×W (4)

This map shows the probability of each location in the feature
map belonging to a target region.

To leverage vehicle positional priors, the module employs a
multi-source position embedding strategy to aggregate connec-
ted vehicles’ GPS/IMU data PV 2X

j into a unified feature heat-
map representation:

HV 2X =
1

N

N∑
j=1

N (PV 2X
j ,Σ) ∈ RH×W (5)

Simultaneously, intelligent vehicles process radar point cloud
data with DBSCAN clustering to extract target positions
PLiDAR
m and generate target density maps:

Hobj =

M∑
m=1

δ(PLiDAR
m ) ∗ Gσ (6)

These positional priors are dynamically fused through a gating
mechanism:

H
(k)
pos = α ·HV 2X + (1− α) ·Hobj (7)

where α = σ(MLP([F (k)
i ;HV 2X ])) is dynamically adjusted

using a multi-layer perceptron (MLP) and sigmoid function.

Finally, spatial modulation refines the confidence map:

C
(k)
final = C

(k)
base ⊙ exp(H

(k)
pos ) + λ · ∇2C

(k)
base (8)

This process enhances key region responses, strengthens edge
responses with a Laplacian operator, and adjusts λ based on
channel capacity to ensure robustness and accuracy.

Target-Driven Communication Protocol: The target-driven
communication protocol optimizes communication strategies to
reduce background information interference and improve effi-
ciency. It uses a dual-threshold masking mechanism to identify
critical perception regions:

Mcom = I(C(k)
final > τ) ∩ I(H(k)

pos > µ) (9)

Here, τ and µ set thresholds for semantic and positional con-
fidence, effectively filtering out non-target regions and signific-
antly reducing redundant data transmission.

Communication packages contain compressed feature maps
with target details preserved through multi-scale pooling.
Position residuals, compressed via wavelet transforms, and
metadata (including timestamps and coordinate transformation
matrices) are also included, which are crucial for temporal-
spatial alignment and data fusion at the receiving end.

3.2 Key Region Perception Guidance Module

Construction of Global Perception Space: In collaborative
perception networks, to fully utilize vehicle positioning prior
information and guide intelligent vehicles to focus on key per-
ception areas, this paper designs a spatial coding network. This
network fuses the GPS/IMU data and LiDAR point cloud data
of agents to generate a Gaussian mixture position heatmap. For
agent i, its positional prior information is represented as:

Hpos
i =

1

N

N∑
j=1

N (PV 2X
j ,Σ) (10)
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where PV 2X
j denotes the V2X positioning data of the j-th

agent, N represents the Gaussian distribution, and Σ is the co-
variance matrix. Furthermore, to enhance the expressiveness
of positional priors, we introduce a positional encoding vector
Epos

i , generated as follows:

Epos
i = MLP(Hpos

i ) (11)

where MLP denotes a multilayer perceptron that transforms the
position heatmap into a high-dimensional feature vector.

To integrate spatial positional prior information with perception
features, this paper constructs a global perception space guid-
ance map. Generated via an attention mechanism, this guidance
map highlights key regions and suppresses background areas.
Specifically, the global perception space guidance map Cguide

is defined as:

Cguide = Attention(Epos
i , F

(k)
i ) (12)

where F
(k)
i represents the feature map of the i-th agent during

the k-th communication round, and Attention denotes the atten-
tion mechanism, calculated as:

Attention(Epos
i , F

(k)
i ) = Softmax

(
Epos

i · F (k)T
i√

d

)
(13)

where d is the feature dimension. Through this method, spa-
tial positional prior information is effectively incorporated into
the perception features, enhancing the model’s focus on key re-
gions.

Temporal Correction: Given the potential inaccuracies in spa-
tial positional prior information, such as sensor latency and
GNSS errors, this paper proposes a temporal linear enhance-
ment network to correct these issues. This network dynamically
adjusts positional priors primarily based on the agent’s speed
and latency information. Specifically, the input to the temporal
linear enhancement network includes the agent’s current speed
v and latency τ , with the output being the corrected positional
prior information Hpos

corrected. The mathematical expression is:

Hpos
corrected = Hpos +∆H (14)

where ∆H is the positional correction term, computed by
the temporal linear enhancement network based on speed and
latency. The specific calculation for ∆H is:

∆H = Wvv +Wττ + b (15)

where Wv and Wτ are weight matrices, and b is a bias term.
These parameters are learned through the following optimiza-
tion problem:

min
Wv,Wτ ,b

N∑
i=1

∥Hpos
corrected −Hgt

i ∥2 (16)

where Hgt
i represents the ground-truth positional information

of the i-th agent. This network compensates for positional pri-
ors using the agent’s kinematic information through linear com-
bination, thereby improving the accuracy of positional inform-
ation.

Feature Fusion: The perception enhancement strategy is im-
plemented through the following steps: First, the spatial coding

network is used to generate spatial positional prior information
and combined with an attention mechanism to produce a global
perception guidance map. This ensures the model focuses on
key regions while suppressing background noise.

Second, a temporal linear enhancement network corrects the
global perception guidance map based on the agent’s speed and
latency, generating a more accurate guidance map. This ad-
dresses positional inaccuracies caused by sensor latency and
GNSS errors. The corrected global perception guidance map
is calculated as:

Ccorrected
guide = Cguide +∆C (17)

where ∆C is the correction term computed by the temporal lin-
ear enhancement network based on speed and latency.

Then, the corrected global perception guidance map is fused
with the perception features to update the feature representa-
tion, enhancing detection accuracy and robustness. This fu-
sion enables the model to integrate spatial positional informa-
tion and perception features. The fusion of the corrected global
perception guidance map with perception features is:

F fused
i = F

(k)
i ⊙ Ccorrected

guide (18)

where ⊙ denotes element-wise multiplication.

Finally, a feed-forward neural network (FFN) further processes
the fused features to obtain the final updated features:

Fupdated
i = FFN(F fused

i ) (19)

Through this key region perception guidance module, the pro-
posed collaborative perception network can more effectively
perform target detection and recognition in complex environ-
ments, enhancing overall performance.

3.3 Detection Decoder

The detection decoder consists of two parallel heads: a re-
gression head for 3D bounding box parameter prediction and a
classification head for foreground object confidence estimation.
Given the feature map Fi from agent i, the detection decoder
Φdec(·) predicts the object detection outputs as Ôi = Φdec(Fi),
where Ôi ∈ RH×W×(1+7) includes both the classification con-
fidence and the 3D box regression outputs at each spatial loc-
ation. Specifically, for each grid location, the regression head
predicts a 3D bounding box encoded as (x, y, z, l, w, h, θ), rep-
resenting the center location, size, and orientation of the ob-
ject, while the classification head outputs a confidence score in-
dicating the probability that the location corresponds to a valid
foreground object. The final object list is obtained by applying
post-processing steps such as thresholding and non-maximum
suppression (NMS). Note that Ô(0)

i denotes the detection res-
ults of agent i without collaborative fusion.

3.4 Training Details and Loss Functions

To train the entire system, we supervise two tasks: spatial con-
fidence generation and object detection. The spatial confidence
generator shares parameters with the detection decoder to im-
prove parameter efficiency. The detection decoder decodes fea-
ture maps into object detection results, including classification
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Table 1. Comparison to different fusion methods on the OPV2V and V2XSet, PosiFusion consistently outperforms all other fusion
approaches

Model Fusion
OPV2V V2XSet

AB (Average Byte) ↓
AP0.5 ↑ AP0.7 ↑ AP0.5 ↑ AP0.7 ↑

PointPillars VehOnly 0.687 0.487 0.606 0.402 −
Late Fusion Late 0.824 0.658 0.727 0.620 8.40× 102

F-Cooper Middle 0.878 0.732 0.840 0.680 5.09× 106

V2VNet Middle 0.858 0.733 0.845 0.677 1.53× 107

Where2Comm Middle 0.889 0.751 0.855 0.654 4.96× 105

V2X-ViT Middle 0.867 0.749 0.882 0.712 5.09× 106

PosiFusion Middle 0.890 0.820 0.869 0.772 3.53× 105

and regression components. The detection loss comprises clas-
sification and regression losses, with focal loss for classification
to handle class imbalance and smooth L1 loss for bounding box
coordinate regression.

The overall loss function for the system is defined as:

L = Ldet

(
Ô(0)

i ,Oi

)
(20)

where Oi represents the ground-truth objects for the i-th agent,
Ô(0)

i is the detection result from the observation encoder
without collaboration, and Ldet is the detection loss combining
classification and regression losses.

This simplified training strategy focuses on single-round com-
munication, enabling efficient model training without handling
the complexity of multiple communication rounds. It maintains
the robustness of the perception system while reducing compu-
tational overhead and improving training efficiency.

4. Experiments

4.1 Dataset

V2XSet: The V2XSet dataset (Xu et al., 2022b)is a large-scale
V2X perception dataset built upon the CARLA and OpenCDA
simulators. Unlike previous datasets, V2XSet incorporates the
simulation of localization errors and communication delays,
providing a more realistic representation of real-world condi-
tions. The dataset contains a total of 11,447 frames, with the
train, validation, and test splits comprising 6,694, 1,920, and
2,833 frames, respectively. V2XSet spans five types of road-
way environments: straight segments, curvy segments, midb-
locks, entrance ramps, and intersections. Each scene features
between 2 to 7 intelligent agents engaged in collaborative per-
ception tasks.

OPV2V: The OPV2V dataset (Xu et al., 2022c)is a collabor-
ative vehicle-to-vehicle perception dataset developed through
co-simulation using OpenCDA and CARLA. It consists of two
primary subsets: the default CARLA township and Culver City.
The default CARLA township subset includes 6,765 training
samples, 1,980 validation samples, and 2,170 test samples. The
Culver City subset, specifically designed for evaluating domain
adaptation capabilities, contains 550 samples. The dataset fea-
tures 12,000 frames, consisting of both 3D point clouds and
RGB images, with annotations for 230,000 3D bounding boxes.

4.2 Experimental Setup

Implementation details: In the training phase, a random
autonomous vehicle (AV) is selected as the ego vehicle, while
during evaluation, a fixed ego vehicle is used for all compared
models. For the PointPillar backbone, the voxel resolution is set
to 0.4 meters for both height and width. The default compres-
sion rate for all intermediate fusion methods is configured to 32.
We employ the Adam optimizer, starting with an initial learn-
ing rate of 0.001, which is decayed by a factor of 0.1 every 10
epochs. The evaluation range is defined as [-140, 140] meters
in the x-direction and [-40, 40] meters in the y-direction. The
spatial confidence threshold is set to 0.3 in all experiments. For
the position prior, we use the positioning information of con-
nected vehicles located more than 40 meters away from the ego
vehicle. All experiments are conducted on an RTX 3090 GPU.

Evaluation metrics

Detection Performance: For the evaluation of 3D object de-
tection, Average Precision (AP) was used to assess detection
performance at Intersection-over-Union (IoU) thresholds of 0.5
and 0.7. For this evaluation, vehicles detected by at least one
connected LiDAR were considered. The performance assess-
ment is conducted under the assumption of sufficient commu-
nication bandwidth and absence of localization noise.

Communication Bandwidth: To evaluate transmission costs, we
used AB (average Byte) as the metric, excluding calibration
files and timestamps. The overall transmission cost was as-
sessed based on the transmission of raw data, detection results,
or feature tensors, with the bandwidth consumption quantified
on a per-frame basis. The evaluation is conducted under con-
sistent compression rates and transmitted feature dimensions
aligned with those of the respective baseline methods.

4.3 Quantitative Evaluation

The experimental results clearly demonstrate the superiority
of PosiFusion in achieving high detection performance while
maintaining exceptional communication efficiency across both
the OPV2V and V2XSet datasets. As summarized in Table 1,
PosiFusion achieves the best detection accuracy among all com-
pared methods.Specifically, on the OPV2V dataset, PosiFusion
achieves an AP@0.5 of 0.890 and AP@0.7 of 0.820, exhib-
iting consistent performance advantages over other advanced
middle fusion baselines. Compared to Where2comm, Posi-
Fusion improves the AP@0.7 by 6.9%, while maintaining a
comparable AP@0.5. It also surpasses V2X-ViT by 2.3% in
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(a) V2XVit (b) Where2Comm (c) PosiFusion

Figure 2. The detection visualization results of V2XVit, Where2Comm and PosiFusion across several challenging scenarios.

AP@0.5 and 7.1% in AP@0.7. On the V2XSet dataset, Posi-
Fusion continues to demonstrate its superiority with an AP@0.5
of 0.869 and AP@0.7 of 0.772, achieving a 2.4% and 9.5% im-
provement over V2VNet in AP@0.5 and AP@0.7, respectively,
and outperforming F-Cooper by 2.9% in AP@0.5 and 9.2% in
AP@0.7. These substantial gains confirm PosiFusion’s capab-
ility to effectively exploit positional and semantic priors for en-
hanced collaborative perception. By providing spatial context
during feature fusion, PosiFusion enhances the network’s abil-
ity to reason about object locations and scene topology, thereby
contributing significantly to the observed improvements in de-
tection performance. In addition to its strong detection perform-
ance, PosiFusion also achieves remarkable communication ef-
ficiency. It consumes only 3.53× 105 bytes per frame on aver-
age, which is less than 1/14th of V2X-ViT and over 40 times
lower than traditional middle fusion baselines like F-Cooper
and V2VNet. Notably, even when compared to the middle
fusion scheme Where2Comm, which transmits only minimal
information, PosiFusion achieves both higher accuracy (e.g.,
+11.8% AP@0.7 on V2XSet) and better bandwidth efficiency
(roughly 28.6% lower transmission cost). These results demon-
strate that the integration of positional prior embedding not only
improves spatial alignment but also assists in identifying critic

4.4 Qualitative evaluation

Detection visualization:Fig. 2 presents the detection visu-
alizations of PosiFusion in comparison with V2X-ViT and
Where2Comm across three challenging intersection scenarios.
PosiFusion consistently exhibits superior capability in detecting

occluded and distant targets. In the first scenario, a T-junction
with a wide field of view, PosiFusion is the only method that
successfully detects a distant vehicle located at the far-left edge
of the scene, which remains undetected by both baselines. In
the second crossroad scenario, a vehicle occluded by a lead car
in the lower region is accurately identified only by PosiFusion,
while both V2X-ViT and Where2Comm fail to perceive it. The
third scenario further highlights PosiFusion’s strength, where
three target vehicles partially occluded by a preceding car in
the upper region are all correctly detected solely by PosiFusion.
These consistent improvements underscore the model’s robust-
ness in complex urban settings where occlusions and long-range
perception are prevalent challenges.

This performance advantage is largely attributed to the integ-
ration of positional prior embedding, which enables the model
to incorporate global spatial context into the feature represent-
ation. By leveraging spatially-informed priors during feature
fusion, PosiFusion achieves more complete scene understand-
ing, thus facilitating the detection of targets that are distant,
occluded, or otherwise difficult to perceive. These qualitative
results demonstrate the effectiveness of positional priors in im-
proving the robustness of collaborative perception.

5. Conclusion

In this paper, we presented PosiFusion, a position-prior-
enhanced collaborative perception framework tailored for V2X
scenarios, aiming to simultaneously optimize perception per-
formance and communication efficiency. By incorporating real-
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time positional priors from connected vehicles, PosiFusion in-
troduces a communication selection mechanism and a critical-
area guidance module that jointly enable spatially informed fea-
ture transmission and attention. This design allows the system
to effectively focus on key perception regions, thereby reducing
redundant data exchange while enhancing the accuracy of ob-
ject detection, especially under challenging conditions such as
occlusions and long-range perception. Experimental results on
two large-scale collaborative perception datasets, OPV2V and
V2XSet, demonstrate that PosiFusion achieves superior detec-
tion accuracy compared to state-of-the-art methods, with sub-
stantial reductions in communication bandwidth—achieving
high-performance perception at a fraction of the transmission
cost. These findings validate the effectiveness of positional
priors in collaborative perception and indicate the strong po-
tential of PosiFusion for deployment in intelligent transporta-
tion systems with limited communication resources. However,
this work does not explicitly analyze the impact of localization
noise in shared positional data or the effects of the number and
distance of connected vehicles on perception performance. In
future work, we plan to investigate these factors in depth and
develop robust adaptation mechanisms to enhance the reliabil-
ity and scalability of PosiFusion in diverse and dynamic V2X
environments.
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